1,517
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Human relevance framework evaluation of a novel rat developmental toxicity mode of action induced by sulfoxaflor

, , , &
Pages 45-62 | Received 06 Oct 2013, Accepted 29 Mar 2014, Published online: 16 May 2014

References

  • Arias HR. (2000). Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int, 36, 595–645.
  • Barr M Jr. (1994). Teratogen update: angiotensin-converting enzyme inhibitors. Teratology, 50, 399–409.
  • Bennett MR, Pettigrew AG. (1974). The formation of synapses in striated muscle during development. J Physiol, 241, 515–45.
  • Boobis AR, Cohen SM, Dellarco V, McGregor D, Meek ME, Vickers C, et al. (2006). IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol, 36, 781–92.
  • Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, et al. (2008). IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol, 38, 87–96.
  • Borg D, Bogdanska J, Sundström M, Nobel S, Håkansson H, Bergman Å, et al. (2010). Tissue distribution of (35)S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod Toxicol, 30, 558–65.
  • Bowman W. (1990). Pharmacology of Neuromuscular Function. 2nd ed. London: Wright.
  • Bowman WC, Sanghvi IS. (1963). Pharmacological actions of hemlock (Conium maculatum) alkaloids. J Pharm Pharmacol, 15, 1–25.
  • Bülbring E. (1946). Observations on the isolated phrenic nerve diaphragm preparation of the rat. Br J Pharmacol Chemother, 1, 38–61.
  • Buttar HS. (1997). An overview of the influence of ACE inhibitors on fetal-placental circulation and perinatal development. Mol Cell Biochem, 176, 61–71.
  • Cooper JC, Gutbrod O, Witzemann V, Methfessel C. (1996). Pharmacology of the nicotinic acetylcholine receptor from fetal rat muscle expressed in Xenopus oocytes. Eur J Pharmacol, 309, 287–98.
  • Corley RA, Meek ME, Carney EW. (2005). Mode of action: oxalate crystal-induced renal tubule degeneration and glycolic acid-induced dysmorphogenesis—renal and developmental effects of ethylene glycol. Crit Rev Toxicol, 35, 691–702.
  • Costlow RD, Manson JM. (1981). The heart and diaphragm: target organs in the neonatal death induced by nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether). Toxicology, 20, 209–27.
  • Dascal N. (1987). The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem, 22, 317–87.
  • Dornan JC, Ritchie JW, Meban C. (1984). Fetal breathing movements and lung maturation in the congenitally abnormal human fetus. J Dev Physiol, 6, 367–75.
  • Eugenín J, Otárola M, Bravo E, Coddou C, Cerpa V, Reyes-Parada M, et al. (2008). Prenatal to early postnatal nicotine exposure impairs central chemoreception and modifies breathing pattern in mouse neonates: a probable link to sudden infant death syndrome. J Neurosci, 28, 13907–17.
  • Evans CA, Waud DR. (1973). Do maternally administered neuromuscular blocking agents interfere with fetal neuromuscular transmission?Anesth Analg, 52, 548–52.
  • Farag AT, Karkour TA, El Okazy A. (2006). Developmental toxicity of orally administered technical dimethoate in rats. Birth Defects Res Part B Dev Reprod Toxicol, 77, 40–6.
  • Forsyth CS, Frank AA. (1993). Evaluation of developmental toxicity of coniine to rats and rabbits. Teratology, 48, 59–64.
  • Forsyth CS, Speth RC, Wecker L, Galey FD, Frank AA. (1996). Comparison of nicotinic receptor binding and biotransformation of coniine in the rat and chick. Toxicol Lett, 89, 175–83.
  • Fortier LP, Robitaille R, Donati F. (2001). Increased sensitivity to depolarization and nondepolarizing neuromuscular blocking agents in young rat hemidiaphragms. Anesthesiology, 95, 478–84.
  • Foster PM. (2005). Mode of action: impaired fetal leydig cell function—effects on male reproductive development produced by certain phthalate esters. Crit Rev Toxicol, 35, 713–9.
  • Geller LM. (1959). Failure of nicotine to affect development of offspring when administered to pregnant rats. Science, 129, 212–4.
  • Germiller JA, Lerner AL, Pacifico RJ, Loder RT, Hensinger RN. (1998). Muscle and tendon size relationships in a paralyzed chick embryo model of clubfoot. J Pediatr Orthop, 18, 314–8.
  • Gibb AJ, Marshall IG. (1984). Pre-and post-junctional effects of tubocurarine and other nicotinic antagonists during repetitive stimulation in the rat. J Physiol, 351, 275–97.
  • Gibb AJ, Marshall IG. (1986). Nicotinic antagonists produce differing amounts of tetanic fade in the isolated diaphragm of the rat. Br J Pharmacol, 89, 619–24.
  • Gibb AJ, Marshall IG. (1987). Examination of the mechanisms involved in tetanic fade produced by vecuronium and related analogues in the rat diaphragm. Br J Pharmacol, 90, 511–21.
  • Gordon N. (1998). Arthrogryposis multiplex congenita. Brain Dev, 20, 507–11.
  • Greer JJ. (2013). Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Resp Physiol Neurobi, 189, 232–40.
  • Gross NJ, Narine KR. (1989). Surfactant proteins a and d and pulmonary host defense. J Appl Physiol, 67, 414–21.
  • Gu Y, Hall ZW. (1988). Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron, 1, 117–25.
  • Harding R. (1995). Sustained alterations in postnatal respiratory function following sub-optimal intrauterine conditions. Reprod Fertil Develop, 7, 431–41.
  • Hesselmans LF, Jennekens FG, Van den Oord CJ, Veldman H, Vincent A. (1993). Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec, 236, 553–62.
  • Hill AB. (1965). The Environment and disease: association or causation?Proc R Soc Med, 58, 295–300.
  • Hoffman BB, Taylor P. (2001). Neurotransmission. The autonomic and somatic motor nervous systems. In: Hardmam JG, Limbird LE, Gilman AG, Eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill.
  • Holson JF, Stump DG, Pearce LB, Watson RE, DeSesso JM. (2005). Mode of action: yolk sac poisoning and impeded histiotrophic nutrition–HBOC-related congenital malformations. Crit Rev Toxicol, 35, 739–45.
  • Hubbard JI, Wilson DF. (1973). Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine. J Physiol, 228, 307–25.
  • Hussy N, Ballivet M, Bertrand D. (1994). Agonist and antagonist effects of nicotine on chick neuronal nicotinic receptors are defined by α and β subunits. J Neurophysiol, 72, 1317–26.
  • Jacobson L, Polizzi A, Morriss-Kay G, Vincent A. (1999). Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. J Clin Invest.103, 1031–8.
  • Kass LJ, Bazzy AR. (2001). Chronic hypoxia modulates diaphragm function in the developing rat. J Appl Physiol, 90, 2325–9.
  • Kavlock R, Cummings A. (2005). Mode of action: reduction of testosterone availability—molinate-induced inhibition of spermatogenesis. Crit Rev Toxicol, 35, 685–90.
  • Kobayashi K, Lemke RP, Greer JJ. (2001). Ultrasound measurements of fetal breathing movements in the rat. J Appl Physiol, 91, 316–20.
  • Kues WA, Sakmann B, Witzemann V. (1995). Differential expression patterns of five acetylcholine receptor subunit genes in rat muscle during development. Eur J Neurosci, 7, 1376–85.
  • Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. (2003). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci.74, 382–392.
  • LeBaron MJ, Gollapudi BB, Terry C, Billington R, Rasoulpour RJ. (2014). Human relevance framework for rodent liver tumors induced by the insecticide sulfoxaflor. Crit Rev Toxicol, 44, 15–24.
  • Lee ST, Wildeboer K, Panter KE, Kem, WR, Gardner DR, Molyneux RJ, et al. (2006). Relative toxicities and neuromuscular nicotinic receptor agonistic potencies of anabasine enantiomers and anabaseine. Neurotoxicol Teratol, 28, 220–8.
  • Liao JW, Kang JJ, Liu SH, Jeng CR, Cheng YW, Hu CM, et al. (2000). Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism. Toxicol Sci, 55, 453–9.
  • Liao JW, Tsai SF, Lu SY, Liu SH, Kang JJ, Cheng YW, et al. (1998). The lethal effect of cartap via eye toxicity study in rabbits. J Soc Toxicol, 23, 398.
  • Liley AW, North KA. (1953). An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol, 16, 509–27.
  • Maritz GS, van Wyk G. (1997). Influence of maternal nicotine exposure on neonatal rat lung structure: protective effect of ascorbic acid. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 117, 159–65.
  • Meek ME, Bucher JR, Cohen SM, DeMarco V, Hill RN, Lehman-McKeeman LD, et al. (2003). A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol, 33, 591–654.
  • Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, et al. (2008). Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet, 82, 464–76.
  • Millar NS, Denholm I. (2007). Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci, 7, 53–66.
  • Millar NS, Gotti C. (2009). Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology, 56, 237–246.
  • Miller-Keane O’Toole, MT. (2005). Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health. 7th ed. Philadelphia: W.B. Saunders.
  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, et al. (1986). Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature, 313, 364–9.
  • Missias AC, Chu GC, Klocke BJ, Sanes JR, Merlie JP. (1996). Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR γ-to-ϵ switch. Dev Biol, 179, 223–238.
  • Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA. (2009). Harper's Illustrated Biochemistry. Lange Medical Books, New York: McGraw-Hill.
  • Nagata K, Iwanaga Y, Shono T, Narahash T. (1997). Modulation of the neuronal nicotinic acetylcholine receptor channel by imidacloprid and cartap. Pest Biochem Physiol, 59, 119–28.
  • Pai AC. (1965). Developmental genetics of a lethal mutation, muscular dysgenesis (Mdg), in the mouse. I. genetic analysis and gross morphology. Dev Biol, 11, 82–92.
  • Polizzi A, Huson SM, Vincent A. (2000). Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology, 62, 332–41.
  • Rasoulpour RJ, Ellis-Hutchings RG, Terry C, Millar NS, Zablotny CL, Gibb A, et al. (2012). A novel mode-of-action mediated by the fetal muscle nicotinic acetylcholine receptor resulting in developmental toxicity in rats. Toxicol Sci, 127, 522–534.
  • Rasoulpour RJ, Terry C, LeBaron MJ, Stebbins K, Ellis-Hutchings RG, Billington R. (2014). Mode-of-action and human relevance framework analysis for rat Leydig cell tumors associated with Sulfoxaflor. Crit Rev Toxicol, 44, 25–44.
  • Robinson SR, Smotherman WP. (1988). Behavior of the Fetus. The Telford Press: Caldwell, New Jersey.
  • Sattelle DB. (1980). Acetylcholine receptors of insects. Adv Insect Physiol, 15, 215–315.
  • Seed J, Carney EW, Corley RA, Crofton KM, DeSesso JM, Foster PM, et al. (2005). Overview: using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol, 35, 664–72.
  • Sekhon HS, Jia Y, Raab R, Kuryatov A, Pankow JF, Whitsett JA, et al. (1999). Prenatal nicotine increases pulmonary alpha7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest, 103, 637–47.
  • Sheveleva GA, Sheina NI, Silant'eva IV. (1984). Postnatal development of rat progeny after antenatal nicotine exposure. Farmakol Toksikol, 47, 85–9.
  • Sheveleva GA, Silant'ev IV, Sheina NI. (1983). [Effect of nicotine on embryogenesis and fetal development]. Akush Ginekol (Mosk), 10, 56–7.
  • Shoro AA. (1977). Intra-uterine growth retardation and limb deformities produced by neuromuscular blocking agents in the rat fetus. J Anat, 123, 341–50.
  • Sobrian SK, Ali SF, Slikker W Jr, Holson RR. (1995). Interactive effects of prenatal cocaine and nicotine exposure on maternal toxicity, postnatal development and behavior in the rat. Mol Neurobiol, 11, 121–43.
  • Taeusch HW, Ballard RA, Gleason CA, Avery ME. (2005). Avery's Diseases of the Newborn. Philadelphia: Elsevier Health Sciences
  • Takahashi M, Kubo T, Mizoguchi A, Carlson CG, Endo K, Ohnishi K. (2002). Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Rep, 3, 674–81.
  • Terry C, Rasoulpour RJ, Saghir S, Marty S, Gollapudi BB, Billington R. (2014). Application of a Novel Integrated Toxicity Testing Strategy Incorporating “3R” Principles of Animal Research to Evaluate the Safety of a New Agrochemical, Sulfoxaflor. Crit Rev Tox 44, 1–14.
  • Tran S, Hall BK. (1989). Growth of the clavicle and development of clavicular secondary cartilage in the embryonic mouse. Acta Anat (Basel), 135, 200–7.
  • Vander A, Sherman J, Luciano D. (2001). Human Physiology: The Mechanisms of Body Function. London: McGraw-Hill.
  • Wareham AC, Morton RH, Meakin GH. (1994). Low quantal content of the endplate potential reduces safety factor for neuromuscular transmission in the diaphragm of the newborn rat. Br J Anaesth, 72, 205–9.
  • Weinzweig J, Panter KE, Pantaloni M, Spangenberger A, Harper JS, Lui F, et al. (1999). The fetal cleft palate: I. Characterization of a congenital model. Plast Reconstr Surg, 103, 419–28.
  • Witzemann V. (2006). Development of the neuromuscular junction. Cell Tissue Res, 326, 263–71.
  • Xie W, Kania-Korwel I, Bummer PM, Lehmler HJ. (2007). Effects of potassium perfluorooctanesulfonate, perfluorooctanoate, and octanesulfonate on the phase transition of dipalmitoylphostatidylcholine (DPPC) bilayers. Biochim Biophys Acta.1768, 1299–308.
  • Young GT, Broad LM, Zwart R, Astles PC, Bodkin M, Sher E, Millar NS. (2007). Species selectivity of a nicotinic acetylcholine receptor agonist is conferred by two adjacent extracellular β4 amino acids that are implicated in the coupling of binding to channel gating. Mol Pharmacol, 71, 389–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.