2,815
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Hypothesis-based weight-of-evidence evaluation of the neurodevelopmental effects of chlorpyrifos

, , &
Pages 822-903 | Received 13 Apr 2011, Accepted 18 Aug 2011, Published online: 16 Nov 2011

References

  • Abou-Donia MB, Khan WA, Dechkovskaia AM, Goldstein LB, Bullman SL, Abdel-Rahman A. (2006). In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch Toxicol, 80:620–631.
  • Achenbach T, Rescorla L. (2000). Manual for the ASEBA Preschool Forms and Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, and Families.
  • Achenbach TM, Dumenci L, Rescorla LA. (2003). DSM-oriented and empirically based approaches to constructing scales from the same item pools. J Clin Child Adolesc Psychol, 32:328–340.
  • Adigun AA, Ryde IT, Seidler FJ, Slotkin TA. (2010). Organophosphate exposure during a critical developmental stage reprograms adenylyl cyclase signaling in PC12 cells. Brain Res, 1329:36–44.
  • Agency for Toxic Substances and Disease Registry (ATSDR). (1997). Toxicological profile for chlorpyrifos (Update - Draft for public comment). Research Triangle Park, NC.
  • Ahdaya SM, Monroe RJ, Guthrie FE. (1981). Absorption and distribution of intubated insecticides in fasted mice. Pestic Biochem Physiol 16:38–46.
  • Aiuto LA, Pavlakis SG, Boxer RA. (1993). Life-threatening organophosphate-induced delayed polyneuropathy in a child after accidental chlorpyrifos ingestion. J Pediatr, 122:658–660.
  • Albers JW, Cole P, Greenberg RS, Mandel JS, Monson RR, Ross JH, Snodgrass WR, Spurgeon A, van Gemert M. (1999). Analysis of chlorpyrifos exposure and human health: Expert panel report. J Toxicol Environ Health B Crit Rev, 2:301–324.
  • Albers JW, Berent S, Garabrant DH, Giordani B, Schweitzer SJ, Garrison RP, Richardson RJ. (2004a). The effects of occupational exposure to chlorpyrifos on the neurologic examination of central nervous system function: A prospective cohort study. J Occup Environ Med, 46:367–378.
  • Albers JW, Garabrant DH, Schweitzer SJ, Garrison RP, Richardson RJ, Berent S. (2004b). The effects of occupational exposure to chlorpyrifos on the peripheral nervous system: A prospective cohort study. Occup Environ Med, 61:201–211.
  • Albers JW, Garabrant DH, Schweitzer S, Garrison RP, Richardson RJ, Berent S. (2004c). Absence of sensory neuropathy among workers with occupational exposure to chlorpyrifos. Muscle Nerve, 29:677–686.
  • Albers JW, Garabrant DH, Mattsson JL, Burns CJ, Cohen SS, Sima C, Garrison RP, Richardson RJ, Berent S. (2007). Dose-effect analyses of occupational chlorpyrifos exposure and peripheral nerve electrophysiology. Toxicol Sci, 97:196–204.
  • Aldridge JE, Levin ED, Seidler FJ, Slotkin TA. (2005a). Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect, 113:527–531.
  • Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. (2005b). Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect, 113:1027–1031.
  • Aldridge JE, Seidler FJ, Slotkin TA. (2004). Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: Critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environ Health Perspect, 112:148–155.
  • American Psychiatric Association (APA). (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th Edition. Washington, DC: American Psychiatric Association.
  • Aprea C, Sciarra G, Sartorelli P, Desideri E, Amati R, Sartorelli E. (1994). Biological monitoring of exposure to organophosphorus insecticides by assay of urinary alkylphosphates: Influence of protective measures during manual operations with treated plants. Int Arch Occup Environ Health, 66:333–338.
  • Bakke JE, Feil VJ, Price CE. (1976). Rat urinary metabolites from O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate. J Environ Sci Health B, 11:225–230.
  • Barr DB, Angerer J. (2006). Potential uses of biomonitoring data: A case study using the organophosphorus pesticides chlorpyrifos and malathion. Environ Health Perspect, 114:1763–1769.
  • Barr DB, Ananth CV, Yan X, Lashley S, Smulian JC, Ledoux TA, Hore P, Robson MG. (2010). Pesticide concentrations in maternal and umbilical cord sera and their relation to birth outcomes in a population of pregnant women and newborns in New Jersey. Sci Total Environ, 408:790–795.
  • Barr DB, Barr JR, Maggio VL, Whitehead RD Jr, Sadowski MA, Whyatt RM, Needham LL. (2002). A multi-analyte method for the quantification of contemporary pesticides in human serum and plasma using high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 778:99–111.
  • Bellinger DC. (2005). Neurobehavioral assessment in studies of exposures to neurotoxicants. Int Rev Res Ment Retard 30:263–300.
  • Berger-Sweeney J, Hohmann CF. (1997). Behavioral consequences of abnormal cortical development: Insights into developmental disabilities. Behav Brain Res, 86:121–142.
  • Berkowitz GS, Wetmur JG, Birman-Deych E, Obel J, Lapinski RH, Godbold JH, Holzman IR, Wolff MS. (2004). In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect, 112:388–391.
  • Boobis AR, Cohen SM, Dellarco V, McGregor D, Meek ME, Vickers C, Willcocks D, Farland W. (2006). IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol, 36:781–792.
  • Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, Schlatter J, Seed J, Vickers C. (2008). IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol, 38:87–96.
  • Bradman A, Whitaker D, Quirós L, Castorina R, Claus Henn B, Nishioka M, Morgan J, Barr DB, Harnly M, Brisbin JA, Sheldon LS, McKone TE, Eskenazi B. (2007). Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J Expo Sci Environ Epidemiol, 17:331–349.
  • Braquenier JB, Quertemont E, Tirelli E, Plumier JC. (2010). Anxiety in adult female mice following perinatal exposure to chlorpyrifos. Neurotoxicol Teratol, 32:234–239.
  • Brazelton TB, Nugent JK. (1995). Neonatal Behavioral Assessment Scale (Third Edition). London, United Kingdom: Mac Keith Press.
  • Calderon RL. (2000). Measuring risks in humans: The promise and practice of epidemiology. Food Chem Toxicol, 38:S59–S63.
  • Carr RL, Chambers HW, Guarisco JA, Richardson JR, Tang J, Chambers JE. (2001). Effects of repeated oral postnatal exposure to chlorpyrifos on open-field behavior in juvenile rats. Toxicol Sci, 59:260–267.
  • Castorina R, Bradman A, McKone TE, Barr DB, Harnly ME, Eskenazi B. (2003). Cumulative organophosphate pesticide exposure and risk assessment among pregnant women living in an agricultural community: A case study from the CHAMACOS cohort. Environ Health Perspect, 111:1640–1648.
  • Centers for Disease Control and Prevention (CDC). (2009). Fourth National Report on Human Exposure to Environmental Chemicals. (Online) Available at: http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf. Accessed on 11 December 2009.
  • Chakraborti TK, Farrar JD, Pope CN. (1993). Comparative neurochemical and neurobehavioral effects of repeated chlorpyrifos exposures in young and adult rats. Pharmacol Biochem Behav, 46:219–224.
  • Chambers JE, Chambers HW. (1989). Oxidative desulfuration of chlorpyrifos, chlorpyrifos-methyl, and leptophos by rat brain and liver. J Biochem Toxicol, 4:201–203.
  • Chanda SM, Mortensen SR, Moser VC, Padilla S. (1997). Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: An in vitro and in vivo comparison. Fundam Appl Toxicol, 38:148–157.
  • Chanda SM, Pope CN. (1996). Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol Biochem Behav, 53:771–776.
  • Clegg DJ, van Gemert M. (1999). Determination of the reference dose for chlorpyrifos: Proceedings of an expert panel. J Toxicol Environ Health B Crit Rev, 2:211–255.
  • Cole TB, Jampsa RL, Walter BJ, Arndt TL, Richter RJ, Shih DM, Tward A, Lusis AJ, Jack RM, Costa LG, Furlong CE. (2003). Expression of human paraoxonase (PON1) during development. Pharmacogenetics, 13:357–364.
  • Coulston F, Griffin T, Golberg L. (1972). Safety Evaluation of Dowco 179 in Human Volunteers. Albany, NY: Institute of Experimental Pathology and Toxicology, Albany Medical College.
  • Crumpton TL, Seidler FJ, Slotkin TA. (2000). Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res Dev Brain Res, 121:189–195.
  • Dam K, Garcia SJ, Seidler FJ, Slotkin TA. (1999). Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res, 116:9–20.
  • Dam K, Seidler FJ, Slotkin TA. (2000). Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Brain Res Dev Brain Res, 121:179–187.
  • Das KP, Barone S Jr. (1999). Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: Is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol, 160:217–230.
  • Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol, 38 Suppl 2:1–125.
  • Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, Wetmur JG, Wolff MS. (2007). Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol, 165:1397–1404.
  • Engel SM, Wetmur K, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS. (2011). Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect. doi:10.1289/ehp.1003183.
  • Eskenazi B, Harley K, Bradman A, Weltzien E, Jewell NP, Barr DB, Furlong CE, Holland NT. (2004). Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect, 112:1116–1124.
  • Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, Morga N, Jewell NP. (2007). Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect, 115:792–798.
  • European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). (2009). Framework of the Integration of Human and Animal Data in Chemical Risk Assessment. ECETOC Technical Report No. 104. p. 130.
  • Eyer P. (2003). The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev, 22:165–190.
  • Goodman JE, Dodge DG, Bailey LA. (2010). A framework for assessing causality and adverse effects in humans with a case study of sulfur dioxide. Regul Toxicol Pharmacol, 58:308–322.
  • Hack M, Breslau N, Weissman B, Aram D, Klein N, Borawski E. (1991). Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med, 325:231–237.
  • Haviland JA, Butz DE, Porter WP. (2010). Long-term sex selective hormonal and behavior alterations in mice exposed to low doses of chlorpyrifos in utero. Reprod Toxicol, 29:74–79.
  • Hill AB. (1965). The environment and disease: Association or causation? Proc R Soc Med, 58:295–300.
  • Howard AS, Bucelli R, Jett DA, Bruun D, Yang D, Lein PJ. (2005). Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicol Appl Pharmacol, 207:112–124.
  • Huff RA, Corcoran JJ, Anderson JK, Abou-Donia MB. (1994). Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther, 269:329–335.
  • Icenogle LM, Christopher NC, Blackwelder WP, Caldwell DP, Qiao D, Seidler FJ, Slotkin TA, Levin ED. (2004). Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol, 26:95–101.
  • Ikonomidou C, Kaindl AM. (2011). Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal, 14:1535–1550.
  • Jett DA, Navoa RV, Beckles RA, McLemore GL. (2001). Cognitive function and cholinergic neurochemistry in weanling rats exposed to chlorpyrifos. Toxicol Appl Pharmacol, 174:89–98.
  • Johnson FO, Chambers JE, Nail CA, Givaruangsawat S, Carr RL. (2009). Developmental chlorpyrifos and methyl parathion exposure alters radial-arm maze performance in juvenile and adult rats. Toxicol Sci, 109:132–142.
  • Karanth S, Pope C. (2000). Carboxylesterase and A-esterase activities during maturation and aging: Relationship to the toxicity of chlorpyrifos and parathion in rats. Toxicol Sci, 58:282–289.
  • Kisicki JC, Seip CW, Combs ML. (1999). A Rising Dose Toxicology Study to Determine the No-Observable-Effect-Levels (NOEL) for Erythrocyte Acetylcholinesterase (AChE) Inhibition and Cholinergic Signs and Symptoms of Chlorpyrifos at Three Dose Levels. Report to Dow AgroSciences LLC. p. 40.
  • Klimisch HJ, Andreae M, Tillmann U. (1997). A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol, 25:1–5.
  • Krimsky S. (2005). The weight of scientific evidence in policy and law. Am J Public Health, 95 Suppl 1:S129–S136.
  • Landrigan PJ, Claudio L, Markowitz SB, Berkowitz GS, Brenner BL, Romero H, Wetmur JG, Matte TD, Gore AC, Godbold JH, Wolff MS. (1999). Pesticides and inner-city children: Exposures, risks, and prevention. Environ Health Perspect, 107 Suppl 3:431–437.
  • Lasky RE, Klein RE, Yarbrough C, Engle PL, Lechtig A, Martorell R. (1981). The relationship between physical growth and infant behavioral development in rural Guatemala. Child Dev, 52:219–226.
  • Laviola G, Adriani W, Gaudino C, Marino R, Keller F. (2006). Paradoxical effects of prenatal acetylcholinesterase blockade on neuro-behavioral development and drug-induced stereotypies in reeler mutant mice. Psychopharmacology (Berl), 187:331–344.
  • Lemons JA, Schreiner RL, Gresham EL. (1981). Relationship of brain weight to head circumference in early infancy. Hum Biol, 53:351–354.
  • Lester BM, Als H, Brazelton TB. (1982). Regional obstetric anesthesia and newborn behavior: A reanalysis toward synergistic effects. Child Dev, 53:687–692.
  • Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ, Slotkin TA. (2002). Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol, 24:733–741.
  • Levin ED, Addy N, Nakajima A, Christopher NC, Seidler FJ, Slotkin TA. (2001). Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Brain Res Dev Brain Res, 130:83–89.
  • Lewis RW, Billington R, Debryune E, Gamer A, Lang B, Carpanini F. (2002). Recognition of adverse and nonadverse effects in toxicity studies. Toxicol Pathol, 30:66–74.
  • Li WF, Matthews C, Disteche CM, Costa LG, Furlong CE. (1997). Paraoxonase (PON1) gene in mice: Sequencing, chromosomal localization and developmental expression. Pharmacogenetics, 7:137–144.
  • Linkov I, Loney D, Cormier S, Satterstrom FK, Bridges T. (2009). Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Sci Total Environ, 407:5199–5205.
  • Lotti M, Moretto A, Zoppellari R, Dainese R, Rizzuto N, Barusco G. (1986). Inhibition of lymphocytic neuropathy target esterase predicts the development of organophosphate-induced delayed polyneuropathy. Arch Toxicol, 59:176–179.
  • MacIntosh DL, Needham LL, Hammerstrom KA, Ryan PB. (1999). A longitudinal investigation of selected pesticide metabolites in urine. J Expo Anal Environ Epidemiol, 9:494–501.
  • MacLusky NJ, Naftolin F. (1981). Sexual differentiation of the central nervous system. Science, 211:1294–1302.
  • Marty MS, Domoradzki JY, Hansen SC, Timchalk C, Bartels MJ, Mattsson JL. (2007). The effect of route, vehicle, and divided doses on the pharmacokinetics of chlorpyrifos and its metabolite trichloropyridinol in neonatal Sprague-Dawley rats. Toxicol Sci, 100:360–373.
  • Maurissen JP, Hoberman AM, Garman RH, Hanley TR Jr. (2000). Lack of selective developmental neurotoxicity in rat pups from dams treated by gavage with chlorpyrifos. Toxicol Sci, 57:250–263.
  • McMullin TS, Lowe ER, Bartels MJ, Marty MS. (2008). Dynamic changes in lipids and proteins of maternal, fetal, and pup blood and milk during perinatal development in CD and Wistar rats. Toxicol Sci, 105:260–274.
  • Meek ME, Bucher JR, Cohen SM, Dellarco V, Hill RN, Lehman-McKeeman LD, Longfellow DG, Pastoor T, Seed J, Patton DE. (2003). A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol, 33:591–653.
  • Meyer A, Seidler FJ, Aldridge JE, Tate CA, Cousins MM, Slotkin TA. (2004). Critical periods for chlorpyrifos-induced developmental neurotoxicity: Alterations in adenylyl cyclase signaling in adult rat brain regions after gestational or neonatal exposure. Environ Health Perspect, 112:295–301.
  • Massoulié J, Sussman J, Bon S, Silman I. (1993). Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res, 98:139–146.
  • Morgan MK, Sheldon LS, Croghan CW, Jones PA, Robertson GL, Chuang JC, Wilson NK, Lyu CW. (2005). Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J Expo Anal Environ Epidemiol, 15:297–309.
  • Moretto A, Lotti M. (1998). Poisoning by organophosphorus insecticides and sensory neuropathy. J Neurol Neurosurg Psychiatr, 64:463–468.
  • Moser VC, Chanda SM, Mortensen SR, Padilla S. (1998). Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol Sci, 46:211–222.
  • Mueller RF, Hornung S, Furlong CE, Anderson J, Giblett ER, Motulsky AG. (1983). Plasma paraoxonase polymorphism: A new enzyme assay, population, family, biochemical, and linkage studies. Am J Hum Genet, 35:393–408.
  • Muto MA, Lobelle F Jr, Bidanset JH, Wurpel JN. (1992). Embryotoxicity and neurotoxicity in rats associated with prenatal exposure to DURSBAN. Vet Hum Toxicol, 34:498–501.
  • Namba T, Nolte CT, Jackrel J, Grob D. (1971). Poisoning due to organophosphate insecticides. Acute and chronic manifestations. Am J Med, 50:475–492.
  • National Research Council (NRC) of the National Academies. (2007). Toxicity Testing in the Twenty-first Century: A Vision and a Strategy. Washington, DC: National Academies Press.
  • Needham LL. (2005). Assessing exposure to organophosphorus pesticides by biomonitoring in epidemiologic studies of birth outcomes. Environ Health Perspect, 113:494–498.
  • Nolan RJ, Rick DL, Freshour NL, Saunders JH. (1984). Chlorpyrifos: Pharmacokinetics in human volunteers. Toxicol Appl Pharmacol, 73:8–15.
  • Ounsted M, Moar VA, Scott A. (1988). Head circumference and developmental ability at the age of seven years. Acta Paediatr Scand, 77:374–379.
  • Palmer JS, Rowe LD, Crookshank HR. (1980). Effect of age on tolerance of calves to chlorpyrifos. Am J Vet Res, 41:1323–1325.
  • Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, Bernert T, Garfinkel R, Tu YH, Diaz D, Dietrich J, Whyatt RM. (2003). Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect, 111:201–205.
  • Pope CN, Chakraborti TK. (1992). Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures. Toxicology, 73:35–43.
  • Pope CN, Chakraborti TK, Chapman ML, Farrar JD, Arthun D. (1991). Comparison of in vivo cholinesterase inhibition in neonatal and adult rats by three organophosphorothioate insecticides. Toxicology, 68:51–61.
  • Qiao D, Seidler FJ, Padilla S, Slotkin TA. (2002). Developmental neurotoxicity of chlorpyrifos: What is the vulnerable period? Environ Health Perspect, 110:1097–1103.
  • Qiao D, Seidler FJ, Abreu-Villaça Y, Tate CA, Cousins MM, Slotkin TA. (2004). Chlorpyrifos exposure during neurulation: Cholinergic synaptic dysfunction and cellular alterations in brain regions at adolescence and adulthood. Brain Res Dev Brain Res, 148:43–52.
  • Qiao D, Seidler FJ, Slotkin TA. (2005). Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol Appl Pharmacol, 206:17–26.
  • Qiao D, Seidler FJ, Tate CA, Cousins MM, Slotkin TA. (2003). Fetal chlorpyrifos exposure: Adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ Health Perspect, 111:536–544.
  • Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R. (2011). Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect, 119:1196–1201.
  • Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW. (2006). Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118:e1845–e1859.
  • Rauh VA, Whyatt RM, Garfinkel R, Andrews H, Hoepner L, Reyes A, Diaz D, Camann D, Perera FP. (2004). Developmental effects of exposure to environmental tobacco smoke and material hardship among inner-city children. Neurotoxicol Teratol, 26:373–385.
  • Rhomberg LR, Bailey LA, Goodman JE, Hamade AK, Mayfield D. (2011). Is exposure to formaldehyde in air causally associated with leukemia? – A hypothesis-based weight-of-evidence analysis. Crit Rev Toxicol (in press).
  • Rhomberg LR, Bailey LA, Goodman JE. (2010). Hypothesis-based weight of evidence: A tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action–naphthalene as an example. Crit Rev Toxicol, 40:671–696.
  • Ricceri L, Markina N, Valanzano A, Fortuna S, Cometa MF, Meneguz A, Calamandrei G. (2003). Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol, 191:189–201.
  • Ricceri L, Venerosi A, Capone F, Cometa MF, Lorenzini P, Fortuna S, Calamandrei G. (2006). Developmental neurotoxicity of organophosphorous pesticides: Fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol Sci, 93:105–113.
  • Rice DC. (2005). From animals to humans: Models and constructs. Int Rev Res Ment Retard 30:301–337.
  • Richardson RJ. (1995). Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: A critical review of the literature. J Toxicol Environ Health, 44:135–165.
  • Rushton JP, Ankney CD. (2009). Whole brain size and general mental ability: A review. Int J Neurosci, 119:691–731.
  • Saulsbury MD, Heyliger SO, Wang K, Johnson DJ. (2009). Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology, 259:1–9.
  • Schoenemann PT, Budinger TF, Sarich VM, Wang WS. (2000). Brain size does not predict general cognitive ability within families. Proc Natl Acad Sci USA, 97:4932–4937.
  • Schuh RA, Lein PJ, Beckles RA, Jett DA. (2002). Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: Altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol, 182:176–185.
  • Seed J, Carney EW, Corley RA, Crofton KM, DeSesso JM, Foster PM, Kavlock R, Kimmel G, Klaunig J, Meek ME, Preston RJ, Slikker W Jr, Tabacova S, Williams GM, Wiltse J, Zoeller RT, Fenner-Crisp P, Patton DE. (2005). Overview: Using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol, 35:664–672.
  • Shah PV, Fisher HL, Sumler MR, Monroe RJ, Chernoff N, Hall LL. (1987). Comparison of the penetration of 14 pesticides through the skin of young and adult rats. J Toxicol Environ Health, 21:353–366.
  • Sharbaugh C, Viet SM, Fraser A, McMaster SB. (2003). Comparable measures of cognitive function in human infants and laboratory animals to identify environmental health risks to children. Environ Health Perspect, 111:1630–1639.
  • Slotkin TA. (2004). Cholinergic systems in brain development and disruption by neurotoxicants: Nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol, 198:132–151.
  • Slotkin TA, MacKillop EA, Ryde IT, Seidler FJ. (2007). Ameliorating the developmental neurotoxicity of chlorpyrifos: A mechanisms-based approach in PC12 cells. Environ Health Perspect, 115:1306–1313.
  • Slotkin TA, Oliver CA, Seidler FJ. (2005). Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Brain Res Dev Brain Res, 157:172–180.
  • Slotkin TA, Seidler FJ. (2007). Prenatal chlorpyrifos exposure elicits presynaptic serotonergic and dopaminergic hyperactivity at adolescence: Critical periods for regional and sex-selective effects. Reprod Toxicol, 23:421–427.
  • Slotkin TA, Seidler FJ. (2009). Oxidative and excitatory mechanisms of developmental neurotoxicity: Transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells. Environ Health Perspect, 117:587–596.
  • Slotkin TA, Tate CA, Cousins MM, Seidler FJ. (2002). Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. Brain Res Dev Brain Res, 133:163–173.
  • Smith GN, Watson BS, Fischer FS. (1967). Investigations on dursban insecticide: Metabolism of [36Cl] O,O-diethyl-O- 3,5,6-trichloro-2-pyridyl phosphorothioate in rats. J Agric Food Chem 15:132–138.
  • Song X, Seidler FJ, Saleh JL, Zhang J, Padilla S, Slotkin TA. (1997). Cellular mechanisms for developmental toxicity of chlorpyrifos: Targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol, 145:158–174.
  • Sonich-Mullin C, Fielder R, Wiltse J, Baetcke K, Dempsey J, Fenner-Crisp P, Grant D, Hartley M, Knaap A, Kroese D, Mangelsdorf I, Meek E, Rice JM, Younes M; International Programme on Chemical Safety. (2001). IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharmacol, 34:146–152.
  • Sood B, Delaney-Black V, Covington C, Nordstrom-Klee B, Ager J, Templin T, Janisse J, Martier S, Sokol RJ. (2001). Prenatal alcohol exposure and childhood behavior at age 6 to 7 years: I. dose-response effect. Pediatrics, 108:E34.
  • Sultatos LG, Murphy SD. (1983). Kinetic analyses of the microsomal biotransformation of the phosphorothioate insecticides chlorpyrifos and parathion. Fundam Appl Toxicol, 3:16–21.
  • Sultatos LG, Murphy SD. (1983b). Hepatic microsomal detoxification of the organophosphates paraoxon and chlorpyrifos oxon in the mouse. Drug Metab Dispos, 11:232–238.
  • Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattsson JL. (2002). A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol Sci, 66:34–53.
  • Ulbrich B, Palmer AK. (1996). Neurobehavioral aspects of developmental toxicity testing. Environ Health Perspect, 104 Suppl 2:407–412.
  • US EPA. (1999). Guidelines for carcinogen risk assessment (SAB Review Draft). Risk Assessment Forum, NCEA-F-0644. [Online] Available at: www.epa.gov/ncea/raf/crasab.htm. Accessed on 27 June 2001.
  • US EPA. (2002). Interim reregistration eligibility decision for chlorpyrifos. EPA 738-R-01-007. [Online] Available at: http://www.epa.gov/oppsrrd1/REDs/chlorpyrifos_ired.pdf.
  • US EPA. (2005). Guidelines for Carcinogen Risk Assessment. Washington, DC: Risk Assessment Forum. EPA/630/P-03/001F. p. 166.
  • US EPA. (2010). Framework for Incorporating Human Epidemiologic & Incident Data in Health Risk Assessment (Draft). Office of Pesticide Programs. p. 68.
  • Venerosi A, Cutuli D, Colonnello V, Cardona D, Ricceri L, Calamandrei G. (2008). Neonatal exposure to chlorpyrifos affects maternal responses and maternal aggression of female mice in adulthood. Neurotoxicol Teratol, 30:468–474.
  • Venerosi A, Ricceri L, Rungi A, Sanghez V, Calamandrei G. (2010). Gestational exposure to the organophosphate chlorpyrifos alters social-emotional behaviour and impairs responsiveness to the serotonin transporter inhibitor fluvoxamine in mice. Psychopharmacology (Berl), 208:99–107.
  • Venerosi A, Ricceri L, Scattoni ML, Calamandrei G. (2009). Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups. Environ Health, 8:12.
  • Webb SJ, Monk CS, Nelson CA. (2001). Mechanisms of postnatal neurobiological development: Implications for human development. Dev Neuropsychol, 19:147–171.
  • Weed DL. (2005). Weight of evidence: A review of concept and methods. Risk Anal, 25:1545–1557.
  • Wessels D, Barr DB, Mendola P. (2003). Use of biomarkers to indicate exposure of children to organophosphate pesticides: Implications for a longitudinal study of children’s environmental health. Environ Health Perspect, 111:1939–1946.
  • Whitney KD, Seidler FJ, Slotkin TA. (1995). Developmental neurotoxicity of chlorpyrifos: Cellular mechanisms. Toxicol Appl Pharmacol, 134:53–62.
  • Whyatt RM, Camann DE, Kinney PL, Reyes A, Ramirez J, Dietrich J, Diaz D, Holmes D, Perera FP. (2002). Residential pesticide use during pregnancy among a cohort of urban minority women. Environ Health Perspect, 110:507–514.
  • Whyatt RM, Garfinkel R, Hoepner LA, Andrews H, Holmes D, Williams MK, Reyes A, Diaz D, Perera FP, Camann DE, Barr DB. (2009). A biomarker validation study of prenatal chlorpyrifos exposure within an inner-city cohort during pregnancy. Environ Health Perspect, 117:559–567.
  • Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, Hoepner LA, Diaz D, Dietrich J, Reyes A, Tang D, Kinney PL, Perera FP. (2004). Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect, 112:1125–1132.
  • Winneke G. (1992). Cross species extrapolation in neurotoxicology: Neurophysiological and neurobehavioral aspects. Neurotoxicology, 13:15–25.
  • Wolff MS, Engel S, Berkowitz G, Teitelbaum S, Siskind J, Barr DB, Wetmur J. (2007). Prenatal pesticide and PCB exposures and birth outcomes. Pediatr Res, 61:243–250.
  • Yan X, Lashley S, Smulian JC, Ananth CV, Barr DB, Ledoux TA, Hore P, Robson MG. (2009). Pesticide concentrations in matrices collected in the perinatal period in a population of pregnant women and newborns in New Jersey, USA. Hum Ecol Risk Assess 15:948–967.
  • Yang D, Howard A, Bruun D, Ajua-Alemanj M, Pickart C, Lein PJ. (2008). Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicol Appl Pharmacol, 228:32–41.
  • Young JG, Eskenazi B, Gladstone EA, Bradman A, Pedersen L, Johnson C, Barr DB, Furlong CE, Holland NT. (2005). Association between in utero organophosphate pesticide exposure and abnormal reflexes in neonates. Neurotoxicology, 26:199–209.
  • Youngstrom E, LaKind JS, Kenworthy L, Lipkin PH, Goodman M, Squibb K, Mattison DR, Anthony BJ, Anthony LG. (2010). Advancing the selection of neurodevelopmental measures in epidemiological studies of environmental chemical exposure and health effects. Int J Environ Res Public Health, 7:229–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.