1,009
Views
88
CrossRef citations to date
0
Altmetric
Review Article

Bioremediation of chromium solutions and chromium containing wastewaters

&
Pages 607-633 | Received 01 Sep 2014, Accepted 06 Oct 2014, Published online: 30 Oct 2014

References

  • Abe F, Miura T, Nagahama T. (2001). Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–34
  • Abou-Shanab RAI, van Berkum P, Angle JS. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–7
  • Ackerley DF, Barak Y, Lynch SV, et al. (2006). Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–81
  • Ackerley DF, Gonzalez CF, Keyhan M, et al. (2004). Mechanism of chromate reduction by the E. coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–60
  • Adriano DC. (2001). Trace elements in terrestrial environments. In: Adriano DC, ed. Biogeochemistry, bioavailability and risks of metals. 2nd ed. New York (NY): Springer Verlag
  • Aguilera S, Aguilar ME, Chavez MP, et al. (2004). Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107–12
  • Ahmad WA, Ahmad WHW, Karim NA, et al. (2013). Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. Int Biodeterior Biodegrad 85:571–6
  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A. (2006). Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–7
  • Alvarez AH, Moreno-Sanchez R, Cervantes C. (1999). Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–400
  • Amoozegar MA, Ghasemi A, Razavi R, Nabat S. (2007). Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–9
  • Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S. (2005). Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming Bacilli. World J Microbiol Biotechnol 21:1237–41
  • Aravindhan R, Madhan B, Raghava Rao J, et al. (2004). Bioaccumulation of chromium from the tannery wastewater: an approach for chrome recovery and reuse. Environ Sci Technol 38:300–6
  • Asatiani NV, Abuladze MK, Kartvelishvili TM, et al. (2004). Effect of chromium(VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–6
  • Bachate SP, Nandre VS, Ghatpande NS, Kodam KM. (2013). Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere 90:2273–8
  • Badar U, Ahmed N, Beswick AJ, et al. (2000). Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol Lett 22:829–36
  • Bae WC, Lee HK, Choe YC, et al. (2005). Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–7
  • Baldi F, Vaughan AM, Olson GJ. (1990). Chromium(VI)-resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl Environ Microbiol 56:913–18
  • Barac T, Taghavi S, Borremans B, et al. (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–8
  • Barkay T, Schaefer J. (2001). Metal and radionuclide bioremediation: issues, considerations, and potentials. Curr Opion Microbiol 4:318–23
  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12
  • Barreteau H, Kovac A, Boniface A, et al. (2008). Cytoplasmic step of pectidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207
  • Basu M, Bhattacharya S, Paul AK. (1997). Isolation and characterization of chromium resistant bacteria from tannery effluents. Bull Environ Contam Toxicol 58:535–42
  • Bencheikh-Latmani R, Obraztsova A, Mackey MR, et al. (2007). Toxicity of Cr(III) to Shewanella sp. strain MR- 4 during Cr(VI) reduction. Environ Sci Technol 41:214–20
  • Beveridge T, McLean J, Phipps D. (2000). Isolation and characterization of a chromium-reducing bacterium from chromate copper arsenate-contaminated site. Environ Microbiol 2:611–19
  • Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z. (1997). Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303
  • Beveridge TJ, Murray RGE. (1976). Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127:1502–18
  • Beveridge TJ. (1988). The bacterial surface: general considerations towards design and function. Can J Microbiol 34:363–72
  • Bhattacharya A, Gupta A. (2013). Evaluation of Acinetobacter sp. B9 for Cr(VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20:6628–37
  • Bhattacharya J, Islam M, Cheong YW. (2006). Microbial growth and action: implications for passive bioremediation of acid mine drainage. Mine Water Environ 25:233–40
  • Bouhss A, Trunkfield AE, Bugg DT, Mengin-Lecreulx D. (2008). The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208–33
  • Branco R, Alpoim MC, Morais PV. (2004). Ochrobactrum tritici strain 5bvI1d characterization of a Cr(VI)-resistant and Cr(VI)- reducing strain. Can J Microbiol 50:697–703
  • Branco R, Chung AP, Johnston T, et al. (2008). The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003
  • Cabrera G, Viera M, Gomez JM, et al. (2007). Bacterial removal of chromium (VI) and (III) in a continuous system. Biodegradation 18:505–13
  • Camargo FA, Bento FM, Okeke BC, Frankenberger WT. (2004a). Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–94
  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT. (2003). In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–73
  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT. (2004b). Hexavalent chromium reduction by immobilized cells and cell free extract of Bacillus sp. ES 29. Biorem J 8:23–30
  • Caravelli AH, Giannuzzi L, Zaritzky NE. (2008). Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. J Hazard Mater 156:214–22
  • Cefalu WT, Hu FB. (2004). Role of chromium in human health and in diabetes. Diabetes Care 27:2741–51
  • Cervantes C, Campos-Garcia J, Devars S, et al. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiol 25:335–47
  • Chandra R, Bhargava RN, Kapley A, Purohit HJ. (2011). Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–41
  • Chang IS, Kim BH. (2007). Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere 68:218–26
  • Chardin B, Giudici-Orticoni MT, De Luca G, et al. (2003). Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–21
  • Chardin B, Gu A, Chaspoul F, et al. (2002). Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl Microbiol Biotechnol 60:352–60
  • Chaudhuri G, Dey P, Dalal D, et al. (2013). A novel approach to precipitation of heavy metals from industrial effluents and single-ion solutions using bacterial alkaline phosphatase. Water Air Soil Pollut 224:1625
  • Chen CY, Chen SC, Fingas M, Kao CM. (2010). Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. J Hazard Mater 177:856–63
  • Chen JM, Hao OJ. (1998). Microbial chromium(VI) reduction. Crit Rev Environ Sci Technol 28:219–51
  • Chen Y, Gu G. (2005). Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic–aerobic activated sludge process. Bioresour Technol 15:1713–21
  • Chen Y, He Z, Wu J. (1994). Speciation and transformation of chromium in soil. Environ Sci 15:53–6 [in Chinese]
  • Chen Z, Huang Z, Cheng Y, et al. (2012). Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere 87:211–16
  • Cheng Y, Yan F, Huang F, et al. (2010). Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environ Sci Technol 44:6357–63
  • Cheung KH, Gu JD. (2002). Bacterial color response to hexavalent chromium, Cr6+. J Microbiol 40:234–6
  • Cheung KH, Gu JD. (2003). Reduction of chromate () by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–9
  • Cheung KH, Gu JD. (2005). Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World J Microbiol Biotechnol 21:213–19
  • Cheung KH, Gu JD. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegrad 59:8–15
  • Cheung KH, Lai HY, Gu JD. (2006). Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–62
  • Chirwa EMN, Wang YT. (2000). Simultaneous Cr(VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res 34:2376–84
  • Chirwa EN, Wang YT. (2001). Simultaneous chromium(VI) reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance. Water Res 35:1921–32
  • Chirwa EMN, Wang Y-T. (1997). Chromium(VI) reduction by Pseudomonas fluorescens LB300 in fixed-film bioreactor. J Environ Eng 123:760–5
  • Choppala G, Bolan N, Park JH. (2013). Chromium contamination and its risk management in complex environmental settings. Adv Agron 120:129–72
  • Chourey K, Thompson MR, Morrell-Falvey J, et al. (2006). Global molecular and morphological effects of 24-Hour Chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol 72:6331–44
  • Chourey K, Wei W, Wan XF, Thompson DK. (2008). Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1 under chromate challenge. BMC Genomics 9:395
  • Chuan M, Liu J. (1996). Release behaviour of chromium from tannery sludge. Water Res 30:932–8
  • Codd R, Dillon CT, Levina A, Lay PA. (2001). Studies on the genotoxicity of chromium: from test tube to the cell. Coordin Chem Rev 216–217:537–82
  • Codd R, Lay PA, Tsibakhashvili NY, et al. (2006). Chromium(V) complexes generated in Arthrobacter oxydans by simulation analysis of EPR spectra. J Inorg Biochem 100:1827–33
  • Colin VL, Villegas LB, Abate CM. (2012). Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int Biodeter Biodegrad 69:28–37
  • Costa M. (1997). Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27:431–42
  • Czakó-Vér K, Batic M, Raspor P, et al. (1999). Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosacchoromyces pombe. FEMS Microbiol Lett 178:109–15
  • Da Costa Morato Nery D, Da Silva CG, Mariani D, et al. (2008). The role of trehalose in protection against reactive oxygen species. Biochim Biophys Acta 1780:1408–11
  • Das S, Chandra AL. (1990). Chromate reduction in Streptomyces. Experientia 46:731–3
  • Das AP, Mishra S. (2010). Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. J Carcinog 9:1–6
  • Das S, Mishra J, Das SK, et al. (2014). Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–21
  • De Bruijn JPF, Mondaca MA. (2000). Chromate reduction by Serratia marcescens immobilized on activated carbon. Toxicol Environ Chem 76:125–35
  • Decorosi F, Lori L, Santopolo L, et al. (2011). Characterization of a Cr(VI)-sensitive Pseudomonas corrugata 28 mutant impaired in a pyridine nucleotide transhydrogenase gene. Res Microbiol 162:747–55
  • Dermou E, Velissariou A, Xenos D, Vayenas DV. (2005). Biological chromium(VI) reduction using a trickling filter. J Hazard Mater 126:78–85
  • Desai C, Jain K, Madamwar D. (2008a). Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresource Technol 99:6059–69
  • Desai C, Jain K, Madamwar D. (2008b). Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–21
  • Dey S, Paul AK. (2012). Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. J Hazard Mater 213–214:200–6
  • Dhal B, Thatoi H, Das N, Pandey BD. (2010). Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–9
  • Dong G, Wang Y, Gong L, et al. (2013). Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 70:166–72
  • Doyle RJ, Matthews TH, Streips UN. (1980). Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bacteriol 143:471–80
  • Dursun A, Tepe YO. (2005). Internal mass transfer effect Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater 126:105–11
  • El Fantroussi S, Agathos SN. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–75
  • Elangovan R, Abhipsa S, Rohit B, et al. (2006). Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–52
  • Elias DA, Suflita JM, McInerney MJ, Krumholz LR. (2004). Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction. Appl Environ Microbiol 70:413–20
  • Essahale A, Malki M Marin I, Moumni M. (2012). Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez tanneries in Morocco. Indian J Microbiol 52:48–53
  • Farrell SO, Ranallo RT. (2000). Experiments in biochemistry: a hands-on approach. Orlando: Saunders
  • Francisco R, de Abreu P, Plantz BA, et al. (2011). Metal-induced phosphate extracellular nanoparticulate formation in Ochrobactrum tritici 5bvl1. J Hazard Mater 198:31–9
  • Francisco R, Moreno A, Morais PV. (2010). Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. Biometals 23:713–25
  • Frederick TM, Taylor EA, Willis JL, et al. (2013). Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose. Biotechnol Lett 35:1291–6
  • Fredrickson JK, Gorby YA. (1996). Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotechnol 7:287–94
  • Ganguli A, Tripathi AK. (2001). Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa from a leather tannery effluent. J Microbiol Biotechnol 11:355–61
  • Ganguli A, Tripathi AK. (2002). Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2 Chr in two bioreactors. Applied Microbiol Biotechnol 8:416–20
  • Garbisu C, Alkorato I, Llama MJ, Serra JL. (1998). Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–41
  • Garg SK, Tripathi M, Singh SK, Singh A. (2013). Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res 20:2288–304
  • Ge S, Dong X, Zhou J, Ge S. (2013a). Comparative evaluations on bio-treatment of hexavalent chromate by resting cells of Pseudochrobactrum sp. and Proteus sp. in wastewater. J Environ Manag 126:7–12
  • Ge S, Zhou M, Dong X, et al. (2013b). Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl Microbiol Biotechnol 97:2131–7
  • Gnanamani A, Kavitha V, Radhakrishnan N, et al. (2010). Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B 79:334–9
  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A. (2005). ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–5
  • Gorby YA, Amonette SE, Fruchter JS. (1994). Remediation of contaminated subsurface materials by a metal-reducing bacterium. In: Proceedings of the 33rd Hanford Symposium on Health and the Environment. In-situ remediation: Scientific basis for current and future technologies. Columbus (OH): Battelle Press, 233–47
  • Gunasundari D, Muthukumar K. (2013). Simultaneous Cr(VI) reduction and phenol degradation using Stenotrophomonas sp. isolated from tannery effluent contaminated soil. Environ Sci Pollut Res 20:6563–73
  • Guo H, Luo S, Chen L, et al. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technol 101:8599–605
  • Gupta VK, Carrott PJM, Carrott MMLR, Suhas TL. (2009). Low-cost adsorbents: growing approach to wastewater treatment – a review. Crit Rev Environ Sci Technol 39:783–842
  • Harish R, Samuel J, Mishra R, et al. (2012). Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India. Biodegradation 23:487–96
  • Hasin AA, Gurman SJ, Murphy LM, et al. (2010). Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–5
  • He M, Li X, Liu H, et al. (2011). Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–8
  • He Z, Gao F, Sha T, et al. (2009). Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–73
  • Henne KL, Nakatsu CH, Thompson DK, Konopka AE. (2009). High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199
  • Holland SL, Avery SV. (2009). Actin-mediated endocytosis limits intracellular Cr accumulation and Cr toxicity during chromate stress. Toxicol Sci 111:437–46
  • Horitsu H, Futo S, Miyazawa Y, et al. (1987). Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric Biol Chem 51:2417–20
  • Humphries AC, Macaskie LE. (2002). Reduction of Cr(VI) by Desulfovibrio vulgaris and Microbacterium sp. Biotechnol Lett 24:1261–7
  • Idris A, Suzana W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem 41:1117–23
  • Ishibashi Y, Cervantes C, Silver S. (1990). Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–70
  • Iyer A, Mody K, Jha B. (2004). Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–7
  • Joutey NT, Bahafid W, Sayel H, et al. (2013). Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res 21:3060–72
  • Kaasen I, Falkenberg P, Styrvold OB, Strom AR. (1992). Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR). J Bacteriol 174:889–98
  • Kamaludeen SPB, Megharaj M, Juhasz AL, et al. (2003). Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164
  • Kang SY, Bremer PJ, Kim KW, McQuillan AJ. (2006). Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy. Langmuir 22:286–91
  • Kimbrough DE, Cohen Y, Winer AM, et al. (1999). A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46
  • Klonowska A, Clark ME, Thieman SB, et al. (2008). Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulphate. Appl Microbiol Biotechnol 78:1007–16
  • Koch C, Schumann P, Stackebrandt E. (1995). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 45:837–9
  • Konovalova VV, Dmytrenko GM, Nigmatullin RR, et al. (2003). Chromium(VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme Microbial Technol 33:899–907
  • Krishna ALS, Krishna PM, Sarma TNR, Sarma PN. (2006). Uptake of Cr(VI) in the presence of sulphate by Bacillus mycoides in aerobic environment. Indian J Biotechnol 5:506–9
  • Kwak YH, Lee DS, Kim HB. (2003). Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–5
  • Laxman RS, More S. (2002). Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–7
  • Liu YG, Xu WH, Zeng GM, et al. (2006). Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–6
  • Liu YG, Xu WH, Zeng GM. (2004). Experimental study on reduction by Pseudomonas aeruginosa. J Environ Sci 16:795–801
  • Liu Z, Wu Y, Lei C, et al. (2012). Chromate reduction by a chromate-resistant bacterium, Microbacterium sp. World J Microbiol Biotechnol 28:1585–92
  • Long D, Tanga X, Cai K, et al. (2013). Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. J Hazard Mater 24:256–57
  • Lovley DR, Phillips EJP. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–8
  • Lovley DR. (1993). Dissimilatory metal reduction. Annu Rev Microbiol 47:263–90
  • Lovley DR. (1995). Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231
  • Mabbett AN, Lloyd JR, Macaskie LE. (2002). The effect of complexing agents on the reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioeng 79:389–97
  • Malaviya P, Singh A. (2011). Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit Rev Environ Sci Technol 41:1111–72
  • Malaviya P, Singh A. (2012). Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42:2153–214
  • Malik A, Jaiswal R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World J Microbiol Biotechnol 16:177–82
  • Mangaiyarkarasi MSM, Vincent S, Janarthanan S, et al. (2011). Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18:157–67
  • Marquis RE, Mayzel K, Carstensen El. (1976). Cation exchange in cell walls of gram positive bacteria. Can J Microbiol 22:975–82
  • McLean J, Beveridge TJ. (2001). Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–84
  • Megharaj M, Avudainayagam S, Naidu R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–4
  • Middleton SS, Bencheikh-Latmani R, Mackey MR, et al. (2003). Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–37
  • Mishra RR, Dhal B, Dutta SK, et al. (2012). Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Mater 227–228:219–26
  • Mishra S, Doble M. (2008). Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol Environ Safe 71:874–9
  • Molokwane PE, Meli CK, Evans Chirwa MN. (2008). Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42:4538–48
  • Mondaca MA, Campos V, Moraga R, Zaror CA. (2002). Chromate reduction in Serratia marcescens isolated from tannery effluent and potential application for bioremediation of chromate pollution. Sci World J 2:972–7
  • Moosvi S, Madamwar D. (2007). An integrated process for the treatment of CETP wastewater using coagulation, anaerobic and aerobic process. Bioresource Technol 98:3384–92
  • Mulligan CN, Wang S. (2006). Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng Geol 85:75–81
  • Muneer B, Rehman A, Shakoori FR, Abdul R. (2009). Evaluation of consortia of microorganisms for efficient removal of hexavalent chromium from industrial wastewater. Bull Environ Contam Toxicol 82:597–600
  • Myers CR, Carstens BP, Antholine WE, Myers JM. (2000). Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106
  • Naik UC, Srivastava S, Thakur IS. (2012). Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environ Sci Pollut Res 19:3005–14
  • Narayani M, Shetty KV. (2013). Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009
  • Nekolny D, Chaloupka J. (2000). Protein catabolism in growing Bacillus megaterium during adaptation to salt stress. FEMS Microbiol Lett 184:173–7
  • Ng TW, Cai Q, Wong CK, et al. (2010). Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: azo dye as electron donor for chromate reduction. J Hazard Mater 182:792–800
  • Nies DH. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbio Rev 27:313–39
  • Nyman JL, Frank C, Cunningham AlB, Robin G. (2003). Biogeochemical elimination of chromium (VI) from contaminated water. Biorem J 6:39–55
  • Ohtake H, Cervantes C, Silver S. (1987). Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–6
  • Ohtake H, Fujii E, Toda K. (1990). Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ Technol 11:663–8
  • Okeke BC, Laymon J, Crenshaw S, Oji C. (2008). Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 123:229–41
  • Okeke BC. (2008). Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol 35:1571–9
  • Opperman DJ, Heerden EV. (2007). Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1907–13
  • Opperman DJ, Piater LA, Heerden EV. (2008). A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–82
  • Owlad M, Aroua MK, Daud WAW, Baroutian S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77
  • Ozturk S, Kaya T, Aslim B, Tan S. (2012). Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J Hazard Mater 231–232:64–9
  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. (2011). Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–54
  • Pal A, Paul AK. (2004). Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–54
  • Panda J, Sarkar P. (2012). Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2. Environ Sci Pollut Res 19:1809–17
  • Panneerselvam P, Choppala G, Kunhikrishnan A, Bolan N. (2013). Potential of novel bacterial consortium for the remediation of chromium contamination. Water Air Soil Pollut 224:1716.1–11
  • Pant D, Adholeya A. (2010). Development of a novel fungal consortium for the treatment of molasses distillery wastewater. The Environmentalist 30:178–82
  • Park CH, Keyhan M, Wielinga B, et al. (2000). Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–95
  • Patra RC, Malik S, Beer M, et al. (2010). Molecular characterization of chromium (VI) reducing potential in gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42:1857–63
  • Pattanapipitpaisal P, Brown NL, Macaskie LE. (2001). Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–61
  • Pei QH, Shahir S, Raj ASS, et al. (2009). Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25:1085–93
  • Philip L, Iyengar L, Venkobachar C. (1998). Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124:1165–70
  • Polti MA, Amoroso MJ, Abate CM. (2011). Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57
  • Poopal AC, Laxman RS. (2009). Studies on biological reduction of chromate by Streptomyces griseus. J Hazard Mater 169:539–45
  • Poopal AC, Laxman S. (2008). Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotechnol Lett 30:1005–10
  • Powell RM, Puls RW, Hightower SK, Sabatini DA. (1995). Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–22
  • Puzon GJ, Peterson JM, Roberts AG, et al. (2002). A bacterial flavin reductase system reduces chromate to a soluble chromium(III)–NAD+ complex. Biochem Biophys Res Commun 294:76–81
  • Puzon GJ, Roberts AG, Kramer DM, Xun L. (2005). Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–17
  • Raaman N, Mahendran B, Jaganathan C, et al. (2012). Removal of chromium using Rhizobium leguminosarum. World J Microbiol Biotechnol 28:627–36
  • Rajkumar M, Nagendran R, Lee KJ, Lee WH. (2005). Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth–promoting potential. Curr Microbiol 50:266–71
  • Raman N, Srinivasan V, Ravi M. (2002). Effect of chromium on the axenic growth and phosphatase activity of ectomycorrhizal fungi, Laccaria laccata and Suillus bovinus. Bull Environ Contam Toxicol 68:569–75
  • Ramirez-Ramirez R, Calvo-Mendez C, Avila-Rodriguez M, et al. (2004). Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek 85:63–8
  • Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 231–32
  • Rashedi H, Assadi MM, Jamshidi E, Bonakdarpour B. (2006). Optimization of the production of biosurfactant by Psuedomonas aeruginosa HR isolated from an Iranian southern oil well. Iran J Chem Chem Eng 25:25–30
  • Rashid MH, Rumbaugh K, Passador L, et al. (2000). Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–41
  • Rehman A, Zahoor A, Muneer B, Hasnain S. (2008). Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater. Bull Environ Contam Toxicol 81:25–9
  • Rehmanm Y, Rizvi FZ, Faisal M, Hasnain S. (2013). Arsenic and chromium reduction in co-cultures of bacteria isolated from industrial sites in Pakistan. Microbiology 82:428–33
  • Rida B, Yrjala K, Hasnain S. (2012). Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22:547–54
  • Rivera SL, Vargas E, Ramirez-Diaz MI, et al. (2008). Genes related to chromate resistance by Pseudomonas aeruginosa PA01. Antonie van Leeuwenhoek 94:299–305
  • Roden EE, Zachara JM. (1996). Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–28
  • Romanenko VI, Korenkov VN. (1977). Pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiia 46:414–17
  • Ruggaber TP, Talley JW. (2006). Enhancing bioremediation with enzymatic processes: a review. Pract Period Hazard Toxic Radioact Waste Manag 10:73–85
  • Sadikov BM, Naumova IB, Streshinskaya GM, Polin AN. (1987). Cell wall polymers containing carbohydrates of Arthrobacter species. Microbiol 56:441–6
  • Sagar S, Dwivedi A, Yadav S, et al. (2012). Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae Strain Cr11. Chemosphere 86:847–52
  • Salzman G, Holz O. (1985). The bacterial cell wall. Berlin: Springer
  • Sarangi A, Krishnan C. (2008). Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–7
  • Sarma SJ, Pakshirajan K. (2010). An immobilized cell system for biodegradation of pyrene by Mycobacterium frederiksbergense. Polycycl Aromat Comp 30:129–40
  • Schaffer C, Messner P. (2005). The structure of secondary cell wall polymers: how gram positive bacteria stick their cell walls together. Microbiology 151:643–51
  • Seltmann G, Holst O. (2001). The bacterial cell wall. Berlin/Heidelberg/New York: Springer
  • Shakoori AR, Makhdoom M, Haq RU. (2000). Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53:348–51
  • Sharma S, Adholeya A. (2011). Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. Int Biodeter Biodegrad 65:309–17
  • Shen H, Wang YT. (1993). Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 53:3771–7
  • Shen H, Wang YT. (1994). Biological reduction of chromium by E. coli. J Environ Eng 120:560–70
  • Shi Y, Chai L, Yang Z, et al. (2012). Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess Biosyst Eng 35:843–50
  • Silva B, Figueiredo H, Quintelas C, et al. (2012). Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. Int Biodeter Biodegrad 74:116–23
  • Singh R, Kumar A, Kirrolia A, et al. (2011). Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresource Technol 102:677–82
  • Sisti F, Allegretti P, Donati E. (1996). Reduction of dichromate by Thiobacillus ferrooxidans. Biotechnol Lett 18:1477–80
  • Slobodkina GB, Bonch-Osmolovskaya EA, Slobodkin AI. (2007). Reduction of Chromate, Selenite, Tellurite, and Iron (III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1. Mikrobiologiya 76:602–7
  • Smillie RH, Hunter K, Loutit M. (1981). Reduction of chromium(VI) by bacterially produced hydrogen sulfide in a marine environment. Water Res 15:1351–4
  • Smith WL. (2001). Hexavalent chromium reduction and precipitation by sulphate-reducing bacterial biofilms. Environ Geochem Health 23:297–300
  • Somasundaram V, Philip L, Bhallamudi SM. (2011). Laboratory scale column studies on transport and biotransformation of Cr(VI) through porous media in presence of CRB, SRB and IRB. Chem Eng J 171:572–81
  • Song H, Liu Y, Xu W, et al. (2009). Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresource Technol 100:5079–84
  • Srinath T, Verma T, Ramteke PW, Garg SK. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistance bacteria. Chemosphere 48:427–35
  • Srivastava S, Ahmad AH, Thakur IS. (2007). Removal of chromium and pentachlorophenol from tannery wastewaters. Bioresource Technol 98:1128–32
  • Srivastava S, Thakur IS. (2007). Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–46
  • Stasinakis AS, Thomaidis NS, Mammais D, Lekkas TD. (2004). Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. Chemosphere 57:1069–77
  • Stearns DM, Kennedy LJ, Courtney KD, et al. (1995). Reduction of chromium(V1) by ascorbate leads to chromium–DNA binding and DNA strand breaks in steel mesh electrode. J Clean Prod 15:1415–18
  • Sugiyama T, Sugito H, Mamiya K, et al. (2012). Hexavalent chromium reduction by an actinobacterium Flexivirga alba ST13 T in the family Dermacoccaceae. J Biosci Bioeng 113:367–71
  • Sultan S, Hasnain S. (2012). Chromium (VI) reduction by cell free extract of Ochrobactrum anthropi isolated from tannery effluent. Bull Environ Contam Toxicol 89:152–7
  • Sultan S, Hasnain S. (2007). Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technol 98:340–4
  • Sundar K, Mukherjee A, Sadiq M, Chandrasekaran N. (2011a). Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin. J Hazard Mater 187:553–61
  • Sundar K, Sadiq M, Mukherjee A, Chandrasekaran N. (2011b). Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor. J Hazard Mater 196:44–51
  • Suzuki T, Miyata N, Horitsu H, et al. (1992). NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5
  • Thacker U, Madamwar D. (2005). Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J Microbiol Biotechnol 21:891–9
  • Thacker U, Parikh R, Shouche Y, Madamwar D. (2007). Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresource Technol 98:1541–7
  • Thomas KW. (2008). Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–8
  • Traore AS, Hatchikian CE, Belaich JP, LeGall J. (1981). Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–9
  • Tucker MD, Barton LL, Thomson BM. (1998). Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19
  • Valls M, de Lorenzo V. (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–38
  • VanEngelen MR, Peyton BM, Mormile MR, Pinkart HC. (2008). Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegradation 19:841–50
  • Vasant C, Balamurugan K, Rajaram R, Ramasami T. (2001). Apoptosis of lymphocytes in the presence of Cr(V) complexes: role in Cr (VI)-induced toxicity. Biochem Biophys Res Commun 285:1354–60
  • Viamajala S, Peyton BM, Sani RK, et al. (2004). Toxic effects of chromium (VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol Prog 20:87–95
  • Viamajala S, Smith WA, Sani RK, et al. (2007). Isolation and characterization of Cr(VI) reducing Cellulomonas sp. from subsurface soils: implications for long-term chromate reduction. Bioresource Technol 98:612–22
  • Villegas LB, Pereira CE, Colin VL, Abate CM. (2013). The effect of sulphate and phosphate ions on Cr(VI) reduction by Streptomyces sp. MC1, including studies of growth and pleomorphism. Int Biodeter Biodegrad 82:149–56
  • Viti P, Pace A, Giovannetti L. (2003). Characterisation of chromium-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5
  • Volesky, B. (1990). Biosorption and biosorbents. In: Volesky B, ed. Biosorption of heavy metals. Boca Raton: CRC Press, 3–6
  • Wang PC, Mori T, Komori K, et al. (1989). Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–9
  • Wang PC, Mori T, Toda K, Ohtake H. (1990). Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–2
  • Wang Y. (2000). Microbial reduction of chromate. In: Lovley DR, ed. Environmentally microbe metal interaction. Washington (DC): American Society for Microbiology Press, 225–35
  • Wang YT, Xiao CS. (1995). Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29:2467–74
  • Wani R, Kodam KM, Gawai KR, Dhakephalkar PK. (2007). Chromate reduction by Burkholderia cepacia MCMB-821 isolated from the pristine habitat of alkaline crater lake. Appl Microbiol Biotechnol 75:627–32
  • Wielinga B, Mizuba MM, Hansel, CM. (2001). Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–7
  • Xu L, Mingfang Luo M, Li W, et al. (2011). Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. J Hazard Mater 185:1169–76
  • Xu W, Liu Y, Zeng G, et al. (2009). Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa. Trans Nonferrous Met Soc China 19:1336–41
  • Xu W, Liu Y, Zeng G, et al. (2005). Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. J Hazard Mater B126:17–22
  • Yan FF, Wu C, Cheng YY, et al. (2013). Carbon nanotubes promote Cr(VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem Eng J 77:183–9
  • Ye J, Wang S, Leonard SS, et al. (1999). Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J Biol Chem 274:34973–80
  • Ye J, Yin H, Mai B, et al. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technol 101:3893–902
  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. (2007). Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146:30–8
  • Zawadzka AM, Crawford RL, Paszczynski AJ. (2007). Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic. Biometals 20:145–58
  • Ziagova MG, Koukkou AI, Liakopoulou-Kyriakides M. (2014). Optimization of cultural conditions of Arthrobacter sp. Sphe3 for growth-associated chromate(VI) reduction in free and immobilized cell systems. Chemosphere 95:535–40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.