620
Views
1,005
CrossRef citations to date
0
Altmetric
Research Article

Free Radicals as Mediators of Tissue Injury and Disease

Pages 21-48 | Published online: 25 Sep 2008

References

  • Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987; 1: 358
  • Sies H. Oxidative stress: introductory remarks. Oxidative Stress, H. Sies. Academic Press, New York 1985; 1
  • Sies H. Oxidative stress: introduction. Oxidative Stress. Oxidants and Antioxidants, H. Sies. Academic Press, San Diego 1991; XV
  • Kehrer J. P. Oxygen. Handbook on the Toxicity of Inorganic Compounds, H. Sigel, H. Sieler. Marcel Dekker, New York 1987; 505
  • Jamieson D. Oxygen toxicity and reactive oxygen metabolites in mammals. Free Rad. Biol. Med. 1989; 7: 87
  • Kukreja R. C., Jesse R. L., Hess M. L. Singlet oxygen: a potential culprit in myocardial injury?. Mol. Cell. Biochem. 1992; 111: 17
  • Kanofsky J. R. Singlet oxygen production by biological systems. Chem.‐Biol. Interact. 1989; 70: 1
  • Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine2nd Ed. Oxford University Press, New York, NY 1989
  • Davies K. J. A., Wiese A. G., Sevanian A., Kim E. H. Repair systems in oxidative stress. Molecular Biology of Aging, C. E. Finch, T. E. Johnson. Wiley‐Liss, New York 1990; 123
  • Sies H. Biochemistry of oxidative stress. Angew. Chem. 1986; 25: 1058
  • Machlin L. J., Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987; 1: 441
  • Halliwell B., Gutteridge J. M. C. Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Hum. Toxicol. 1988; 7: 7
  • Babior B. M., Kipnes R. S., Carnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 1973; 52: 741
  • Hurst J. K., Barrette W. C., Jr. Leukocyte oxygen activation and microbicidal oxidative toxins. Crit. Rev. Biochem. Mol. Biol. 1989; 24: 271
  • Flohé L., Beckmann R., Giertz H., Loschen G. Oxygen‐centered free radicals as mediators of inflammation. Oxidative Stress, H. Sies. Academic Press, New York 1985; 403
  • Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide‐dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. USA 1980; 77: 1159
  • Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem. J. 1972; 128: 617
  • Loschen G., Azzi A., Richter C., Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974; 42: 68
  • Boveris A., Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 1975; 54: 311
  • Loschen G., Flohé L. Respiratory chain linked H302 production in pigeon heart mitochondria. FEBS Lett. 1971; 18: 261
  • Scholz R., Thurman R. G., Williamson J. R., Chance B., Bücher T. Flavin and pyridine nucleotide oxidation‐reduction changes in perfused rat liver. J. Biol. Chem. 1969; 244: 2317
  • Nohl H., Hegner D. Do mitochondria produce oxygen radicals, in vivo?. Eur. J. Biochem. 1978; 82: 563
  • Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980; 191: 421
  • Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 1973; 134: 707
  • Shlafer M., Myers C. L., Adkins S. Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dis‐mutase following global ischemia. J. Mol. Cell. Cardiol. 1987; 19: 1195
  • Pariadathathu T., Kehrer J. P. Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Rad. Biol. Med. 1992; 13: 289
  • Vandeplassche G., Hermans C., Thoné F., Borgers M. Mitochondrial hydrogen peroxide generation by NADH‐oxidase activity following regional myocardial ischemia in the dog. J. Mol. Cell. Cardiol. 1989; 21: 383
  • Turrens J. F., Alexandre A., Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 1985; 237: 408
  • Boveris A., Cadenas E., Stoppani A. O. M. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 1976; 156: 435
  • Beyer R. E. The participation of coenzyme Q in free radical production and antioxidation. Free Rad. Biol. Med. 1990; 8: 545
  • White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol. Ther. 1991; 49: 21
  • Jakoby W. B., Ziegler D. M. The enzymes of detoxication. J. Biol. Chem. 1990; 265: 20715
  • Fridovich I. Qualitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 1970; 245: 4053
  • Kuppusamy P., Zweier J. L. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem. 1989; 264: 9880
  • Kehrer J. P. Concepts related to the study of reactive oxygen and cardiac reperfusion injury. Free Rad. Res. Commun. 1989; 5: 305
  • Sayre L. Biochemical mechanism of action of the dopaminergic neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP). Toxicol. Lett. 1989; 48: 120
  • Halliwell H. Current status review: free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br. J. Exp. Pathol. 1989; 70: 737
  • Davison A., Tibbits G., Shi Z., Moon J. Active oxygen in neuromuscular disorders. Mol. Cell. Biochem. 1988; 84: 199
  • Janero D. R. Malondialdehyde and thiobarbituric acid‐reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Rad. Biol. Med. 1990; 9: 515
  • Ursini F., Maiorino M., Sevanian A. Membrane hydroperoxides. Oxidative Stress. Oxidants and Antioxidants, H. Sies. Academic Press, San Diego 1991; 319
  • Davies K. J. A. Protein damage and degradation by oxygen radicals. I. General aspects. J. Biol. Chem. 1987; 262: 9895
  • Davies K. J. A. Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis. J. Free Rad. Biol. Med. 1986; 2: 155
  • Stadtman E. R. Metal ion‐catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Rad. Biol. Med. 1990; 9: 315
  • Stadtman E. R. Protein oxidation and aging. Science 1992; 257: 1220
  • Stubberfield C. R., Cohen G. M. NAD+ depletion and cytotoxicity in isolated hepatocytes. Biochem. Pharmacol. 1988; 37: 3967
  • Schraufstatter I. U., Hyslop P. A., Hinshaw D. B., Spragg R. G., Sklar L. A., Cochrane C. G. Hydrogen peroxide‐induced injury of cells and its prevention by inhibitors of poly(ADP‐ribose) polymerase. Proc. Natl. Acad. Sci. USA 1986; 83: 4908
  • Andreoli S. P. Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr. Res. 1989; 25: 97
  • Cerutti P. A., Trump B. F. Inflammation and oxidative stress in carcinogenesis. Cancer Cells 1991; 3: 1
  • Harris E. D. Regulation of antioxidant enzymes. FASEB J. 1992; 6: 2675
  • Roberts S. A., Price V. F., Jollow D. J. Acetaminophen structure‐toxicity studies: in vivo covalent binding of a nonhepatotoxic analog, 3‐hydroxyacetanilide. Toxicol. Appl. Pharmacol. 1990; 105: 195
  • Ariki M., Shamoo A. E. Oxidation of reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. Biochim. Biophys. Acta 1983; 734: 83
  • Scherer N. M., Deamer D. W. Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+‐ATPase. Arch. Biochem. Biophys. 1986; 246: 589
  • Trump B. F., Berezesky I. K., Smith M. W., Phelps P. C., Elliget K. A. The relationship between cellular ion deregulation and acute and chronic toxicity. Toxicol. Appl. Pharmacol. 1989; 97: 6
  • Pounds J. G. The role of cell calcium in current approaches to toxicology, Environ. Health Perspect. 1990; 84: 7
  • Farber J. L. The role of calcium in lethal cell injury. Chem. Res. Toxicol. 1990; 3: 503
  • Orrenius S., Burkitt M. J., Kass G. E. N., Dypbakt J. M., Nicotera P. Calcium ions and oxidative cell injury. Ann. Neurol. 1992; 32: S33
  • Reed D. W. Review of the current status of calcium and thiols in cellular injury. Chem. Res. Toxicol. 1990; 3: 495
  • Powis G. Free radical formation by antitumor qui‐nones. Free Rad. Biol. Med. 1989; 6: 63
  • Ross D. Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free‐radical induced toxicity and glutathione‐dependent protection. Pharmacol. Ther. 1988; 37: 231
  • Trush M. A., Mimnaugh E. G., Gram T. E. Activation of pharmacologic agents to radical intermediates. Implications for the role of free radicals in drug action and toxicity. Biochem. Pharmacol. 1982; 31: 3335
  • Kappus H. Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem. Pharmacol. 1986; 35: 1
  • Powis G., Svingen B. A., Appel P. L. Qui‐none stimulated superoxide formation by subcellular fractions, isolated hepatocytes and other cells. Mol. Pharmacol. 1981; 20: 387
  • Orrenius S., Nicotera P. Biochemical mechanisms of oxidative liver cell injury. Bull. Eur. Physiopathol. Respir. 1987; 23: 291
  • Monks T. J., Hanzlik R. P., Cohen G. M., Ross D., Graham D. G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 1992; 112: 2
  • Samokyszyn V. M., Thomas C. E., Reif D. W., Saito M., Aust S. D. Release of iron from ferritin and its role on oxygen radicals toxicities. Drug Metab. Rev. 1988; 19: 283
  • Halliwell B., Gutteridge J. M. C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 1986; 246: 501
  • Kedderis G. L., Miwa G. T. The metabolic activation of nitroheterocyclic therapeutic agents. Drug Metab. Rev. 1988; 19: 33
  • Smith L. L. The mechanism of paraquat toxicity in the lung. Reviews in Biochemical Toxicology, E. Hodgson, J. R. Bend, R. M. Philpot. Elsevier, New York 1987; Vol. 8: 37
  • Kehrer J. P., Haschek W. M., Witschi H. P. The influence of hyperoxia on the acute toxicity of paraquat and diquat. Drug Chem. Toxicol. 1979; 2: 397
  • Ungemach F. R. Pathobiochemical mechanisms of hepatocellular damage following lipid peroxidation. Chem. Phys. Lipids 1987; 45: 171
  • Comporti M. Three models of free radical‐induced ceil injury. Chem.‐Biol. Interact. 1989; 72: 1
  • Weiss S. J. Oxygen, ischemia and inflammation. Acta Physiol. Scand. 1986; 548(Suppl. 1)9
  • Fridovich I. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 1986; 247: 1
  • Gutteridge J. M. C. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986; 201: 291
  • Halliwell B., Hoult J. R., Blake D. R. Oxidants, inflammation, and anti‐inflammatory drugs. FASEB J. 1988; 2: 2867
  • Halliwell B., Gutteridge J. M. C. Iron as a biological pro‐oxidant. ISI Atlas Sci. Biochem. 1988; 1: 48
  • Lunec J., Blake D. R. The determination of dehydroascorbic acid and ascorbic acid in the serum and synovial fluid of patients with rheumatoid arthritis (RA). FreeRad. Res. Commun. 1985; 1: 31
  • Jasin H. E. Oxidative cross‐linking of immune complexes by human polymorphonuclear leukocytes. J. Clin. Invest. 1988; 81: 6
  • McCord J. M. Free radicals and inflammation. Protection of synovial fluid by superoxide dismutase. Science 1974; 185: 529
  • Vapaatalo H. Free radicals and anti‐inflammatory drugs. Med. Biol. 1986; 64: 1
  • Greenwald R. A. Superoxide dismutase and cat‐alase as therapeutic agents for human diseases. A critical review. Free Rad. Biol. Med. 1990; 8: 201
  • Simons J. M., 'THart B. A., Ip Vai T. R., Ching A. M., Van Dijk H., Labadie R. P. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Rad. Biol. Med. 1990; 8: 251
  • 'THart B. A., Simons J. M., Knaan‐Shanzer S., Bakker N. P. M., Labadie R. P. An‐tiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Rad. Biol. Med. 1990; 9: 127
  • Goldstein J. L., Ho Y. K., Basil S. K., Brown M. S. Binding site on macrophages that mediates the uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 1979; 76: 333
  • Steinbrecher U. P., Zhang H., Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Rad. Biol. Med. 1990; 9: 155
  • Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low‐density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 1989; 320: 915
  • Steinberg D. Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung, and Blood Institute workshop: September 5–6, 1991 Bethesda, Maryland. Circulation 1992; 85: 2338
  • Goto Y. Lipid peroxides as a cause of vascular diseases. Lipid Peroxides in Biology and Medicine, K. Yagi. Academic Press, New York 1982; 295
  • Henrickson T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by the receptor for acetylated low density lipoprotein. Proc. Natl. Acad. Sci. USA 1981; 78: 6499
  • Heinecke J. W., Baker L., Rosen L., Chait A. Superoxide‐mediated modification of low density lipoprotein by arterial smooth muscle cells. J. Clin. Invest. 1986; 77: 757
  • Pitas R. E., Boyles J., Mahley R. W., Bissell D. M. Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells. J. Cell Biol. 1985; 100: 103
  • Hessler J. R., Morel D. W., Lewis L. J., Chisolm G. M. Lipoprotein oxidation and lipopro‐tein‐induced cytotoxicity. Arteriosclerosis 1983; 3: 215
  • Cathcart M. K., Morel D. W., Chisolm G. M. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J. Leukocyte Biol. 1985; 38: 341
  • Esterbauer H., Jurgens G., Quehenberger O., Roller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J. Lipid Res. 1987; 28: 495
  • Quintao E., Witztum J. L., Parthasarathy S., Elam R., Steinberg D. Role of β‐carotene in the oxidative modification of low density lipoproteins. Arteriosclerosis 1989; 9: 758a
  • Steinbrecher U. P., Parthasaranthy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA 1984; 81: 3883
  • Jessup W., Rankin S. M., De Whalley C. V., Hoult J. R. S., Scott J., Leake D. S. α‐Tocopherol consumption during low‐density lipoprotein oxidation. Biochem. J. 1990; 265: 399
  • Carew T. E., Schwenke D. C., Steinberg D. Antiatherogenic effect of probucol unrelated to its hypochlesterolemic effect: evidence that antioxidantsin vivo can selectively inhibit LDL degradation in macrophage‐rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc. Natl. Acad. Sci. USA 1987; 84: 7725
  • Mao S. J. T., Yates M. T., Parker R. A., Chi E. M., Jackson R. L. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with use of a probucol analogue (MDL 29,311) that does not lower serum cholesterol. Arteriosclerosis Thrombosis 1991; 11: 1266
  • Sparrow C. P., Doebber T. W., Olszewski J., Wu M. S., Ventre J., Stevens K. A., Chao Y. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol‐fed rabbits by the antioxidantN,N'‐diphenyl‐phenylenediamine. J. Clin. Invest. 1992; 89: 1885
  • Esterbauer H., Dieber‐Rotheneder M., Striegl G., Waeg G. Role of vitamin E in preventing the oxidation of low‐density lipoprotein. Am. J. Clin. Nutr. 1991; 53: 314S
  • Farber E. Chemcial carcinogenesis. A biologic perspective. Am. J. Pathol. 1982; 106: 271
  • Mason R. P., Harrelson W. G., Kalyanaraman B., Motley C., Peterson F. J., Holtzman J. L. Free radical metabolites of chemical carcinogens. Free Radicals, Lipid Peroxidation and Cancer, D. C. H. McBrien, T. F. Slater. Academic Press, London 1982; 377
  • Slaga T. J., Fischer S. M., Nelson K., Gleason G. L. Studies on the mechanism of skin tumor promotion: evidence for several stages in promotion. Proc. Natl. Acad. Sci. USA 1980; 77: 3659
  • Bohrman J. S. Identification and assessment of tumor‐promoting and cocarcinogenic agents: state‐of‐the‐art in vitro methods. Crit. Rev. Toxicol. 1983; 11: 121
  • Marks F., Fiirstenberger G. Tumor promotion in skin: are active oxygen species involved?. Oxidative Stress, H. Sies. Academic Press, New York 1985; 437
  • Floyd R. A. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 1990; 4: 2587
  • Goldstein B. D., Witz G. Free radicals and carcinogenesis. Free Rad. Res. Commun. 1990; 11: 3
  • Kensler T. W., Egner P. A., Taffe B. G., Trush M. A. Role of free radicals in tumor promotion and progression. Skin Carcinogenesis: Mechanisms and Human Relevance. Alan R. Liss, New York 1989; 233
  • Cerutti P. A. Prooxidant states and tumor promotion. Science 1985; 227: 375
  • Fujita I., Irita K., Takeshige K., Minakami S. Diacylglycerol, 1‐oleoyl‐2‐acetyl‐glycerol, stimulates superoxide‐generation from human neutrophils. Biochem. Biophys. Res. Commun. 1984; 120: 318
  • Reiners J. J., Jr., Pence B. C., Barcus M. C. S., Cantu R. R. 12‐O‐Tetradecanoyl‐phorbol‐13‐acetate‐dependent induction of xanthine dehydrogenase and conversion to xanthine oxidase in murine epidermis. Cancer Res. 1987; 47: 1775
  • Engerson T. D., McKelvey T. G., Rhyne D. B., Boggio E. B., Snyder S. J., Jones H. P. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J. Clin. Invest. 1987; 79: 1564
  • Cerutti P., Larsson R., Krukpitza G. Mechanisms of oxidant carcinogenesis. Genetic Mechanisms in Carcinogenesis and Tumor Progression. Wiley‐Liss, New York 1990; 69
  • Zimmerman R., Cerutti P. Active oxygen acts as a promoter of transformation in mouse embryo C3H/10T1/2/C18 fibroblasts. Proc. Natl. Acad. Sci. USA 1984; 81: 2085
  • Weitzman S. A., Weitberg A. B., Clark E. P., Stossel T. P. Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science 1985; 227: 1231
  • Oberley L. W., Oberley T. D., Buettner G. R. Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med. Hypotheses 1981; 7: 21
  • Solanki V., Rana R. S., Slaga T. J. Diminution of mouse epidermal superoxide dismutase and catalase activities by tumor promoters. Carcinogenesis 1981; 2: 1141
  • Perchellet J. P., Perchellet E. M., Orten D. K., Schneider B. A. Inhibition of the effects of 12‐O‐tetradecanoylphorbol‐13‐acetate on mouse epidermal glutathione peroxidase and ornithine decarboxylase activities by glutathione level‐raising agents and selenium‐containing compounds. Cancer Lett. 1985; 26: 283
  • Perchellet J. P., Perchellet E. M., Orten D. K., Schneider B. A. Decreased ratio of reduced/oxidized glutathione in mouse epidermal cells treated with tumor promoters. Carcinogenesis 1986; 7: 503
  • Borek C. Free‐radical processes in multistage carcinogenesis. Free Rad. Res. Commun. 1991; 12–13: 745
  • Thompson J. A., Bolton J. L., Maikinson A. M. Relationship between the metabolism of bu‐tylated hydroxytoluene (BHT) and lung tumor promotion in mice. Exp. Lung Res. 1991; 17: 349
  • Trush M. A., Kensler T. W. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Rad. Biol. Med. 1991; 10: 201
  • Davies M. J. Direct detection of radical production in the ischaemic and reperfused myocardium: current status. Free Rad. Res. Commun. 1989; 7: 275
  • Kloner R. A., Przyklenk K., Whittaker P. Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation 1989; 80: 1115
  • Schaper W., Schaper J. Problems associated with reperfusion of ischemic myocardium. Pathophysiology of Severe Ischemic Myocardial Injury, H. M. Piper. Kluwer, Dordrecht 1990; 269
  • Kehrer J. P., Starnes J. W. Models and markers used to study cardiac reperfusion injury. Pharmacol. Ther. 1989; 44: 123
  • Shirato C., Miura T., Ooiwa H., Toyofuku T., Wilborn W. H., Downey J. M. Tetrazolium artifactually indicates superoxide dismutase‐induced salvage in reperfused rabbit heart. J. Mol. Cell. Cardiol. 1989; 21: 1187
  • Downey J. M., Omar B., Ooiwa H., McCord J. Superoxide dismutase therapy for myocardial ischemia. Free Rad. Res. Commun. 1991; 12–13: 703
  • Bolli R. Mechanism of myocardial “stunning”. Circulation 1990; 82: 723
  • Bolli R. Oxygen‐derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc. Drugs Ther. 1991; 5: 249
  • Manning A. S. Reperfusion‐induced arrhythmias: do free radicals play a critical role?. Free Rad. Biol. Med. 1988; 4: 305
  • Hagar J. M., Hale S. L., Ilvento J. P., Kloner R. A. Lack of significant effects of superoxide dismutase and catalase on development of reperfusion arrhythmias. Basic Res. Cardiol. 1991; 86: 127
  • Schaper W. Molecular mechanisms in “stunned” myocardium. Cardiovasc. Drugs Ther. 1991; 5: 925
  • van Glist W. H. Protection of the myocardium against postischemic reperfusion damage. J. Cardiovasc. Pharmacol. 1989; 14: 49
  • Flaherty J. T., Zweier J. L. Role of oxygen radicals in myocardial reperfusion injury: experimental and clinical evidence. Klin. Wochenschr. 1991; 60: 1061
  • Cohen M. V. Free radicals in ischemic and reperfusion myocardial injury: is this the time for clinical trials. Ann. Intern. Med. 1989; 111: 918
  • Ferrari R., Curello S., Cargoni A., Condorelli E., Comini L., Ghieli S., Ceconi C. Importance of free radicals generated by endothelial and myocardial cells in ischemia and reperfusion. Pathophysiology of Severe Ischemic Myocardial Injury, H. M. Piper. DordrechtKluwer. 1990; 221
  • Reimer K. A., Murry C. E., Richard V. J. The role of neutrophils and free radicals in the ischemic‐reperfused heart: why the confusion and controversy?. J. Mol. Cell Cardiol. 1989; 21: 1225
  • Hearse D. J. The protection of the ischemic myocardium: surgical success v. clinical failure. Prog. Cardiovasc. Dis. 1988; 30: 381
  • Harman D. Free radicals in aging. Mol. Cell. Biochem. 1988; 84: 155
  • Pacifici R. E., Davies K. J. A. Protein, lipid and DNA repair systems in oxidative stress: the free‐radical theory of aging revisited. Gerontology 1991; 37: 166
  • Klein J. Normobaric pulmonary oxygen toxicity. Anesth. Analg. 1990; 70: 195
  • Freeman B. A., Toppolsky M. K., Crapo J. D. Hyperoxia increases oxygen radical production in rat lung homogenates. Arch. Biochem. Biophys. 1982; 216: 477
  • Jamieson D., Chance B., Cadenas E., Boveris A. The relation of free radical production to hyperoxia. Annu. Rev. Physiol. 1986; 48: 703
  • Ischiropoulos H., Nadziejko C. E., Kumae T., Kikkawa Y. Oxygen tolerance in neonatal rats: role of subcellular superoxide generation. Am. J. Physiol. 1989; 257: L411
  • Shasby D. M., Fox R. B., Harada R. N., Repine J. E. Reduction of the edema of acute hyperoxic lung injury by granulocyte depletion. J. Appl. Physiol. 1982; 52: 1237
  • Laughlin M. J., Wild L., Nickerson P. A., Matalon S. Effects of hyperoxia on alveolar permeability of neutropenic rabbits. J. Appl. Physiol. 1986; 61: 1126
  • Frank L., Bucher J. R., Roberts R. J. Oxygen toxicity in neonatal and adult animals. J. Appl. Physiol. 1978; 45: 699
  • Frank L., Summerville J., Massaro D. Protection from oxygen toxicity with endotoxin: role of the endogenous antioxidant enzymes of the lung. J. Clin. Invest. 1980; 65: 1104
  • White C. W., Avraham K. B., Shanley P. F., Groner Y. Transgenic mice with expression of elevated levels of copper‐zinc superoxide dismutase in the lungs are resistant to pulmonary oxygen toxicity. J. Clin. Invest. 1991; 87: 2162
  • Frank L. Developmental aspects of experimental pulmonary oxygen toxicity. Free Rad. Biol. Med. 1991; 11: 463
  • Berg J. T., Allison R. C., Prasad V. R., Taylor A. E. Endotoxin protection of rats from pulmonary oxygen toxicity: possible cytokine involvement. J. Appl. Physiol. 1990; 68: 549
  • Berg J. T., Smith R. M. Protection against hyperoxia by serum from endotoxin treated rats: absence of superoxide dismutase induction. Proc. Soc. Exp. Biol. Med. 1988; 187: 117
  • Tsan M. ‐F., Lawrence D., White J. E. Erythrocyte insufflation‐induced protection against oxygen toxicity: role of cytokines. J. Appl. Physiol. 1991; 71: 1751
  • Adamson G. M., Billings R. E. Tumor necrosis factor induced oxidative stress in isolated mouse hepatocytes. Arch. Biochem. Biophys. 1992; 294: 223
  • Panus P. C., Shearer J., Freeman B. A. Pulmonary metabolism of reactive oxygen species. Exp. Lung Res. 1988; 14: 959
  • Tanswell K. A., Freeman B. A. Liposomeentrapped antioxidant enzymes prevent lethal O2 toxicity in the newborn rat. J. Appl. Physiol. 1987; 63: 347
  • White C. W., Jackson J. H., Abuchowski A., Kazo G. M., Mimmack R. F., Berger E. M., Freeman B. A., McCord J. M., Repine J. E. Polyethylene glycol‐attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats. J. Appl. Physiol. 1989; 66: 584
  • Patterson C. E., Rhoades R. A. Protective role of sulfhydryl reagents in oxidant lung injury. Exp. Lung Res. 1988; 14: 1005
  • Meydani S. N., Barklund M. P., Liu S., Meydani M., Miller R., Cannon J. C., Morrow F. D., Rocklin R., Blumberg J. B. Vitamin E supplementation enhances cell‐mediated immunity in healthy elderly subjects. Am. J. Clin. Nutr. 1990; 52: 557

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.