2,999
Views
49
CrossRef citations to date
0
Altmetric
Review Article

Microbial degradation of herbicides

&
Pages 245-261 | Received 03 Apr 2014, Accepted 27 May 2014, Published online: 27 Aug 2014

References

  • Abdelhafid R, Houot S, Barriuso E. (2000). Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils. Soil Biol Biochem 32:389–401
  • Aksaka O, Erturk FA, Sunar S, et al. (2013). Assessment of genotoxic effects of 2,4-dichlorophenoxyacetic acid on maize by using RAPD analysis. Indus Crops Prod 42:552–7
  • Al-Rajab AJ, Hakami OM. (2014). Behavior of the non-selective herbicide glyphosate in agricultural soil. Am J Environ Sci 10:94–101
  • Amy PS, Schulke JW, Frazier LM, Seidler RJ. (1985). Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4 dichlorophenoxyacetic. Appl Environ Microbiol 49:1237–45
  • Annelie M, Westerberg K, Jernberg C, Janet K. (2001). Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil. Environ Microbiol 3:32–42
  • Arfarita N, Imai T, Kanno A, et al. (2013). The potential use of trichoderma viride strain frp3 in biodegradation of the herbicide glyphosate. Biotechnol Biotechnol Eq 27:3518–21
  • Atamaniuk T, Kubrak I, Storey K, Lushchak V. (2013). Oxidative stress as a mechanism for toxicity of 2,4 dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology 22:1498–508
  • Baelum J, Jacobsen CS, Holben WE. (2010). Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4- dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders. Syst Appl Microbiol 33:67–70
  • Baldwin B, Bray M, Geoghegan M. (1966). The microbial decomposition of paraquat. Biochem J 101:15
  • Barbash, Jack E, Gail P, et al. (1999). Distribution of major herbicides in ground water of the United States. U.S. Geological Survey, Water-Resources Investigations 98–4245.
  • Bardullas U, Giordano M, Rodriguez VM. (2011). Chronic atrazine exposure causes disruption of the spontaneous locomotor activity and alters the striatal dopaminergic system of the male Sprague–Dawley rat. Neurotoxicol Teratol 33:263–72
  • Bhat MA, Tsuda M, Horiike K, et al. (1994). Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol 60:307–12
  • Biradar DP, Rayburn AL. (1995). Flow cytometric analysis of whole cell clastogenicity of herbicides found in groundwater. Arch Environ Contamin Toxicol 28:13–17
  • Bogaerts P, Bohatier J, Bonnemoy F, et al. (2000). Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Management Sci 56:455–62
  • Bortolozzi A, Evangelista de Duffard F, Daja R, Silveira R. (2001). Intracerebral administration of 2,4-dichlorophenoxyacetic acid induces behavioral and neurochemical alterations in the rat brain. Neurotoxicology 22:221–32
  • Bukowska B. (2006). Toxicity of 2,4-dichlorophenoxyacetic acid – molecular mechanisms. Pol J Environ Stud 15:365–74
  • Burns CJ, Swaen GM. (2012). Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology. Crit Rev Toxicol 42:768–86
  • Carlisle S, Trevors JT. (1986). Effect of the herbicide glyphosate on respiration and hydrogen consumption in soil. Water Air Soil Pollut 27:391–401
  • Carr RJG, Bilton RF, Atkinson T. (1986). Toxicity of paraquat to microorganisms. Appl Environ Microbiol 52:1112–16
  • Castillo MA, Felis N, Aragon P, et al. (2006). Biodegradation of the herbicide diuron by streptomycetes isolated from soil. Int Biodeter Biodegrad 58:196–202
  • Castro Joao V, Peralba Maria CR, Ayub Marco AZ. (2007). Biodegradation of the herbicide glyphosate by filamentous fungi in platform shaker and batch bioreactor. J Environ Sci Health 42:883–6
  • Celis E, Elefsiniotis P, Singhal N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions. Water Res 42:3218–24
  • Cenkci S, Yldz M, Cigerci IH, et al. (2010). Evaluation of 2,4-D and dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf 73:1558–63
  • Chaudhry GR, Huang GH. (1988). Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170:3897–902
  • Cherry, B. (2010). GM crops increase herbicide use in the United States. Institute of Science and Technology. Available from: http://www.i-sis.org.uk/GMcropsIncreasedHerbicide.php [last accessed 10 Nov 2010].
  • Chong NM, Chang HW. (2009). Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid. Bioresour Technol 100:1174–9
  • Coady K, Marino T, Thomas J, et al. (2013). An evaluation of 2,4-dichlorophenoxyacetic acid in the amphibian metamorphosis assay and the fish short-term reproduction assay. Ecotoxicol Environ Safety 90:143–50
  • Cox C. (1995). Glyphosate, part 2: human exposure and ecological effects. Herbicide factsheet. J Pestic Reform 15:14–20
  • Dalton RL, Evans AW, Rhodes RC. (1966). Disappearance of diuron from cotton fields soils. Weeds 14:14–31
  • De Souza ML, Newcombe D, Alvey S, et al. (1998). Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. Appl Environ Microbiol 64:178–84
  • Dejonghe W, Goris J, El Fantroussi S, et al. (2000). Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–304
  • Devers M, Rouard N, Martin-Laurent F. (2007). Genetic rearrangement of the atzAB atrazinedegrading gene cassette from pADP1: Tn5 to the chromosome of Variovorax sp. MD1 and MD2. Gene 392:1–6
  • Domingues I, Soares AM, Loureiro S. (2011). Growth rate of Pseudokirchneriella subcapitata exposed to herbicides found in surface waters in the Alqueva reservoir (Portugal): a bottom-up approach using binary mixtures. Ecotoxicology 20:1167–75
  • Don RH, Pemberton JM. (1981). Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–6
  • Don RH, Pemberton JM. (1985). Genetic and physical map of the 2,4 dichlorophenoxyacetic acid degradative plasmid pJP4. J Bacteriol 161:466–8
  • Duke SO, Powles SB. (2008). Glyphosate: a once in a century herbicide. Pest Manag Sci 64:319–25
  • El-Bestawy E, Hans-Jorgen A. (2007). Effect of nutrient amendments and sterilization on mineralization and/or biodegradation of 14C-labeled MCPP by soil bacteria under aerobic conditions. Int Biodeterior Biodegrad 59:193–201
  • Ermakova IT, Kiseleva NI, Shushkova T, et al. (2010). Bioremediation of glyphosatecontaminated soils. Appl Microbiol Biotechnol 88:585–94
  • Evans W, Smith W, Fernely H, Davis J. (1971). Bacterial metabolism of 2,4 dichlorophenoxyacetic acid. J Biochem 122:543–51
  • EXTOXNET. (1996). Pesticide information profiles diuron, Extension Toxicology Network. Available: http://extoxnet.orst.edu/pips/diuron.htm. Revised June 1996
  • Fazlurrahman B, Pandey M, Suri J, Jain RK. (2009). Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil. Lett Appl Microbiol 49:721–9
  • Federico C, Motta S, Palmieri C, et al. (2011). Phenylurea herbicides induce cytogenetic effects in Chinese hamster cell lines. Mutat Res 721:89–94
  • Fisher PR, Appleton J, Pemberton JM. (1978). Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol 135:798–804
  • Fratila-Apachitei LE, Hirst JA, Siebel MA, Gijzen HJ. (1999). Diuron degradation by Phanerochaete chrysosporium BKM-F-1767 in synthetic and natural media. Biotechnol. Lett 21:147
  • Funderburk H, Bozarth GA. (1967). Review of the metabolism and decomposition of diquat and paraquat. J Agric Food Chem 15:563–8
  • Ganguli A, Choudhury D, Chakrabarti G. (2014). 2,4-Dichlorophenoxyacetic acid induced toxicity in lung cells by disruption of the tubulin-microtubule network. Toxicol Res, 3:118–30
  • Garabrant DH, Philbert MA. (2002). Review of 2,4-dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Crit Rev Toxicol 32:233–57
  • Garcia-Gonzalez V, Govantes F, Shaw LJ, et al. (2003). Nitrogencontrolof atrazineutilizationin Pseudomonas sp. strain ADP. Appl Environ Microb 69:6987–93
  • Gauri SS, Mandal SM, Dey S, Pati BR. (2012). Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81. Bioresour Technol 126:350–3
  • Gaynor JD, Hamill AS, MacTavish DC. (1993). Efficacy, fruit residues, and soil dissipation of the herbicide metolachlor in processing tomato. J Am Soc Hortic Sci 118:68–72
  • Gianessi LP. (2013). The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–105
  • Gonzalez M, Soloneski S, Reigosa MA, Larramendy ML. (2005). Genotoxicity of the herbicide 2,4-dichlorophenoxyacetic acid and a commercial formulation, 2,4-dichlorophenoxyacetic acid dimethylamine salt I. Evaluation of DNA damage and cytogenic endpoints in Chinese Hamster ovary (CHO) cells. Toxicol In Vitro 19:289–97
  • Gui W, Dong Q, Zhou S, et al. (2011). Waterborne exposure to clodinafop-propargyl disrupts the posterior and ventral development of zebrafish embryos. Environ Toxicol Chem 30:1576–81
  • Hartnett S, Musah S, Dhanwada KR. (2013). Cellular effects of metolachlor exposure on human liver (HepG2) cells. Chemosphere 90:1258–66
  • Hayes TB, Collins A, Lee M, et al. (2002). Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci USA 99:5476–80
  • Hess D, Warren F. (2002). The herbicide handbook of the Weed Science Society of America. 8th ed., Weed Science Society of America. Herbicide Handbook Committee. 159–61
  • Hoffmann D, Kleinsteuber S, Muller RH, Babel W. (2003). A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 149:2545–56
  • Holland NT, Duramand P, Rothman N, et al. (2002). Micronucleus frequency and proliferation in human lymphocytes after exposure to herbicide 2,4-dichlorophenoxyacetic acid in vitro and in vivo. Mutat Res 521:165–78
  • Hou Y, Tao J, Shen W, et al. (2011). Isolation of the fenoxaprop-ethyl (FE)-degrading bacterium Rhodococcus sp. T1, and cloning of FE hydrolase gene feh. FEMS Microbiol Lett 323:196–203
  • Huang CL, Lee YC, Yang YC, et al. (2012). Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicol Lett 209:203–10
  • Inoue D, Yamazaki Y, Tsutsui H, et al. (2012). Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community. Biodegradation 23:263–76
  • Jablonowski ND, Koeppchen S, Hofmann D, et al. (2008). Spatial distribution and characterization of long-term aged 14C-labeled atrazine residues in soil. J Agricul Food Chem 56:9548–54
  • Jacob GS, Garbow JR, Hallas LE, et al. (1988). Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54:2953–8
  • Jaquet J, Weitzel P, Junge T, Schmidt B. (2014). Metabolic fate of 14 C labeled herbicide clodinafop-propargyl in soil. J Environ Sci Health 49:245–54
  • Johnson TA, Sims GK. (2011). Introduction of 2,4-dichlorophenoxyacetic acid into soil with solvents and resulting implications for bioavailability to microorganisms. World J Microbiol Biotechnol 27:1137–43
  • Juhler R, Sorensen S, Larsen L. (2001). Analysing transformation products of herbicide residues in environmental samples. Water Res 35:1371–8
  • Kashanian S, Askari S, Ahmadi F, et al. (2008). In vitro study of DNA interaction with clodinafop-propargyl herbicide. DNA Cell Biol 27:581–6
  • Kaufman DD, Blake J. (1970). Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80
  • Kitagawa W, Takami S, Miyauchi K, et al. (2002). Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp strain HW13 isolated from a pristine environment. J Bacteriol 184:509–18
  • Kolpin DW, Kalkhoff SJ. (1993). Atrazine degradation in a small stream in Iowa. Environ Sci Technol 27:134–9
  • Lagana A, Bacaloni A, De Leva I, et al. (2002). Occurrence and determination of herbicides and their major transformation products in environmental waters. Analytica Chimica Acta 462:187–98
  • Laitinen P, Ramo S, Siimes K, et al. (2007). Glyphosate translocation from plants to soil-does this constitute a significant proportion of residues in soil? Plant Soil 300:51–60
  • Lowry DM, Greiner D, Fretheim M, et al. (2013). Mecha-nism of metolachlor action due to alterations in cell cycle progression. Cell Biol Toxicol 29:283–91
  • Mandelbaum RT, Allan DL, Wackett LP. (1995). Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–7
  • Mandelbaum RT, Wackett LP, Allan DL. (1993). Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl Environ Microbiol 59:1695–701
  • Marron E, Ruiz N, Rubio C, et al. (2006). 2,4-D Degrading bacterial consortium. Isolation, kinetic characterization in batch and continuous culture and application for bioaugmentating an activated sludge microbial community. Process Biochem 41:1521–8
  • Martinez B, Tomkins J, Wackett R, et al. (2001). Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–97
  • Matheson VG, Forney LJ, Suwa Y, et al. (1996). Evidence for acquisition in nature of a chromosomal 2,4-dichlorophenoxyacetic acid/α-ketoglutarate dioxygenase gene by different Burkholderia spp. Appl Environ Microbiol 62:2457–63
  • Megadi VB, Tallur PN, Hoskeri RS, et al. (2010). Biodegradation of pendimethalin by Bacillus circulans. Indian J Biotechnol 9:173–7
  • Meza-Joya FL, Ramirez-Pinilla MP, Fuentes-Lorenzo JL. (2013). Toxic, cytotoxic, and genotoxic effects of a glyphosate formulation (Roundup®SL-Cosmoflux®411F) in the direct-developing frog Eleutherodactylus johnstonei. Environ Mol Mutagen 54:362–73
  • Mikov I, Vasovic V, Mikov A, et al. (2010). Hypoglycemic effect of herbicide 2,4 dichlorophenoxyacetic acid (2,4-D). Pestic Phytomed (Belgrade) 25:349–52
  • Muller RH, Babel W. (2004). Delftia acidovorans MC1 resists high herbicide concentrations e a study of nutristat growth on (RS)-2-(2,4-dichlorophenoxy) propionate and 2,4 dichlorophenoxyacetate. Biosci Biotechnol and Biochem 68:622–30
  • Munro IC, Carlo GL, Orr JC, et al. (1992). A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. J Am Coll Toxicol 11:559–664
  • Newby DT, Gentry TJ, Pepper IL. (2000). Comparison of 2,4- dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 66:3399–407
  • Palmeira CM, Moreno AJ, Madeira VMC. (1994). Interactions of herbicides 2,4-D and dinoseb with liver mitochondrial bioenergetics. Toxicol Appl Pharmacol 127:50–7
  • Penaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM. (1995). Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61:538–43
  • Perkins EJ, Lurquin PF. (1988). Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4. J Bacteriol 170:5669–72
  • Pimentel D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agr Environ Ethic 8:17–29
  • Pinto AP, Serrano C, Pires T, et al. (2012). Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435–6, 402–10
  • Poh RPC, Smith ARW, Bruce IJ. (2002). Complete characterization of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12
  • Rickettes DC. (1999). The microbial biodegradation of Paraquat in soil. Pestic Sci 55:596–614
  • Rollof B, Belluck D, Meiser L. (1992). Cytogenic effects of cyanazine and metolachlor on human lymphocytes exposed in vitro. Mut Res Lett 281:295–8
  • Rousseaux S, Hartmann A, Soulas G. (2001). Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36:211–22
  • Rueppel ML, Brightwell BB, Schaefer J, Marvel JT. (1977). Metabolism and degradation of glyphosate in soil and water. J Agric Food Chem 25:517–28
  • Sahid I, Hamzah A, Aris PM. (1992). Effects of paraquat and alachlor on soil microorganisms in peat soil. Pertanika 15:121–5
  • Sandoval-Carrasco CA, Ahuatzi-Chacón D, Galíndez-Mayer J, et al. (2013). Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Bioresour Technol 145:33–6
  • Saxena A, Zhang RW, Bollag JM. (1987). Microorganisms capable of metabolizing the herbicide metolachlor. Appl Environ Microbiol 53:390–6
  • Sebaï TE, Devers-Lamrani M, Changey F, et al. (2011). Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65:1249–55
  • Sharma P, Suri CR. (2011). Biotransformation and biomonitoring of phenylurea herbicide diuron. Bioresource Technol 102:3119–25
  • Shelton DR, Khader S, Karns JS, Pogell BM. (1996). Metabolism of twelve herbicides by Streptomyces. Biodegradation 7:129–36
  • Silva TM, Stets MI, Mazzetto AM, et al. (2007). Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38:522–5
  • Simonsen L, Fomsgaard IS, Svensmark B, Spliid NH. (2008). Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health 43:365–75
  • Singh B. (2013). Degradation of clodinafop propargyl by Pseudomonas sp. strain B2. Bull Environ Contam Toxicol 6:730–3
  • Singh B, Kaur J, Singh K. (2012). Microbial remediation of explosive waste. Crit Rev Microbiol 38:152–67
  • Singh B, Kaur J, Singh K. (2013). Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40:146–54
  • Siripattanakul S, Wirojanagud W, McEvoy J, et al. (2009). Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J Appl Microbiol 106:986–92
  • Slade P. (1965). The photochemical degradation of paraquat. Nature (London) 207:515–16
  • Song J, Gu J, Zhai Y, et al. (2013). Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour Technol 140:243–8
  • Sorensen S, Albers C, Aamand J. (2008). Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–40
  • Stasinakis AS, Kotsifa S, Gatidou G, Mamais D. (2009). Diuron biodegradation in activated sludge batch reactors under aerobic and anoxic conditions. Water Res 43:1471–9
  • Struthers JK, Jayachandran K, Moorman TB. (1998). Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–75
  • Sturtz N, Evangelista De Duffard AM, Duffard R. (2000). Detection of 2,4-dichlorophenoxyacetic acid (2,4- D) residues in neonates breast-fed by 2,4-D exposed dams. Neurotoxicol 2:147
  • Tappe W, Groeneweg J, Jantsch B. (2002). Diffuse atrazine pollution in German aquifers. Biodegradation 13:3–10
  • Thurman EM, Goolsby DA, Meyer MT, et al. (1992). A reconnaissance study of herbicides and their metabolites is surface water of the Midwestern United States using immunoassay and gas chromatography/mass spectrometry. Environ Sci Technol 26:2440–7
  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE. (1969). 2,4-D metabolism: pathway of degradation of chlorocatechols by Athrobacter sp. J Agr Food Chem 17:1021–6
  • Top EM, Holben WE, Forney LJ. (1995). Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 61:1691–8
  • Topp E, Zhu H, Nour SM, et al. (2000). Characterization of an atrazine degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl Environ Microbiol 66:2773–82
  • Tsutsui H, Anami Y, Matsuda M, et al. (2013). Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4. Biodegradation 24:343–52
  • Turnbull GA, Cllington JE, Walker A, Morgan J. (2001). Identification and characterisation of a diuron-degrading bacterium. Biol Fertil Soils 33:472–6
  • United States Environmental Protection Agency (USEPA). (2004). Environmental date and effects division's risk assessment for the reregistration eligibility document for 2,4-dichlorophenoxyacetic acid (2,4-D). Available from: http://www.regulations.gov/fdmspublic/component/main (Docket IDEPA-HQ-OPP-2004-0167) [last accessed 21 Nov 2006]
  • USEPA-OPP. (1984). Memo from S. Creeger, Hazard Evaluation Division, to R. Taylor, Registration Division
  • Vargha M, Takats Z, Márialigeti K. (2005). Degradation of atrazine in a laboratory scale model system with Danube river sediment. Water Res 39:1560–8
  • Veiga F, Zapata JM, Fernandez Marcos ML, Alvarez E. (2001). Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain. Sci Total Environ 271:135–44
  • Wackett LP, Sadowsky MJ, Martinez B, Shapir N. (2002). Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:39–45
  • Wang JH, Zhu LS, Liu AJ, et al. (2011). Isolation and characterization of an Arthrobacter sp. strain HB-5 that transforms atrazine. Environ Geochem Health 33:259–66
  • Wang Q, Xie S. (2012). Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int Biodeter Biodegr 71:61–6
  • Wang QF, Xie SG, Hu R. (2013). Bioaugmentation with Arthrobacter sp strain DAT1 for remediation of heavily atrazine-contaminated soil. Int Biodeterior Biodegrad 77:63–7
  • Weintraub RL, Reinhart JH, Scherff RA, Schisler LC. (1954). Metabolism of 2,4-dichlorophenoxyacetic acid. III. Metabolism and persistence in dormant plant tissue. Plant Physiol 29:303–4
  • Wua B, Song B, Yang H, et al. (2013). Central nervous system damage due to acute paraquat poisoning: an experimental study with rat model. Neuro Toxicology 35:62–70
  • Xu J, Yang M, Dai J, et al. (2008). Degradation of acetochlor by four microbial communities. Bioresource Technol 99:7797–802
  • Xuedong W, Huili W, Defang F. (2005). Biodegradation of imazapyr by free cells of Pseudomonas fluorescene biotype II and Bacillus cereus isolated from soil. Bull Environ Contam Toxicol 74:350–5
  • Yang CY, Li Y, Zhang K, et al. (2010). Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation 21:97–105
  • Yanze-Kontchou C, Gschwind N. (1994). Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol 60:4297–302
  • Yaw-Jian L, Karuppiah M, Shaw A, Gupta G. (1999). Effect of simulated sunlight on atrazine and metolachlor toxicity of surface waters. Ecotoxicol Environ Saf 43:35–7
  • Zhang Y, Jiang Z, Cao B, et al. (2011). Metabolic ability and gene characteristics of Arthrobacter sp strain DNS10, the sole atrazine degrading strain in a consortium isolated from black soil. Int Biodeterior Biodegrad 65:1140–4
  • Zheng SQ, Cooper JE. (1996). Adsorption, desorption and degradation of three pesticides in different soils. Arch Environ Toxicol 30:15–20
  • Zhou ZS, Song JB, Liu ZP, Yang H. (2012). Molecular dissection of atrazine-responsive transcriptome and gene networks in rice by high-throughput sequencing. J Hazard Mater 15:57–68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.