2,200
Views
94
CrossRef citations to date
0
Altmetric
Review Article

Strategic role of selected noble metal nanoparticles in medicine

, , , &
Pages 696-719 | Received 26 Jul 2014, Accepted 18 Jan 2015, Published online: 19 Jun 2015

References

  • Ahn S, Lee IH, Kang S, et al. (2014). Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv Healthcare Mater 3:1194–99
  • Alanis A. (2005). Resistance to antibiotics: are in the post-antibiotic era? Arch Med Res 36:697–705
  • Ali MKR, Panikkanvalappil SR, El-Sayed MA. (2014). Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin. J Am Chem Soc 136:4464–7
  • Almeida JPM, Lin AY, Figueroa ER, et al. (2014). In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11:1453–59
  • Alric C, Taleb J, Le Duc G, et al. (2008). Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–15
  • Ambasta RK, Sharma A, Kumar P. (2011). Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vascular Cell 3:26, doi: 10.1186/2045-824X-3-26
  • American Cancer Society, Cancer facts and figures 2013. Atlanta: American Cancer Society, 2013, 1–60
  • Arnaiz B, Martinez-Avila O, Falcon-Perez JM, Penades S. (2012). Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug Chem 23:814–25
  • Arvizo RR, Bhattacharyya S, Kudgus RA, et al. (2012). Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–70
  • Asharani P, Wu YL, Gong Z, Valiyaveettil S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102
  • Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S. (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54
  • Asharani PV, Xinyi NG, Hande PM, Valiyaveettil S. (2010). DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 5:51–64
  • Ashiq MGB, Saeed MA, Tahir BA, et al. (2013). Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles. Chin J Cancer Res 25:756–61
  • Austin LA, Kang B, Yen CW, et al. (2011). Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjug Chem 22:2324–31
  • Badawi MI, Ahmed MM. (2014). Gold nanoparticles as high-resolution imaging contrast agents for early cancer diagnoses: computational study. Int J Chem Appl Biol Sci 1:12–17
  • Baptista PV, Koziol-Montewka M, Paluch-Oles J, et al. (2006). Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 52:1433–4
  • Bastian AR, Nangarlia A, Bailey LD, et al. (2014). Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 290:529–43
  • Berry CC, de la Fuente JM, Mullin M, et al. (2007). Nuclear localization of HIV-1 Tat functionalized gold nanoparticles. IEEE Trans Nanobiosci 6:262–9
  • Bloch SH, Wan M, Dayton PA, Ferrara KW. (2004). Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett 84:631–3
  • Bowman MC, Ballard TE, Ackerson CJ, et al. (2008). Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130:6896–7
  • Brown AN, Smith K, Samuels TA, et al. (2012). Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78:2768–74
  • Bruckbauer A, Klenerman D. (2004). An addressable antibody nanoarray produced on a nanostructured surface. J Am Chem Soc 126:6508–9
  • Cao-Milan R, Liz-Marzan LM. (2014). Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 11:741–52
  • Chang MY, Shiau AL, Chen YH, et al. (2008). Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 99:1479–84
  • Chatterjee KK. (2007). Use of metals and metallic minerals. New Delhi, India: New Age International (P) Limited
  • Chen H, Kou X, Yang Z, et al. (2008). Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–7
  • Chen LC, Wei CW, Souris JS, et al. (2010). Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J Biomed Opt 15:016010
  • Chen N, Zheng Y, Yin J, et al. (2013). Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods 193:470–7
  • Chen YS, Hung YC, Lin WH, Huang GS. (2010b). Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 21:195101
  • Cheng Y, Yin L, Lin S, et al. (2011). Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115:4425–32
  • Chiodo F, Marradi M, Calvo J, et al. (2014). Glycosystems in nanotechnology: gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J Org Chem 10:1339–46
  • Choi AO, Cho SJ, Desbarats J, et al. (2007). Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5:1, doi: 10.1186/1477-3155-5-1
  • Choi YE, Kwak JW, Park JW. (2010). Nanotechnology for early cancer detection. Sensors 10:428–55
  • Coccini T, Gornati R, Rossi F, et al. (2014). Gene expression changes in rat liver and testes after lung instillation of a low dose of silver nanoparticles. J Nanomed Nanotechnol 5:227. doi: 10.4172/2157-7439.1000227
  • Coman C, Tabaran F, Ilie I, et al. (2013). Assessment of silver nanoparticles toxicity in human red blood cells using ELISA and immunofluorescence microscopy techniques. Biotechnol Mol Biol Nanomed 1:61–5
  • Conde J, aloDoria G, Baptista P. (2012). Noble metal nanoparticles applications in cancer. J Drug Del, Article ID 751075 (12 pages)
  • Coradeghini R, Gioria S, García CP, et al. (2013). Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–16
  • Costa P, Amaro A, Botelho A, et al. (2010). Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clin Microbiol Infect 16:1464–9
  • Coulter JA, Hyland WB, Nicol J, Currell FJ. (2013). Radio sensitising nanoparticles as novel cancer therapeutics: pipe dream or realistic prospect? Clin Oncol 25:593–603
  • Debouttiere PJ, Roux S, Vocanson F, et al. (2006). Design of gold nanoparticles for magnetic resonance imaging. Adv Fun Mater 16:2330–9
  • Dominguez-Medina S, Blankenburg J, Olson J, et al. (2013). Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain Chem Eng 1:833–42
  • Doria G, Conde J, Veigas B, et al. (2012). Noble metal nanoparticles for biosensing applications. Sensors 12:1657–87
  • Douek DC, Roederer M, Koup RA. (2009). Emerging concepts in the immuno-pathogenesis of AIDS. Annu Rev Med 60:471–784
  • Duman M, Caglayan MO, Demirel G, Piskin E. (2009). Detection of Mycobacterium tuberculosis complex using surface plasmon resonance based sensors carrying self-assembled nano-overlayers of probe oligonucleotide. Sensor Lett 7:535–42
  • Eid K, Eldesouky A, Fahmy A, et al. (2013). Calcium phosphate scaffold loaded with platinum nanoparticles for bone allograft. Am J Biomed Sci 5:242–9
  • Elechiguerra JL, Burt JL, Morones JR, et al. (2005). Interaction of silver nanoparticles with HIV. J Nanobiotecnhol 3:1–10
  • El-Sayed MA. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–64
  • El-Sonbaty SM. (2013). Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nano 4:73–9
  • Essig M, Debus J, Schlemmer HP, et al. (2000). Improved tumor contrast and delineation in the stereotactic radiotherapy planning of cerebral gliomas and metastases with contrast media supported FLAIR imaging. Strahlenther Onkol 176:84–94
  • Fatemeh DR, EbrahimiShahmabadi H, Abedi A, et al. (2014). Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status. Indian J Clin Biochem 29:333–8
  • Ferrari M. (2005). Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–71
  • Foldbjerg R, Dang DA, Autrup H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–50
  • Fujita Y, Taguchi H. (2011). Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Central J 5:48, doi:10.1186/1752-153X-5-48
  • Gaikwad S, Ingle A, Gade A, et al. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–14
  • Gajendiran M, Yousuf SMJ, Elangovan V, Balasubramanian S. (2014). Gold nanoparticle conjugated PLGA-PEG-SA-PEG-PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. J Mater Chem B2:418–27
  • Gielen M, Tiekink ERT. (2005). Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. Chichester: John Wiley and Sons
  • Gliga AR, Skoglund S, Wallinder IO, et al. (2014). Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fiber Toxicol 11:11
  • Gopal J, Hasan N, Manikandan M, Wu H. (2013). Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers. Sci Rep 3:1260, doi: 10.1038/srep01260
  • Gregory AE, Titball R, Williamson D. (2013). Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13, doi: 10.3389/fcimb.2013.00013
  • Grodzinski P, Silver M, Molnar LK. (2006). Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 6:307–18
  • Guo D, Zhu L, Huang Z, et al. (2013). Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34:7884–94
  • Gupta AK, Gupta M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021
  • Gupta I, Duran N, Rai M. (2012). Nano-silver toxicity: Emerging concerns and consequences in human health. In: Rai M, Cioffi N, eds. Nano-antimicrobials: progress and prospects. Germany: Springer Verlag, 525–48
  • Gurunathan S, Han JW, Dayem AA, et al. (2013a). Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 19:1600–5
  • Gurunathan S, Han JW, Eppakayala V, et al. (2013b). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int 2013:535796. doi: 10.1155/2013/535796
  • Gurunathan S, Raman J, Abd Malek SN, et al. (2013c). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–413
  • Haberl N, Hirn S, Wenk A, et al. (2013). Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats. Beilstein J Nanotech 4:933–40
  • Hainfeld JF, Dilmanian FA, Zhong Z, et al. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–59
  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. (2006). Gold nanoparticles: a new X-ray contrast agent. Braz J Radiol 79:248–53
  • Hainfeld JF, Slatkin DN, Smilowitz HM. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–15
  • Han JW, Gurunathan S, Jeong JK, et al. (2014). Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett 9:459, doi: 10.1186/1556-276X-9-459
  • Harisinghani MG, Barentsz J, Hahn PF, et al. (2003). Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. J Med 348:2491–9
  • He Q, Zhu Z, Jin L, et al. (2014). Detection of HIV-1 p24 antigen using streptavidin-biotin and gold nanoparticles based immunoassay by inductively coupled plasma mass spectrometry. J Anal At Spectrom 29:1477–82
  • He W, Zhou YT, Wamer WG, et al. (2012). Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–55
  • Heath JR, Davis ME. (2008). Nanotechnology and cancer. Annu Rev Med 59:251–65
  • Hikosaka K, Kim J, Kajita M, et al. (2008). Platinum nanoparticles have an activity similar to mitochondrial NADH: ubiquinone oxidoreductase. Colloid Surf B: Biointerfaces 66:195–200
  • Hirsch LR, Stafford RJ, Bankson JA, et al. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci USA 100:13549–54
  • Hoshika S, Nagano F, Tanaka T, et al. (2010). Effect of application time of colloidal PtNPs on the microtensile bond strength to dentin. Dental Mater J 29:682–9
  • Hou JL, Shuo G, Grozova L. (2013). Reduction of silver nanoparticle toxicity by sulphide. Adv Mater Lett 4:131–3
  • Hu RL, Li SR, Kong FJ, et al. (2014). Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 13:7022–8
  • Huaizhi Z, Yuantao N. (2001). China’s ancient gold drugs. Gold Bull 34:24–9
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–93
  • Huh AJ, Kwon YJ. (2011). Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–45
  • Huo S, Ma H, Huang K, et al. (2012). Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res 73:319–30
  • Hussain MM, Samir TM, Azzazy HM. (2013). Unmodified gold nanoparticles for direct and rapid detection of Mycobacterium tuberculosis complex. Clin Biochem 46:633–7
  • Hwang S, Nam J, Song J, et al. (2014). A sub 6 nanometer plasmonic gold nanoparticle for pH-responsive near-infrared photothermal cancer therapy. New J Chem 38:918–22
  • Irvine D, Vincent L, Graydon JE, et al. (1994). The prevalence and correlates of fatigue in patients receiving treatment with chemotherapy and radiotherapy. Cancer Nurs 17:367–78
  • Jacoby GA, Price LSM. (2005). The new beta-lactamases. New Eng J Med 352:380–91
  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B110:7238–48
  • Jeyaraj M, Rajesh M, Arun R, et al. (2013a). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloid Surf B: Biointerfaces 102:708–17
  • Jeyaraj M, Sathishkumar G, Sivanandhan G, et al. (2013b). Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B: Biointerfaces 106:86–92
  • Jha AK, Prasad K. (2014). Green synthesis of silver nanoparticles and its activity on SiHa cervical cancer cell line. Adv Mat Lett 5:501–05
  • Jiang W, Kim BY, Rutka JT, Chan WC. (2008). Nanoparticle mediated cellular response is size-dependent. Nat Nanotechnol 3:145–50
  • Johnson R, Sabnis N, McConathy WJ, Lacko AG. (2013). The potential role of nanotechnology in therapeutic approaches for triple negative breast cancer. Pharmaceutics 5:353–70
  • Johnston HJ, Hutchison G, Christensen FM, et al. (2010). A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–46
  • Kaewphinit T, Santiwatanakul S, Chansiri K. (2012). Gold nanoparticle amplification combined with quartz crystal microbalance DNA based biosensor for detection of Mycobacterium tuberculosis. Sensors Trans J 146:156–63
  • Kah JCY, Kho KW, Lee CGL, et al. (2007). Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomed 2:785–98
  • Kanmani P, Lim ST. (2013). Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48:1099–106
  • Kesarkar R, Oza G, Pandey S, et al. (2012). Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J Microbiol Biotech Res 2:276–83
  • Khushnud T, Mousa SA. (2013). Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol Biotechnol 55:78–86
  • Kim S, Choi JE, Cho J, et al. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–84
  • Kim YS, Kim JS, Cho HS, et al. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 20:575–83
  • Kim W, Kim J, Park H, et al. (2012). Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis. Exp Mol Med 44:432–9
  • Kim MS, Woo MA, Ye Y, et al. (2014). Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide–magnetic-platinum nanohybrids. Nanoscale 6:1529–36
  • Kim KT, Zaikova T, Hutchison JE, Tanguay RL. (2013). Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133:275–88
  • Kong T, Zeng J, Wang X, et al. (2008). Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–43
  • Konieczny P, Goralczyk AG, Szmyd R, et al. (2013). Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed 8:3963–75
  • Kumar A, Boruah BM, Lian XJ. (2011). Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater 2011, Article ID 202187 (17 pages)
  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent LDC, Padilha-Rodrigues C. (2010a). Mode of antiviral action of silver nanoparticles against HIV. J Nanobiotecnhol 8: 1 (10 pages)
  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent LDC, Padilha-Rodrigues C. (2010b). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–21
  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent LDC, Padilha-Rodrigues C. (2010c). PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotecnhol 8:1–11
  • Lara HH, Ixtepan-Turrent L, Trevino EG, Singh D. (2011). Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J Nanobiotechnol 9:38, doi: 10.1186/1477-3155-9-38
  • Lara-González JH, Gomez-Flores R, Tamez-Guerra P, et al. (2013). In vivo antitumor activity of metal silver and silver nanoparticles in the L5178Y-R murine lymphoma model. Br J Med Med Res 3:1308–16
  • Lee IH, Kwon HK, An S, et al. (2012). Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew Chem, Int Ed 51:8800–5
  • Lee W, Kim JK, Lee DG. (2014). A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27:1191–201
  • Li LH, Yen MY, Ho CC, et al. (2013). Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS One 8:e64794
  • Li Y, Tang Z, Prasad PN, et al. (2014). Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale 6:3165–72
  • Li ZB, Cai W, Chen X. (2007). Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 7:2567–81
  • Lin J, Zhang Y, Qian J, He S. (2014). A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance. Laser Photo Rev 8:610–16
  • Liu C, Jiang D, Xiang G, et al. (2014). An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst 139:5460–5
  • Liu CJ, Wang CH, Chen ST, et al. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55:931–45
  • Liu J, Zhao Y, Guo Q, et al. (2012). TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials 33:6155–61
  • Long NV, Chien ND, Hayakawa T, et al. (2010). The synthesis and characterization of nanoparticles. Nanotechnology 21:035605
  • Ma R, Wang Z, Yan L, et al. (2014). Novel Pt-loaded layered double hydroxide nanoparticles for efficient and cancer-cell specific delivery of a cisplatin prodrug. J Mater Chem B2:4868–75
  • Madhusudhan A, Reddy GB, Venkatesham M, et al. (2014). Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 15:8216–34
  • Maier SA, Kik PG, Atwater HA, et al. (2003). In metal nanoparticle plasmon waveguides. Nat Mater 2:229–32
  • Malathi S, Balakumaran MD, Kalaichelvann PT, Balasubramanian S. (2013). Green synthesis of gold nanoparticles for controlled delivery. Adv Mater Lett 4:933–40
  • McLaughlin MF, Woodward J, Boll RA, et al. (2013). Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One 8:e54531
  • Melancon MP, Lu W, Li C. (2009). Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. Mater Res Bull 34:415–21
  • Mesbahi A. (2010). A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother 15:176–80
  • Mfouo-Tynga I, Hussein A, Abdel-Harith M, Abrahamse H. (2014). Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. Int J Nanomed 9:3771–80
  • Mohammadi H, Abedi A, Akbarzadeh A, et al. (2013). Evaluation of synthesized platinum nanoparticles on the MCF-7 and HepG-2 cancer cell lines. Int Nano Lett 3:28–32
  • Moreira AJ, Lopera S, Ordonez N, Mansano RD. (2012). Platinum nanoparticles deposition on polymeric membranes for fuel cell applications. J Phys: Conf Ser 370:1–12
  • Mori Y, Ono T, Miyahira Y, et al. (2013). Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 8:93, doi: 10.1186/1556-276X-8-93
  • Morones JR, Elechiguerra JL, Camacho A, et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–53
  • Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. (2013). Silver enhances antibiotic activity against Gram negative bacteria. Sci Transl Med 5:190ra81
  • Nagahara LA, Ferrari M, Grodzinski P. (2009). Nanofunctional materials in cancer research: challenges, novel methods, and emerging applications. Mater Res Bull 34:406–14
  • Nagy A, Harrison A, Sabbani S, et al. (2011). Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomed 6:1833–52
  • Naqvi SZ, Kiran U, Ali M, et al. (2013). Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomed 8:3187–95
  • Nellore J, Pauline C, Amarnath K, Neurodegen J. (2013). Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinsonism in zebrafish. J Neurodegener Dis 2013: Article ID 972391, 8 pages
  • Newton JE, Preece JA, Pollet BG. (2012). Control of nanoparticle aggregation in PEMFCs using surfactants. Int J Low-Carbon Tech 7:38–43
  • Newton KM, Puppala HL, Kitchens CL, et al. (2013). Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32:2356–64
  • Nguyen VQ, Ishihara M, Mori Y, et al. (2013). Preparation of size-controlled silver nanoparticles and chitin-based composites and their antimicrobial activities. J Nanomater 2013:693486
  • Niidome T, Yamagata M, Okamoto Y, et al. (2006). PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–7
  • Oberdörster E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile Largemouth Bass. Environ Health Perspect 112:1058–62
  • Obreja L, Pricop D, Foca N, Melnig V. (2008). Alcoholic reduction platinum nanoparticles synthesis by sonochemical method. Mater Plast 47:42–7
  • Oni Y, Hao K, Dozie-Nwachukwu S, et al. (2014). Gold nanoparticles for cancer detection and treatment: the role of adhesion. J Appl Phys 115:084305 (8 pages)
  • Pal D, Sahu CK, Haldar A. (2014). The ancient Indian nanomedicine. J Adv Pharm Technol Res 5:4–12
  • Pal S, Tak YK, Song JM. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles, a study of the Gram negative bacterium. Appl Environ Microbiol 73:1721–0
  • Pan Y, Neuss S, Leifert A, et al. (2007). Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–9
  • Panda KK, Achary VMM, Krishnaveni R, et al. (2011). In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–105
  • Park E, Bae E, Yi J, et al. (2010a). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–8
  • Park EJ, Yi J, Kim Y, et al. (2010b). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–8
  • Park YM, Lee SJ, Kim YS, et al. (2013). Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 13:177–83
  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. (2010). Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62:346–61
  • Patra CR, Bhattacharya R, Wang E, et al. (2008). Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–8
  • Pelgrift RY, Friedman AJ. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–15
  • Peng H, Zhang X, Wei Y, et al. (2012). Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line. J Nanomater 2012: Article ID 160145, 9 pages
  • Peppas NA. (2004). Intelligent therapeutics: biomimetic systems and nanotechnology in drug delivery. Adv Drug Deliv Rev 56:1529–31
  • Pillai ZS, Kamat PV. (2004). What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–51
  • Pokharkar V, Bhumkar D, Suresh K, et al. (2011). Gold nanoparticles as a potential carrier for transmucosal vaccine delivery. J Biomed Nanotechnol 7:57–9
  • Rai MK, Deshmukh S, Ingle AP, Gade AK. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–52
  • Rai MK, Yadav AP, Gade AK. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotehnol Adv 27:76–83
  • Rao CNR, Kulkarni GU, Thomas PJ, Edwards P. (2002). Size-dependent chemistry: properties of nanocrystals. Chem A Eur J 8:29–35
  • Reddy AK, Rathinaraj BJ, Prathyusha P, et al. (2011). Emerging trends of nanotechnology in cancer therapy. Int J Pharm Biol Arch 2:1–8
  • Reddy GR, Bhojani MS, McConville P, et al. (2006). Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Can Res 12:6677
  • Richards DG, McMIllin DL, Mein EA, Nelson CD. (2002). Gold and its relationship to neurological/glandular conditions. Int J Neurosci 112:31–53
  • Rossau R, Traore H, De Beenhouwer H, et al. (1997). Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampicin. Antimicrob Agents Chemother 41:2093–8
  • Sadhukha T, Prabha S. (2014). Encapsulation in nanoparticles improves anti-cancer efficacy of carboplatin. AAPS Pharm Sci Tech 15:1029–38
  • Santos CAD, Seckler MM, Ingle AP, et al. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–44
  • Sarkar J, Chattopadhyay D, Patra S, et al. (2011). Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Dig J Nanomater Biostruct 6:563–73
  • Sarkar PK, Das S, Prajapati PK. (2010). Ancient concept of metal pharmacology based on ayurvedic literature. Anc Sci Life 29:1–6
  • Sau TK, Pal A, Jana NR, et al. (2001). Size controlled synthesis of gold nanoparticles using photo-chemically prepared seed particles. J Nanopart Res 3:257–61
  • Seth D, Choudhury SR, Pradhan S, et al. (2011). Nature-inspired novel drug design paradigm using nanosilver: efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr Microbiol 62:715–26
  • Shakeri-Zadeh A, Khoei S, Khoee S, et al. (2013). Targeted, monitored and controlled chemotherapy: a multimodal nanotechnology-based approach against cancer. ISRN Nanotechnol 2013: Article ID 629510, 5 pages
  • Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Iriti M. (2014). Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann Med Health Sci Res 4:863–8
  • Shi X, Wang S, Meshinchi S, et al. (2007). Dendrimer entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3:1245–52
  • Shinde SK, Grampurohit ND, Gaikwad DD, et al. (2012). Toxicity induced by nanoparticles. Asian Pac J Trop Dis 2:331–4
  • Sierra-Rivera CA, Franco-Molina MA, Mendoza-Gamboa E, et al. (2013). Potential of colloidal or silver nanoparticles to reduce the growth of B16F10 melanoma tumors. Afr J Microbiol Res 7:2745–50
  • Singh M, Movia D, Mahfoud OK, et al. (2013). Silver nanowires as prospective carriers for drug delivery in cancer treatment: an in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. Eur J Nanomed 5:195–204
  • Soo PC, Horng YT, Chang KC, et al. (2009). A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol Cell Probes 23:240–6
  • Sun RW, Mav DL, Wong EL, Che CM. (2007). Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 43:4884–92
  • Sun X, Wang Z, Zhai S, et al. (2013). In vitro cytotoxicity of silver nanoparticles in primary rat hepatic stellate cells. Mol Med Rep 8:1365–72
  • Svedman C, Dunér K, Kehler M, et al. (2006). Lichenoid reactions to gold from dental restorations and exposure to gold through intracoronary implant of a gold-plated stent. Clin Res Cardiol 95:689–91
  • Taglietti A, Yuri A, Fernandez D, et al. (2012). Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28:8140–8
  • Taylor RM, Monson TC, Gullapalli RR. (2014). Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles. Nanoscale Res Lett 9:306, doi: 10.1186/1556-276X-9-306
  • Tefry JC, Wooley DP. (2012). Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J Virol Methods 183:19–24
  • Teow Y, Valiyaveettil S. (2010). Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2:2607–13
  • Thakor AS, Gambhir SS. (2013). Nano-oncology: the future of cancer diagnosis and therapy. CA: Cancer J Clin 63:395–418
  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, et al. (2011). Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417:73–9
  • Thorek DL, Tsourkas A. (2008). Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–90
  • Torres-Chavolla E, Alocilja EC. (2011). Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron 26:4614–18
  • Ueno T, Endo K, Hori K, et al. (2014). Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). Int J Nanomed 9:3005–12
  • Visaria RK, Griffin RJ, Williams BW, et al. (2006). Enhancement of tumor thermal therapy using gold nanoparticle assisted tumor necrosis factor-A delivery. Mol Cancer Ther 5:1014–20
  • Wang H, Zheng L, Guo R, et al. (2012). Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 7:190, doi: 10.1186/1556-276X-7-190
  • Wells MA, Abid A, Kennedy IM, Barakat AI. (2011). Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology (early online) 2011:1–10
  • World Health Organization, Available from: http://www.who.int/mediacentre/news/releases/2014/amr-report/en/ (2014)
  • Xia T, Zhao Y, Sager T, et al. (2011). Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–35
  • Xiang DX, Chen Q, Pang L, Zheng CL. (2011). Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 178:137–42
  • Yamagishi Y, Watari A, Hayata Y, et al. (2013a). Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Res Lett 8:395, doi: 10.1186/1556-276X-8-395
  • Yamagishi Y, Watari A, Hayata Y, et al. (2013b). Hepatotoxicity of sub-nanosized platinum particles in mice. Pharmazie 68:178–82
  • Yao J, Larson DR, Vishwasrao HD, et al. (2005). Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci USA 102:14284–9
  • Yavuz MS, Cheng Y, Chen J, et al. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8:935–9
  • Yezhelyev MV, Gao X, Xing Y, et al. (2006). Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–67
  • Yoshihisa Y, Honda A, Zhao Q, et al. (2010). Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Exp Dermatol 19:1000–6
  • Zhang L, Deng H, Lin F, et al. (2014). In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem 86:2711–18
  • Zhang L, Laung L, Munchgesang W, et al. (2010). Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett 10:219–23
  • Zhang SX, Gao J, Buchholz TA, et al. (2009). Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed Microdevices 11:925–33
  • Zhang X, Xing JZ, Chen J, et al. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med 31:E160–7
  • Zhang XD, Wu D, Shen X, et al. (2011). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–81
  • Zhang YJ, Huang R, Zhu XF, et al. (2012). Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Mater Sci 57:238–46
  • Zheng L, Jia L, Li B, et al. (2012). A sandwich HIV p24 amperometric immunosensor based on a direct gold electroplating-modified electrode. Molecules 17:5988–6000
  • Zhou X, Zhang X, Yua X, et al. (2008). The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. J Shen Biomater 29:111–17
  • Zhou Y, Kong Y, Kundu S, et al. (2012). Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guerin. J Nanobiotechnol 10:19, doi: 10.1186/1477-3155-10-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.