769
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review

, , &
Pages 209-221 | Received 17 Mar 2014, Accepted 17 Apr 2014, Published online: 28 Nov 2014

References

  • Abdeen S, Geo S, Sukanya R, et al. (2014). Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–62
  • Ahmad A, Senapati S, Islam Khan M, et al. (2003a). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3
  • Ahmad A, Senapati S, Khan MI, et al. (2003b). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–8
  • Alani F, Moo-Young M, Anderson W. (2012). Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–6
  • Albrecht MA, Evans CW, Raston CL. (2006). Green chemistry and the health implications of nanoparticles. Green Chem 8:417–32
  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D. (2011). Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331–5
  • Bansal V, Ramanathan R, Bhargava SK. (2011). Fungus-mediated biological approaches towards' green'synthesis of oxide nanomaterials. Aust J Chem 64:279–93
  • Bao C, Jin M, Lu R, et al. (2003). Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dendrimer with surface hydroxyl groups. Mater Chem Phys 81:160–5
  • Beveridge T, Hughes M, Lee H, et al. (1996). Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38:177–243
  • Bruins MR, Kapil S, Oehme FW. (2000). Microbial resistance to metals in the environment. Ecotox Environ Safe 45:198–207
  • Cao G. (2004). Nanostructures and nanomaterials: synthesis, properties and applications. In: Cao G, ed. Synthesis, properties and applications. London: Imperial College Press, 110
  • Cao YC, Jin R, Mirkin CA. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–40
  • Chapman J, Weir E, Regan F. (2010). Period four metal nanoparticles on the inhibition of biofouling. Colloid Surf B 78:208–16
  • Chater KF. (1993). Genetics of differentiation in Streptomyces. Ann Rev Microbiol 47:685–711
  • Chauhan R, Kumar A, Abraham J. (2013). A biological approach to synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 1303:1303–13
  • Chen XJ, Sanchez-Gaytan BL, Qian Z, Park SJ. (2012). Noble metal nanoparticles in DNA detection and delivery. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 4:273–90
  • Chithrani BD, Ghazani AA, Chan WC. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–8
  • Conde J, Doria G, Baptista P. (2011). Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:1–12
  • Deepa S, Kanimozhi K, Panneerselvam A. (2013). Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. Int J Curr Microbiol Appl Sci 2:223–30
  • Doria G, Conde J, Veigas B, et al. (2012). Noble metal nanoparticles for biosensing applications. Sensors 12:1657–87
  • Eppler AS, Rupprechter G, Anderson EA, Somorjai GA. (2000). Thermal and chemical stability and adhesion strength of Pt nanoparticle arrays supported on silica studied by transmission electron microscopy and atomic force microscopy. J Phys Chem B 104:7286–92
  • Faghri Zonooz N, Salouti M. (2011). Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Sci Iran 18:1631–5
  • Feldheim DL, Colby A Jr, eds. (2002). Metal nanoparticles: synthesis, characterization, and applications. New York
  • Feynman R, ed. (1959). There’s plenty of room at the bottom. An Invitation to Enter a New Field of Science Lecture given at the annual meeting of the American Physical Society. California Institute of Technology California
  • Forootanfar H, Adeli-Sardou M, Nikkhoo M, et al. (2014). Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elements Med Biol 28:75–9
  • Gleich B, Weizenecker J. (2005). Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–17
  • Gupta AK, Gupta M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021
  • Huang H, Yang X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–31
  • Jiang J, Oberdörster G, Biswas P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89
  • Kalishwaralal K, Deepak V, Ram Kumar Pandian S, et al. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B 77:257–62
  • Kang B, Mackey MA, El-Sayed MA. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–19
  • Karthik L, Kumar G, Bhattacharyya A, et al. (2013). Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomed: Nanotechnol Biol Med 9:951–60
  • Karthik L, Kumar G, Kirthi AV, et al. (2014). Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Biopro Biosys Eng 37:261–7
  • Khadivi Derakhshan F, Dehnad A, Salouti M. (2012). Extracellular biosynthesis of gold nanoparticles by metal resistance bacteria: Streptomyces griseus. Synth React Inorg Metal-Org Nano-Metal Chem 42:868–71
  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77:233–57
  • Kumar VS, Nagaraja B, Shashikala V, et al. (2004). Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J Mol Catal A: Chem 223:313–19
  • Lee P, Meisel D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–5
  • Lin Y-SE, Vidic RD, Stout JE, et al. (1998). Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32:1997–2000
  • Lok C-N, Ho C-M, Chen R, et al. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem 12:527–34
  • Lu AH, Schmidt W, Matoussevitch N, et al. (2004). Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem 116:4403–6
  • Manikprabhu D, Lingappa K. (2013). Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J Pharm Res 6:255–60
  • Manivasagan P, Venkatesan J, Senthilkumar K, et al. (2013a). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Int 2013:1–9
  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K. (2013b). Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168:311–32
  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K. (2014). Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–78
  • Mohanpuria P, Rana NK, Yadav SK. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–17
  • Moreno-Mañas M, Pleixats R. (2003). Formation of carbon–carbon bonds under catalysis by transition-metal nanoparticles. Acc Chem Res 36:638–43
  • Morones JR, Elechiguerra JL, Camacho A, et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–53
  • Nair LS, Laurencin CT. (2007). Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 3:301–16
  • Narayanan KB, Sakthivel N. (2010). Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13
  • Nassifab N, Rouxa C, Coradina T, et al. (2004). Bacteria quorum sensing in silica matrices. J Mater Chem 14:2264–8
  • Nel AE, Mädler L, Velegol D, et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–57
  • Otari S, Patil R, Nadaf N, et al. (2012). Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–4
  • Oyaizu M. (1986). Studies on products of browning reaction – antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi Jpn J Nut 44:307–15
  • Oza G, Pandey S, Gupta A, et al. (2012). Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. J Microbiol Biotechnol Res 2:511–15
  • Pal S, Tak YK, Song JM. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–20
  • Panyala NR, Pena-Mendez EM, Havel J. (2009). Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed 7:75–91
  • Parikh RY, Ramanathan R, Coloe PJ, et al. (2011). Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One 6:e21401
  • Parikh RY, Singh S, Prasad B, et al. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem BioChem 9:1415–22
  • Park TJ, Lee SY, Lee SJ, et al. (2006). Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal Chem 78:7197–205
  • Pearson A, O’Mullane AP, Bansal V, Bhargava SK. (2010). Galvanic replacement mediated transformation of Ag nanospheres into dendritic Au–Ag nanostructures in the ionic liquid [BMIM][BF4]. Chem Commun 46:731–3
  • Plowman BJ, O'Mullane AP, Selvakannan P, Bhargava SK. (2010). Honeycomb nanogold networks with highly active sites. Chem Commun 46:9182–4
  • Priyaragini S, Sathishkumar S, Bhaskararao K. (2013). Biosynthesis of silver nanoparticles using actinobacteria and evaluating its antimicrobial and cytotoxicity activity. Int J Pharm Pharm Sci 5:709–16
  • Rai M, Yadav A, Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83
  • Rao C, Cheetham A. (2001). Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–94
  • Reynolds JM, El Bissati K, Brandenburg J, et al. (2007). Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin Pharmacol 7:7–13
  • Sabatini G, Kemp D, Hughes S, et al. (2001). Tests to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick, Boophilus microplus. Vet Parasitol 95:53–62
  • Sadhasivam S, Shanmugam P, Veerapandian M, et al. (2012). Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. BioMetals 25:351–60
  • Sadhasivam S, Shanmugam P, Yun K. (2010). Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B 81:358–62
  • Samundeeswari A, Dhas SP, Nirmala J, et al. (2012). Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol Appl Biochem 59:503–7
  • Sannella AR, Casini A, Gabbiani C, et al. (2008). New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: Mechanistic and pharmacological implications. FEBS Lett 582:844–7
  • Sapkal M, Deshmukh A. (2008). Biosynthesis of gold nanoparticles by Streptomyces species. Res J Biotechnol 3:36–9
  • Sastry M, Ahmad A, Khan MI, Kumar R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–70
  • Schaffer B, Hohenester U, Trugler A, Hofer F. (2009). High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy. Phys Rev B 79:1–10
  • Schirmer W. (1999). Nanoparticles and nanostructured films, preparation, characterization and applications. Z Phys Chem 213:226–7
  • Schmid G, Corain B. (2003). Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 2003:3081–98
  • Sepeur S. (2008). Nanotechnology: technical basics and applications. Hannover: Vincentz Network GmbH & Co KG
  • Shahverdi A-R, Shakibaie M, Nazari P. (2011). Basic and practical procedures for microbial synthesis of nanoparticles. In: Rai M, Duran N, eds. Metal nanoparticles in microbiology. Berlin: Springer, 177–95
  • Shankar SS, Rai A, Ahmad A, Sastry M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502
  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, et al. (2013). A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B 111:680–7
  • Sharma NC, Sahi SV, Nath S, et al. (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–42
  • Shetty PR, Kumar YS. (2012). Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–21
  • Shirley AD, Dayanand A, Sreedhar B, Dastager S. (2010). Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig J Nanomater Biostruct 5:447–51
  • Sivalingam P, Antony JJ, Siva D, et al. (2012). Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloids Surf B 98:12–17
  • Strasser P, Koh S, Anniyev T, et al. (2010). Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–60
  • Subashini J, Kannabiran K. (2013). Antimicrobial activity of Streptomyces sp. VITBT7 and its synthesized silver nanoparticles against medically important fungal and bacterial pathogens. Der Pharm Lett 5:192–200
  • Subashini J, Khanna VG, Kannabiran K. (2013). Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species. Biopro Biosys Eng 1–8. doi:10.1007/s00449-013-1070-8
  • Sukanya M, Saju K, Praseetha P, Sakthivel G. (2013). Therapeutic potential of biologically reduced silver nanoparticles from actinomycete cultures. J Nanosci 2013:1–8
  • Sun S, Murray C, Weller D, et al. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–92
  • Taniguchi N. (1974). On the basic concept of nanotechnology. Proceedings of the International Conference on Production Engineering. Part II, Japan Society of Precision Engineering; 18–23; Tokyo
  • Torres-Chavolla E, Ranasinghe RJ, Alocilja EC. (2010). Characterization and functionalization of biogenic gold nanoparticles for biosensing enhancement. Trans Nanotechnol IEEE 9:533–8
  • Usha R, Prabu E, Palaniswamy M, et al. (2010). Synthesis of metal oxide nano particles by Streptomyces Sp for development of antimicrobial textiles. Global J Biotechnol Biochem 5:153–60
  • Vinay Gopal J, Thenmozhi M, Kannabiran K, et al. (2013). Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–2
  • Waghmare S, Deshmukh A, Kulkarni SW, Oswaldo L. (2011). Biosynthesis and characterization of manganese and zinc nanoparticles. Univ J Environ Res Technol 1:64–9
  • Xie J, Lee S, Chen X. (2010). Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–79
  • Youns M, Hoheisel JD, Efferth T. (2011). Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 12:357–65
  • Zinicovscaia I, Tsibakhashvili NY, Kirkesali EI, et al. (2011). Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Nanomater: Appl Properties 306–10
  • Zonooz NF, Salouti M, Shapouri R, Nasseryan J. (2012). Biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 supernatant and process optimization for enhanced production. J Cluster Sci 23:375–82
  • Zotchev SB. (2012). Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.