1,164
Views
107
CrossRef citations to date
0
Altmetric
Review Article

Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges

, , , , , , , , , , , , , & show all
Pages 1-20 | Received 21 Dec 2011, Accepted 05 Oct 2012, Published online: 06 Nov 2012

References

  • Abbott LC, Maynard AD. (2010). Exposure assessment approaches for engineered nanomaterials. Risk Anal 30:1634–1644.
  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, Tran CL, Christensen FM. (2010a). Review of carbon nanotubes toxicity and exposure–appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 40:759–790.
  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Christensen FM. (2010b). Review of fullerene toxicity and exposure–appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473.
  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health–lessons learned from four case studies. Environ Int 37:1143–1156.
  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. (2010). The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882.
  • Benn TM, Westerhoff P, Herckes P. (2011). Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159:1334–1342.
  • Benn TM, Westerhoff P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139.
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. (2006). Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126.
  • Boxall ABA, Chaudhry Q, Jones A, Jefferson B, Watts CD. (2008). Current and future predicted environmental exposure to engineered nanoparticles: Report to Defra. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14723&FromSearch=Y&Publisher=1&SearchText=CB01098&SortString=ProjectCode&SortOrder=Asc&Paging=10#Description
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199.
  • Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V. (2007). An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45:1743–1756.
  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K. (2010). Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118:1699–1706.
  • Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, Poland CA, Tran CL, Donaldson K. (2012). Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–477.
  • Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K. (2010). Nano-silver – feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 4:284–295.
  • Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K. (2011). Nano-TiO2–feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 5:110–124.
  • Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. (2011). Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56.
  • Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. (2008). The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427.
  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919.
  • Derfus AM, Chan WCW, Bhatia SN. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 4:11–18.
  • Donaldson K, Stone V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 39:405–410.
  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. (2004). Nanotoxicology. Occup Environ Med 61:727–728.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22.
  • Donaldson K, Borm PJ, Oberdorster G, Pinkerton KE, Stone V, Tran CL. (2008). Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal Toxicol 20:53–62.
  • Donaldson K, Borm PJ, Castranova V, Gulumian M. (2009). The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part Fibre Toxicol 6:13.
  • Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. (2000). Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55:24–35.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. (2007). Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856.
  • European Chemicals Agency. (2010). Practical guide 2: How to report weight of evidence. Available at: http://echa.europa.eu/documents/10162/13655/pg_report_weight_of_evidence_en.pdf
  • Ferin J, Oberdörster G, Penney DP. (1992). Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542.
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. (2009). Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703–708.
  • Foucaud L, Wilson MR, Brown DM, Stone V. (2007). Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9.
  • Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V. (2009). Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8 Suppl 1:S2.
  • Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD, Ju-Nam Y, Rosenkranz P, Scown TM, Stone V. (2012). Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144–154.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222.
  • Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein JN, Elder A, Oberdörster G. (2012). Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9.
  • Hardman R. (2006). A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172.
  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG. (2010). ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7:36.
  • Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, Takenaka S, Möller W, Schmid G, Simon U, Kreyling WG. (2011). Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–416.
  • Isakovic A, Markovic Z, Nikolic N, Todorovic-Markovic B, Vranjes-Djuric S, Harhaji L, Raicevic N, Romcevic N, Vasiljevic-Radovic D, Dramicanin M, Trajkovic V. (2006). Inactivation of nanocrystalline C60 cytotoxicity by gamma-irradiation. Biomaterials 27:5049–5058.
  • Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel U, Loft S, Gingerich J, Soper L, Douglas GR, Wallin H. (2007). Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen 48:451–461.
  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H. (2008). Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 49:476–487.
  • Jacobsen NR, Møller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. (2009). Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2.
  • Jacobsen NR, White PA, Gingerich J, Møller P, Saber AT, Douglas GR, Vogel U, Wallin H. (2011). Mutation spectrum in FE1-MUTA™ Mouse lung epithelial cells exposed to nanoparticulate carbon black. Environ Mol Mutagen 52:331–337.
  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA. (2010). Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect 118:49–54.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V. (2009). Identification of the mechanisms that drive the toxicity of TiO(2)particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33.
  • Johnston HJ, Semmler-Behnke M, Brown DM, Kreyling W, Tran L, Stone V. (2010a). Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol 242:66–78.
  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. (2010b). A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346.
  • Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V. (2010c). The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. (2010d). A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 4:207–246.
  • Johnston H, Brown D, Kermanizadeh A, Gubbins E, Stone V. (2012). Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications. J Control Release. pii:S0168-3659(12)00630-X. doi: 10.1016/j.jconrel.2012.08.018. [Epub ahead of print].
  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V. (2012). An in vitro liver model – assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol 9:28.
  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G. (2009). Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21 Suppl 1:55–60.
  • Lam CW, James JT, McCluskey R, Hunter RL. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134.
  • Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH, Yu IJ. (2011). Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–236.
  • Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM. (2011). An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 77:398–406.
  • Li XY, Brown D, Smith S, MacNee W, Donaldson K. (1999). Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol 11:709–731.
  • Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN. (2007). Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415–421.
  • Lovric J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D. (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385.
  • Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K. (2011). The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509.
  • Massachusetts Weight-of-Evidence Workgroup. (1995). A weight-of-evidence approach for evaluating ecological risks: Draft report. Available at: http://www.mass.gov/dep/cleanup/laws/weightev.pdf
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. (2004). Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A 67:87–107.
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB. (2006). Safe handling of nanotechnology. Nature 444:267–269.
  • McGuinnes C, Duffin R, Brown S, L Mills N, Megson IL, Macnee W, Johnston S, Lu SL, Tran L, Li R, Wang X, Newby DE, Donaldson K. (2011). Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 119:359–368.
  • Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, de la Fuente JM, Cassee FR, Boon NA, Macnee W, Millar AM, Donaldson K, Newby DE. (2006). Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med 173:426–431.
  • Möller W, Felten K, Seitz J, Sommerer K, Takenaka S, Wiebert P, Philipson K, Svartengren M, Kreyling WG. (2006). A generator for the production of radiolabelled ultrafine carbonaceous particles for deposition and clearance studies in the respiratory tract. J Aerosol Sci 37:631–644.
  • Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, Häussinger K, Kreyling WG. (2008). Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med 177:426–432.
  • Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. (2010). Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46.
  • Møller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, Danielsen PH, Loft S. (2011). Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol 41:339–368.
  • Møller P, Folkmann JK, Danielsen PH, Jantzen K, Loft S. (2012). Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med 12:732–745.
  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. (2007). The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615.
  • Mueller NC, Nowack B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453.
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, Byrne F, Prina-Mello A, Volkov Y, Li S, Mather SJ, Bianco A, Prato M, Macnee W, Wallace WA, Kostarelos K, Donaldson K. (2011). Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–2600.
  • Oberdorster G. (1996). Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol 8 Suppl:73–89.
  • Oberdörster G. (2000). Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health Part A 65:1531–1543.
  • Oberdörster G, Oberdörster E, Oberdörster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • Oberdorster G, Stone V, Donaldson K. (2008). Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25.
  • OECD. (2010). List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: Revision. Available at: http://www.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2010)46&doclanguage=en
  • Owen R, Crane M, Grieger K, Handy R, Linkov I, Depledge M. (2009). Strategic approaches for the management of environmental risk uncertainties posed by nanomaterials in nanomaterials: Risks and benefits. NATO Science for Peace and Security Series C: Environmental Security. Berlin/Heidelberg: Springer, 369–384.
  • Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin JP, Guest R, Jenkinson P, Samaras Z, Giannouli M, Kouridis H, Martin P. (2008). Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive – a case study. Inhal Toxicol 20:547–566.
  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. (2008). Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229.
  • Park H, Grassian VH. (2010). Commercially manufactured engineered nanomaterials for environmental and health studies: important insights provided by independent characterization. Environ Toxicol Chem 29:715–721.
  • Park EJ, Choi K, Park K. (2011). Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res 34:299–307.
  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. (1997). Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428.
  • Pope CA, Dockery DW. (1999). Epidemiology of particle effects. In: Holgate ST, Samet JM, Koren HS, eds. Air Pollution and Health. San Diego: Academic Press, 673–705.
  • Rothen-Rutishauser BM, Kiama SG, Gehr P. (2005). A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32:281–289.
  • Rothen-Rutishauser B, Mueller L, Blank F, Brandenberger C, Muehlfeld C, Gehr P. (2008). A newly developed in vitro model of the human epithelial airway barrier to study the toxic potential of nanoparticles. ALTEX 25:191–196.
  • Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA. (2006). Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol In Vitro 20:1313–1320.
  • The Royal Society and Royal Academy of Engineering Nanotechnology Report. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. Available at: http://www.nanotec.org.uk
  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G. (2010). Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health Part A 73:445–461.
  • Saber AT, Jensen KA, Jacobsen NR, Birkedal R, Mikkelsen L, Møller P, Loft S, Wallin H, Vogel U. (2012). Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology 6:453–471.
  • Sadauskas E, Jacobsen NR, Danscher G, Stoltenberg M, Vogel U, Larsen A, Kreyling W, Wallin H. (2009). Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem Cent J 3:16.
  • Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G. (2010). Risk assessment of engineered nanomaterials and nanotechnologies–a review. Toxicology 269:92–104.
  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Letters 4:1881–1887.
  • Sayes CM, Reed KL, Warheit DB. (2007a). Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180.
  • Sayes CM, Marchione AA, Reed KL, Warheit DB. (2007b). Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406.
  • Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, Schmid G, Simon U, Kreyling WG. (2012). Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36–46.
  • Seaton A, MacNee W, Donaldson K, Godden D. (1995). Particulate air pollution and acute health effects. Lancet 345:176–178.
  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W. (2008). Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111.
  • Shinohara N, Gamo M, Nakanishi J. (2011). Fullerene c60: inhalation hazard assessment and derivation of a period-limited acceptable exposure level. Toxicol Sci 123:576–589.
  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P. (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A 66:1909–1926.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708.
  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362.
  • Sonavane G, Tomoda K, Makino K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280.
  • Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF. (2010). Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754.
  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. (2007). Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312.
  • Thomas T, Bahadori T, Savage N, Thomas K. (2009). Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:426–433.
  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:795–821.
  • Vesterdal LK, Folkmann JK, Jacobsen NR, Sheykhzade M, Wallin H, Loft S, Møller P. (2009). Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis. Part Fibre Toxicol 6:5.
  • Vesterdal LK, Folkmann JK, Jacobsen NR, Sheykhzade M, Wallin H, Loft S, Møller P. (2010). Pulmonary exposure to carbon black nanoparticles and vascular effects. Part Fibre Toxicol 7:33.
  • Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, Rojanasakul Y. (2010). Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125.
  • Warheit DB. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101:183–185.
  • Weed DL. (2005). Weight of evidence: a review of concept and methods. Risk Anal 25:1545–1557.
  • Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundin A, Larsson S, Möller W, Kreyling WG, Svartengren M. (2006). No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 18:741–747.
  • Wörle-Knirsch JM, Pulskamp K, Krug HF. (2006). Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268.
  • Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A. (2005). Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl 44:6358–6362.
  • van Zijverden M, Sips AJAM. (2009). Nanotechnology in perspective. Risks to man and the environment. RIVM Report 601785003/2009. RIVM, P.O. Box 1, 3720 BA Bilthoven, the Netherlands. Available at: www.rivm.nl
  • Zuin S, Micheletti C, Critto A, Pojana G, Johnston H, Stone V, Tran L, Marcomini A. (2011). Weight of evidence approach for the relative hazard ranking of nanomaterials. Nanotoxicology 5:445–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.