5,055
Views
247
CrossRef citations to date
0
Altmetric
Review Article

The A–Z of bacterial translation inhibitors

Pages 393-433 | Received 06 Jul 2009, Accepted 03 Sep 2009, Published online: 20 Nov 2009

References

  • Aarestrup FM and Jensen LB. 2000. Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (Avilamycin and evernimicin). Antimicrob Agents Chemother 44:3425–3427.
  • Adrian PV, Mendrick C, Loebenberg D, McNicholas P, Shaw KJ, Klugman KP, Hare RS and Black TA. 2000a. Evernimicin (SCH27899) inhibits a novel ribosome target site: analysis of 23S ribosomal DNA mutants. Antimicrob Agents Chemother 44:3101–3106.
  • Adrian PV, Zhao W, Black TA, Shaw KJ, Hare RS and Klugman KP. 2000b. Mutations in ribosomal protein L16 conferring reduced susceptibility to evernimicin (SCH27899): implications for mechanism of action. Antimicrob Agents Chemother 44:732–738.
  • Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P, Hansen H, Harms J, Kessler M, Peretz M, Schluenzen F, Yonath A and Zarivach R. 2003. On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Eur J Biochem 270:2543–2556.
  • Agrawal R, Penczek P, Grassucci R and Frank J. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: The mechanism of translocation. Proc Natl Acad Sci USA 95:6134–6138.
  • Agrawal RK, Heagle AB, Penczek P, Grassucci RA and Frank J. 1999. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Struct Biol 6:643–647.
  • Agrawal RK, Linde J, Sengupta J, Nierhaus KH and Frank J. 2001. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J Mol Biol 311:777–787.
  • Allen G, Zavialov A, Gursky R, Ehrenberg M and Frank J. 2005. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–712.
  • Aoki H, Ke L, Poppe SM, Poel TJ, Weaver EA, Gadwood RC, Thomas RC, Shinabarger DL and Ganoza MC. 2002. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob Agents Chemother 46:1080–1085.
  • Bagley M, Dale J, Merritt E and Xiong X. 2005. Thiopeptide antibiotics. Chem Rev 105:685–714.
  • Bakker-Woudenberg IA, van Vianen W, van Soolingen D, Verbrugh HA and van Agtmael MA. 2005. Antimycobacterial agents differ with respect to their bacteriostatic versus bactericidal activities in relation to time of exposure, mycobacterial growth phase, and their use in combination. Antimicrob Agents Chemother 49:2387–2398.
  • Balakin AG, Skripkin EA, Shatsky IN and Bogdanov AA. 1992. Unusual ribosome binding properties of messenger RNA encoding bacteriophage lambda repressor. Nucl Acids Res 20:563–571.
  • Barbacid M and Vazquez D. 1974. (3H)anisomycin binding to eukaryotic ribosomes. J Mol Biol 84:603–623.
  • Bartz QR, Ehrlich J, Mold JD, Penner MA and Smith RM. 1951. Viomycin, a new tuberculostatic antibiotic. Am Rev Tuberc 63:4–6.
  • Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HA, Kossoy E, Kessler M. and Yonath A. 2003. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11:91–102.
  • Bauer G, Berens C, Projan S and Hillen W. 2004. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother 53:592–599.
  • Belova L, Tenson T, Xiong LQ, McNicholas PM and Mankin AS. 2001. A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit. Proc Natl Acad Sci USA 98:3726–3731.
  • Bergeron J, Ammirati M, Danley D, James L, Norcia M, Retsema J, Strick CA, Su WG, Sutcliffe J and Wondrack L. 1996. Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob Agents Chemother 40:2226–2228.
  • Beringer M and Rodnina MV. 2007. The ribosomal peptidyl transferase. Mol Cell 26:311–321.
  • Beringer M, Bruell C, Xiong L, Pfister P, Bieling P, Katunin VI, Mankin AS, Bottger EC and Rodnina MV. 2005. Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280:36065–36072.
  • Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen H, Fucini P and Yonath A. 2003a. Structural insight into the antibiotic action of telithromycin on resistant mutants. J Bact 185:4276–4279.
  • Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D and Yonath A. 2003b. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10:366–370.
  • Besier S, Ludwig A, Brade V and Wichelhaus TA. 2003. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463–469.
  • Besier S, Ludwig A, Brade V and Wichelhaus TA. 2005. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49:1426–1431.
  • Bhuyan BK. 1967. Pactamycin, an antibiotic that inhibits protein synthesis. Biochem Pharmacol 16:1411–1420.
  • Bilgin N, Richter AA, Ehrenberg M, Dahlberg AE and Kurland CG. 1990. Ribosomal RNA and protein mutants resistant to spectinomycin. EMBO J 9:735–739.
  • Blaha G, Gurel G, Schroeder SJ, Moore PB and Steitz TA. 2008. Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. J Mol Biol 379:505–519.
  • Blanchard SC, Gonzalez RL, Kim HD, Chu S and Puglisi JD. 2004. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11:1008–1014.
  • Boddeker N, Bahador G, Gibbs C, Mabery E, Wolf J, Xu L and Watson J. 2002. Characterization of a novel antibacterial agent that inhibits bacterial translation. RNA 8:1120–1128.
  • Bodley JW, Zieve FJ, Lin L and Zieve ST. 1969. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun 37:437–443.
  • Bommakanti AS, Lindahl L and Zengel JM. 2008. Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. RNA 14:460–464.
  • Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A and Cate JH. 2007a. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 14:727–732.
  • Borovinskaya MA, Shoji S, Holton JM, Fredrick K and Cate JH. 2007b. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem Biol 2:545–552.
  • Borovinskaya MA, Shoji S, Fredrick K and Cate JH. 2008. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14:1590–1599.
  • Bosling J, Poulsen SM, Vester B and Long KS. 2003. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein L3. Antimicrob Agents Chemother 47:2892–2896.
  • Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill W, Lodmell J and Gualerzi C. 2004. The translation initiation functions of IF2: Targets for thiostrepton inhibition. J Mol Biol 335:881–894.
  • Brandi L, Fabbretti A, Di Stefano M, Lazzarini A, Abbondi M and Gualerzi CO. 2006a. Characterization of GE82832, a peptide inhibitor of translocation interacting with bacterial 30S ribosomal subunits. RNA 12:1262–1270.
  • Brandi L, Fabbretti A, La Teana A, Abbondi M, Losi D, Donadio S and Gualerzi C. 2006b. Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. Proc Natl Acad Sci USA 103:39–44.
  • Brandi L, Lazzarini A, Cavaletti L, Abbondi M, Corti E, Ciciliato I, Gastaldo L, Marazzi A, Feroggio M, Fabbretti A, Maio A, Colombo L, Donadio S, Marinelli F, Losi D, Gualerzi CO and Selva E. 2006. Novel tetrapeptide inhibitors of bacterial protein synthesis produced by a Streptomyces sp. Biochemistry 45:3692–3702.
  • Brink MF, Brink G, Verbeet MP and Deboer HA. 1994. Spectinomycin interacts specifically with the residues G(1064) and C(1192) in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation. Nucleic Acids Res 22:325–331.
  • Brodersen DE, Clemons WM, Carter AP, Morgan-Warren RJ, Wimberly BT and Ramakrishnan V. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–1154.
  • Brooks G, Burgess W, Colthurst D, Hinks JD, Hunt E, Pearson MJ, Shea B, Takle AK, Wilson JM and Woodnutt G. 2001. Pleuromutilins. Part 1. The identification of novel mutilin 14-carbamates. Bioorg Med Chem 9:1221–1231.
  • Burakovskii DE, Smirnova AS, Lesniak DV, Kiparisov SV, Leonov AA, Sergiev PV, Bogdanov AA and Dontsova OA. 2007. Interaction of 23S ribosomal RNA helices 89 and 91 of Escherichia coli contributes to the activity of IF2 but is insignificant for elongation factors functioning. Mol Biol (Mosk) 41:1031–1041.
  • Burghardt H, Schimz KL and Muller M. 1998. On the target of a novel class of antibiotics, oxazolidinones, active against multidrug-resistant Gram-positive bacteria. FEBS Lett 425:40–44.
  • Cabanas MJ, Vazquez D and Modolell J. 1978. Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun 83:991–997.
  • Cameron D, Thompson J, Gregory S, March P and Dahlberg A. 2004. Thiostrepton-resistant mutants of Thermus thermophilus. Nucleic Acids Res 32:3220–3227.
  • Canu A and Leclercq R. 2001. Overcoming bacterial resistance by dual target inhibition: the case of streptogramins. Curr Drug Targets Infect Disord 1:215–225.
  • Carrasco L and Vazquez D. 1972. Survey of inhibitors in different steps of protein synthesis by mammalian ribosomes. J Antibiot (Tokyo) 25:732–737.
  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT and Ramakrishnan V. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348.
  • Celma ML, Monro RE and Vazquez D. 1970. Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Lett 6:273–277.
  • Celma ML, Monro RE and Vazquez D. 1971. Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes: binding of UACCA-leu to 50S subunits. FEBS Lett 13:247–251.
  • Champney WS. 2001. Bacterial ribosomal subunit synthesis: a novel antibiotic target. Curr Drug Targets Infect Disord 1:19–36.
  • Champney WS. 2006. The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation. Infect Disord Drug Targets 6:377–390.
  • Chin K, Shean CS and Gottesman ME. 1993. Resistance of lambda cI translation to antibiotics that inhibit translation initiation. J Bacteriol 175:7471–7473.
  • Chinali G, Moureau P and Cocito C. 1984. The action of virginiamycin M on the acceptor, donor, and catalytic sites of peptidyltransferase. J Biol Chem 259:9563–9568.
  • Chinali G, Nyssen E, Di Giambattista M and Cocito C. 1988a. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems. Biochim Biophys Acta 951:42–52.
  • Chinali G, Nyssen E, Di Giambattista M and Cocito C. 1988b. Inhibition of polypeptide synthesis in cell-free systems by virginiamycin S and erythromycin. Evidence for a common mode of action of type B synergimycins and 14-membered macrolides. Biochim Biophys Acta 949:71–78.
  • Chittum HS and Champney WS. 1994. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176:6192–6198.
  • Chopra I. 2002. New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist Updates 5:119–125.
  • Chopra I and Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260.
  • Cocito C, DiGiambattista M, Nyssen E and Vannuffel P. 1997. Inhibition of protein synthesis by streptogramins and related antibiotics. J Antimicrob Chemother 39:7–13.
  • Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L and Mankin AS. 2003. Crosslinking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem 278:21972–21979.
  • Comartin DJ and Brown ED. 2006. Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. Curr Opin Pharmacol 6:453–458.
  • Connell SR, Trieber CA, Stelzl U, Einfeldt E, Taylor DE and Nierhaus KH. 2002. The tetracycline resistance protein Tet(O) perturbs the conformation of the ribosomal decoding centre. Mol Microbiol 45:1463–1472.
  • Connell SR, Tracz DM, Nierhaus KH and Taylor DE. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681.
  • Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, Shirouzu M, Rost M, Schuler M, Giesebrecht J, Dabrowski M, Mielke T, Fucini P, Yokoyama S and Spahn CM. 2007. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 25:751–764.
  • Connell SR, Topf M, Qin Y, Wilson DN, Mielke T, Fucini P, Nierhaus KH and Spahn CM. 2008. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 15:910–915.
  • Connolly K, Rife JP and Culver G. 2008. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol 70:1062–1075.
  • Contreras A and Vazquez D. 1977. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes. Eur J Biochem 74:539–547.
  • Cundliffe E, Dixon P, Stark M, Stöffler G, Ehrlich R, Stöffler-Meilicke M and Cannon M. 1979. Ribosomes in thiostrepton-resistant mutants of B. megaterium lacking a single 50S subunit protein. J Mol Biol 132:235–252.
  • Dandliker P, Pratt S, Nilius A, Black-Schaefer C, Ruan X, Towne D, Clark R, Englund E, Wagner R, Weitzberg M, Chovan L, Hickman R, Daly M, Kakavas S, Zhong P, Cao Z, David C, Xuei X, Lerner C, Soni N, Bui M, Shen L, Cai Y, Merta P, Saiki A and Beutel B. 2003. Novel antibacterial class. Antimicrob Agents Chemother 47:3831–3839.
  • Das B, Rudra S, Yadav A, Ray A, Rao AV, Srinivas AS, Soni A, Saini S, Shukla S, Pandya M, Bhateja P, Malhotra S, Mathur T, Arora SK, Rattan A and Mehta A. 2005. Synthesis and SAR of novel oxazolidinones: discovery of ranbezolid. Bioorg Med Chem Lett 15:4261–4267.
  • Davidovich C, Bashan A, Auerbach-Nevo T, Yaggie RD, Gontarek RR and Yonath A. 2007. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci USA 104:4291–4296.
  • Davidovich C, Bashan A and Yonath A. 2008. Structural basis for cross-resistance to ribosomal PTC antibiotics. Proc Natl Acad Sci USA 105:20665–20670.
  • Davies C, Bussiere DE, Golden BL, Porter SJ, Ramakrishnan V and White SW. 1998. Ribosomal proteins S5 and L6: High-resolution crystal structures and roles in protein synthesis and antibiotic resistance. J Mol Biol 279:873–888.
  • Davies J. 1990. What are antibiotics? Archaic functions for modern activities. Mol Microbiol 4:1227–1232.
  • Davies J, Anderson P and Davis BD. 1965. Inhibition of protein synthesis by spectinomycin. Science 149:1096–1098.
  • Davis BD. 1987. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341–350.
  • Depardieu F and Courvalin P. 2001. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob Agents Chemother 45:319–323.
  • Di Giambattista M, Vannuffel P, Sunazuka T, Jacob T, Omura S and Cocito C. 1986. Antagonistic interactions of macrolides and synergimycins on bacterial ribosomes. J Antimicrob Chemother 18:307–315.
  • Di Giambattista M, Chinali G and Cocito C. 1989. The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes. J Antimicrob Chemother 24:485–507.
  • Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D and Nierhaus KH. 2004. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site tRNA binding. Mol Cell 13:113–124.
  • Dornhelm P and Hogenauer G. 1978. The effects of tiamulin, a semisynthetic pleuromutilin derivative, on bacterial polypeptide chain initiation. Eur J Biochem 91:465–473.
  • Douthwaite S. 1992. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res 20:4717–4720.
  • Douthwaite S, Hansen LH and Mauvais P. 2000. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol 36:183–193.
  • Douthwaite S, Crain P, Liu M and Poehlsgaard J. 2004. The tylosin-resistance methyltransferase RlmA(II) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748. J Mol Biol 337:1073–1077.
  • Ermolenko DN, Spiegel PC, Majumdar ZK, Hickerson RP, Clegg RM and Noller HF. 2007. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat Struct Mol Biol 14:493–497.
  • Eustice DC, Feldman PA, Zajac I and Slee AM. 1988. Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis. Antimicrob Agents Chemother 32:1218–1222.
  • Fernandez-Munoz R, Monro RE, Torres-Pinedo R and Vazquez D. 1971. Substrate- and antibiotic-binding sites at the peptidyl transferase centre of E coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Eur J Biochem 23:185–193.
  • Fourmy D, Recht MI, Blanchard SC and Puglisi JD. 1996. Structure of the A-site of E. coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–1371.
  • Fourmy D, Yoshizawa S and Puglisi JD. 1998. Paromomycin binding induces a local conformational change in the A-Site of 16S rRNA. J Mol Biol 277:333–345.
  • Franceschi F and Duffy EM. 2006. Structure-based drug design meets the ribosome. Biochem Pharmacol 71:1016–1025.
  • Fredrick K and Noller HF. 2003. Catalysis of ribosomal translocation by sparsomycin. Science 300:1159–1162.
  • Fried HM and Warner JR. 1981. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci USA 78:238–242.
  • Fromm H, Efelman M, Aviv D and Galun E. 1987. The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237.
  • Funatsu G, Schilitz E and Wittmann HG. 1971. Ribosomal proteins: XXVII. Localization of the amino acid exchanges in protein S5 from 2 E. coli mutants resistant to spectinomycin. Molec Gen Genet 114:106–111.
  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH and Waring MJ. 1981. Antibiotic inhibitors of ribosome function, pp. 278–379. In: The Molecular Basis of Antibiotic Action, Bristol, UK: John Wiley and Sons.
  • Garcia-Marcos A, Morreale A, Guarinos E, Briones E, Remacha M, Ortiz AR and Ballesta JP. 2007. In vivo assembling of bacterial ribosomal protein L11 into yeast ribosomes makes the particles sensitive to the prokaryotic specific antibiotic thiostrepton. Nucleic Acids Res 35:7109–7117.
  • Gaynor M and Mankin A. 2003. Macrolide antibiotics: binding site, mechanism of action, resistance. Curr Top Med Chem 3:949–961.
  • Geigenmüller U and Nierhaus KH. 1990. Significance of the third tRNA binding site, the E Site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-transfer RNA to the A site. EMBO J 9:4527–4533.
  • Gerrits MM, de Zoete MR, Arents NL, Kuipers EJ and Kusters JG. 2002. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother 46:2996–3000.
  • Godtfredsen W, Roholt K and Tybring L. 1962a. Fucidin: a new orally active antibiotic. Lancet 1:928–931.
  • Godtfredsen WO, Jahnsen S, Lorck H, Roholt K and Tybring L. 1962b. Fusidic acid: a new antibiotic. Nature 193:987.
  • Gomez-Lorenzo MG, Spahn CMT, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JPG, Lavandera JL, Garcia-Bustos JF and Frank J. 2000. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 angstrom resolution. EMBO J 19:2710–2718.
  • Gonzalez Jr RL, Chu S and Puglisi JD. 2007. Thiostrepton inhibition of tRNA delivery to the ribosome. RNA 13:2091–2097.
  • Gregory ST and Dahlberg AE. 1999. Erythromycin resistance mutations in ribosomal proteins L22 und L4 perturb the higher order structure of 23S ribosomal RNA. J Mol Biol 289:827–834.
  • Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO and Cooperman BS. 2007. A quantitative kinetic scheme for 70 S translation initiation complex formation. J Mol Biol 373:562–572.
  • Gromadski KB and Rodnina MV. 2004. Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat Struct Mol Biol 11:316–322.
  • Gualerzi CO and Pon CL. 1990. Initiation of messenger-RNA translation in prokaryotes. Biochemistry 29:5881–5889.
  • Guerrero MD and Modolell J. 1980. Hygromycin A, a novel inhibitor of ribosomal peptidyltransferase. Eur J Biochem 107:409–414.
  • Guex N and Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18:2714–2723.
  • Gurel G, Blaha G, Moore PB and Steitz TA. 2009. U2504 determines the species specificity of the A-site cleft antibiotics:the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J Mol Biol 389:146–156.
  • Hanka LJ, Mason DJ and Sokolski WT. 1961. Actinospectacin, a new antibiotic. II. Microbiological assay. Antibiot Chemother 11:123–126.
  • Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB and Steitz TA. 2002a. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117–128.
  • Hansen JL, Schmeing TM, Moore PB and Steitz TA. 2002b. Structural insights into peptide bond formation. Proc Natl Acad Sci USA 99:11670–11675.
  • Hansen JL, Moore PB and Steitz TA. 2003. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol 330:1061–1075.
  • Hansen LH, Mauvais P and Douthwaite S. 1999. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol Microbiol 31:623–631.
  • Harms J, Schluenzen F, Fucini P, Bartels H and Yonath A. 2004. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2:4.
  • Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM and Fucini P. 2008. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol Cell 30:26–38.
  • Hausner TP, Atmadja J and Nierhaus KH. 1987. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69:911–923.
  • Hausner TP, Geigenmüller U and Nierhaus KH. 1988. The allosteric three site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin. J Biol Chem 263:13103–13111.
  • Hayashi SF, Norcia LJL, Seibel SB and Silvia AM. 1997. Structure-activity relationships of hygromycin A and its analogs: Protein synthesis inhibition activity in a cell free system. J. Antibiot. 50:514–521.
  • Heffron SE and Jurnak F. 2000. Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 A resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 39:37–45.
  • Hilgenfeld R, Mesters J and Hogg T. 2000. Insights into the GTPase mechanism of EF-Tu from structural studies, pp. 347–357. In: Garrett RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB and Noller HF, eds The Ribosome. Structure, Function, Antibiotics, and Cellular Interactions, Washington, DC: ASM press.
  • Hirokawa G, Kiel MC, Muto A, Selmer M, Raj VS, Liljas A, Igarashi K, Kaji H and Kaji A. 2002. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J 21:2272–2281.
  • Hirokawa G, Nijman R, Raj V, Kaji H, Igarashi K and Kaji A. 2005. The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA 11:1317–1128.
  • Hodgin LA and Hogenauer G. 1974. The mode of action of pleuromutilin derivatives. Effect on cell-free polypeptide synthesis. Eur J Biochem 47:527–533.
  • Hoeksema H and Knight JC. 1975. The production of dihydrospectinomycin by Streptomyces spectabilis. J Antibiot (Tokyo) 28:240–241.
  • Hogenauer G. 1975. The mode of action of pleuromutilin derivatives. Location and properties of the pleuromutilin binding site on Escherichia coli ribosomes. Eur J Biochem 52:93–98.
  • Hogg T, Mesters JR and Hilgenfeld R. 2002. Inhibitory mechanisms of antibiotics targeting elongation factor Tu. Curr Protein Pept Sci 3:121–131.
  • Hughes RA and Moody CJ. 2007. From amino acids to heteroaromatics–thiopeptide antibiotics, nature’s heterocyclic peptides. Angew Chem Int Ed Engl 46:7930–7954.
  • Hummel H and Boeck A. 1987a. 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80 S ribosome targeted antibiotic anisomycin. Nucleic Acids Res 15:2431–2443.
  • Hummel H and Boeck A. 1987b. Thiostrepton resistance mutations in the gene for 23S ribosomal RNA of halobacteria. Biochimie 69:857–861.
  • Humphrey W, Dalke A and Schulten K. 1996.. VMD - Visual Molecular Dynamics.. J. Molec. Graphics 14:33–38.
  • Ioannou M, Coutsogeorgopoulos C and Drainas D. 1997. Determination of eukaryotic peptidyltransferase activity by pseudo-first-order kinetic analysis. Anal Biochem 247:115–122.
  • Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA and Duffy EM. 2008. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51:3353–3356.
  • Jain A and Dixit P. 2008. Multidrug-resistant to extensively drug resistant tuberculosis: what is next? J Biosci 33:605–616.
  • Johansen SK, Maus CE, Plikaytis BB and Douthwaite S. 2006. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2’-O-methylations in 16S and 23S rRNAs. Mol Cell 23:173–182.
  • Johanson U and Hughes D. 1995. A new mutation in 16S rRNA of Escherichia coli conferring spectinomycin resistance. Nucleic Acids Res 23:464–466.
  • Jorgensen R, Ortiz PA, Carr-Schmid A, Nissen P, Kinzy TG and Andersen GR. 2003. Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nat Struct Biol 10:379–385.
  • Justice MC, Hsu MJ, Tse B, Ku T, Balkovec J, Schmatz D and Nielsen J. 1998. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273:3148–3151.
  • Kaberdina AC, Szaflarski W, Nierhaus KH and Moll I. 2009. An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33:227–236.
  • Kalia V, Miglani R, Purnapatre KP, Mathur T, Singhal S, Khan S, Voleti SR, Upadhyay DJ, Saini KS, Rattan A and Raj VS. 2009. Mode of action of Ranbezolid against staphylococci and structural modeling studies of its interaction with ribosomes. Antimicrob Agents Chemother 53:1427–1433.
  • Kallia-Raftopoulos S and Kalpaxis DL. 1999. Slow sequential conformational changes in Escherichia coli ribosomes induced by lincomycin: kinetic evidence. Mol Pharmacol 56:1042–1046.
  • Karimi R and Ehrenberg M. 1994. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem 226:355–360.
  • Katz L and Ashley GW. 2005. Translation and protein synthesis: macrolides. Chem Rev 105:499–528.
  • Kehrenberg C and Schwarz S. 2007. Mutations in 16S rRNA and ribosomal protein S5 associated with high-level spectinomycin resistance in Pasteurella multocida. Antimicrob Agents Chemother 51:2244–2246.
  • Kehrenberg C, Schwarz S, Jacobsen L, Hansen L and Vester B. 2005. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073.
  • Kloss P, Xiong L, Shinabarger DL and Mankin AS. 1999. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J Mol Biol 294:93–101.
  • Kofoed CB and Vester B. 2002. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob Agents Chemother 46:3339–3342.
  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA and Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810.
  • Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G and Collins JJ. 2008. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135:679–690.
  • Kosolapov A and Deutsch C. 2009. Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol 16:405–411.
  • Kouvela EC, Petropoulos AD and Kalpaxis DL. 2006. Unraveling new features of clindamycin interaction with functional ribosomes and dependence of the drug potency on polyamines. J Biol Chem 281:23103–23110.
  • Kurland CG, Hughes D and Ehrenberg M. 1996. Limitations of translational accuracy, pp. 979–1004. In: Neidhardt FC, ed. Escherichia coli and Salmonella, Cellular and Molecular Biology, Washington DC: ASM Press.
  • Lai CJ and Weisblum B. 1971. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci USA 68:856–860.
  • Laios E, Waddington M, Saraiya AA, Baker KA, O’Connor E, Pamarathy D and Cunningham PR. 2004. Combinatorial genetic technology for the development of new anti-infectives. Arch Pathol Lab Med 128:1351–1359.
  • Lamb HM, Figgitt DP and Faulds D. 1999. Quinupristin/dalfopristin: a review of its use in the management of serious gram-positive infections. Drugs 58:1061–1097.
  • Landini P, Bandera M, Goldstein BP, Ripamonti F, Soffientini A, Islam K and Denaro M. 1992. Inhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL-62,879 and Efrotomycin. Biochem J 283:649–652.
  • La Teana A, Gualerzi CO and Dahlberg AE. 2001. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. RNA 7:1173–1179.
  • Laurberg M, Kristensen O, Martemyanov K, Gudkov AT, Nagaev I, Hughes D and Liljas A. 2000. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303:593–603.
  • Lawrence L, Danese P, DeVito J, Franceschi F and Sutcliffe J. 2008. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother 52:1653–1662.
  • Lazaro E, Van dBL, San FA, Ottenheijm HC and Ballesta JP. 1991a. Chemical, biochemical and genetic endeavours characterizing the interaction of sparsomycin with the ribosome. Biochimie 73:1137–1143.
  • Lazaro E, Vandenbroek LAGM, Felix AS, Ottenheijm HCJ and Ballesta JPG. 1991b. Biochemical and kinetic characteristics of the interaction of the antitumor antibiotic sparsomycin with prokaryotic and eukaryotic ribosomes. Biochemistry 30:9642–9648.
  • Lazaro E, Rodriguezfonseca C, Porse B, Urena D, Garrett RA and Ballesta JPG. 1996. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA. J Mol Biol 261:231–238.
  • Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, Gadwood RC, Shinabarger D, Xiong L and Mankin AS. 2007. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 26:393–402.
  • Lewis C and Clapp HW. 1961. Actinospectacin, a new antibiotic. III. In vitro and in vivo evaluation. Antibiot Chemother 11:127–133.
  • Liao R, Duan L, Lei C, Pan H, Ding Y, Zhang Q, Chen D, Shen B, Yu Y and Liu W. 2009. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem Biol 16:141–147.
  • Lichtenthaler F and Trummlitz G. 1974. Structural basis for inhibition of protein synthesis by the aminoacyl-aminohexosyl-cytosine group of antibiotics. FEBS Lett 38:237–242.
  • Liljas A, Kristensen O, Laurberg M, Al-Karadaghi S, Gudkov A, Martemyanov K, Hughes D and Nagaev I. 2000. The states, conformational dynamics, and fusidic acid-resistant mutants of elongation factor G, pp. 359–365. In: Garrett RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB and Noller HF, eds. The Ribosome. Structure, Function, Antibiotics, and Cellular Interactions, Washington, DC: ASM press.
  • Lin AH, Murray RW, Vidmar TJ and Marotti KR. 1997. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother 41:2127–2131.
  • Liou Y and Tanaka N. 1976. Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun 71:477–483.
  • Lobritz M, Hutton-Thomas R, Marshall S and Rice LB. 2003. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob Agents Chemother 47:3318–3320.
  • Lolk L, Pohlsgaard J, Jepsen AS, Hansen LH, Nielsen H, Steffansen SI, Sparving L, Nielsen AB, Vester B and Nielsen P. 2008. A click chemistry approach to pleuromutilin conjugates with nucleosides or acyclic nucleoside derivatives and their binding to the bacterial ribosome. J Med Chem 51:4957–4967.
  • Long KS, Hansen LH, Jakobsen L and Vester B. 2006. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center. Antimicrob Agents Chemother 50:1458–1462.
  • Long KS, Poehlsgaard J, Hansen LH, Hobbie SN, Bottger EC and Vester B. 2009. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket. Mol Microbiol 71:1218–1227.
  • Lovmar M, Nilsson K, Vimberg V, Tenson T, Nervall M and Ehrenberg M. 2006. The molecular mechanism of peptide-mediated erythromycin resistance. J Biol Chem 281:6742–6750.
  • Lu J and Deutsch C. 2005. Folding zones inside the ribosomal exit tunnel. Nat Struct Mol Biol 12:1123–1129.
  • Lu J and Deutsch C. 2008. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J Mol Biol 384:73–86.
  • Lynch SR, Gonzalez Jr, RL, and Puglisi JD. 2003. Comparison of x-ray crystal structure of the 30S subunit-antibiotic complex with NMR structure of decoding site oligonucleotide-paromomycin complex. Structure 11:43–53.
  • Maguire BA. 2009. Inhibition of bacterial ribosome assembly: a suitable drug target? Microbiol Mol Biol Rev 73:22–35.
  • Mankin AS. 2001. Ribosomal antibiotics. Molecular Biology 35:509–520.
  • Mankin AS. 2008. Macrolide myths. Curr Opin Microbiol 11:414–421.
  • Mankin AS, Leviev I and Garrett RA. 1994. Cross-hypersensitivity effects of mutations in 23 S rRNA yield insight into aminoacyl-tRNA binding. J Mol Biol 244:151–157.
  • Mann PA, Xiong L, Mankin AS, Chau AS, Mendrick CA, Najarian DJ, Cramer CA, Loebenberg D, Coates E, Murgolo NJ, Aarestrup FM, Goering RV, Black TA, Hare RS and McNicholas PM. 2001. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol Microbiol 41:1349–1356.
  • Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO and Lodmell JS. 2003. Ribosomal localization of translation initiation factor IF2. RNA 9:958–969.
  • Mason DJ, Dietz A and Smith RM. 1961. Actinospectacin, a new antibiotic. I. Discovery and biological properties. Antibiot Chemother 11:118–122.
  • Matassova NB, Rodnina MV, Endermann R, Kroll HP, Pleiss U, Wild H and Wintermeyer W. 1999. Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. RNA 5:939–946.
  • Maus CE, Plikaytis BB and Shinnick TM. 2005. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:3192–3197.
  • McNicholas PM, Najarian DJ, Mann PA, Hesk D, Hare RS, Shaw KJ and Black TA. 2000. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 44:1121–1126.
  • McNicholas PM, Mann PA, Najarian DJ, Miesel L, Hare RS and Black TA. 2001. Effects of mutations in ribosomal protein L16 on susceptibility and accumulation of evernimicin. Antimicrob Agents Chemother 45:79–83.
  • Menninger J and Otto D. 1982. Erythromycin, carbomycin and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother 21:811–818.
  • Meskauskas A and Dinman JD. 2007. Ribosomal protein L3: gatekeeper to the A site. Mol Cell 25:877–888.
  • Meskauskas A, Petrov AN and Dinman JD. 2005. Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 25:10863–10874.
  • Micura R, Pils W, Hobartner C, Grubmayr K, Ebert M and Jaun B. 2001. Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. Nucleic Acids Res 29:3997–4005.
  • Miller K, Dunsmore CJ, Fishwick CW and Chopra I. 2008. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center. Antimicrob Agents Chemother 52:1737–1742.
  • Misumi M, Nishimura T, Komai T and Tanaka N. 1978. Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation. Biochem Biophys Res Commun 84:358–365.
  • Moazed D and Noller HF. 1987a. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–884.
  • Moazed D and Noller HF. 1987b. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394.
  • Moazed D and Noller HF. 1989. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57:585–597.
  • Moazed D, Robertson JM and Noller HF. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364.
  • Modolell J and Vazquez D. 1977. The inhibition of ribosomal translocation by viomycin. Eur J Biochem 81:491–497.
  • Mohrle VG, Tieleman LN and Kraal B. 1997. Elongation factor Tu1 of the antibiotic GE2270A producer Planobispora rosea has an unexpected resistance profile against EF-Tu targeted antibiotics. Biochem Biophys Res Commun 230:320–326.
  • Moll I and Bläsi U. 2002. Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin. Biochem Biophys Res Comm 297:1021–1026.
  • Moll I, Hirokawa G, Kiel MC, Kaji A and Blasi U. 2004. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 32:3354–3363.
  • Monro RE, Celma ML and Vazquez D. 1969. Action of sparsomycin on ribosome-catalysed peptidyl transfer. Nature 222:356–358.
  • Moore P and Steitz T. 2003. The structural basis of large ribosomal subunit function. Annu Rev Biochem 72:813–850.
  • Mukhtar TA and Wright GD. 2005. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105:529–542.
  • Myasnikov A, Marzi S, Simonetti A, Giuliodori A, Gualerzi C, Yusupova G, Yusupov M and Klaholz B. 2005. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat Struct Mol Biol 12:1145–1149.
  • Nicolaou K, Safina M, Zak M, Lee S, Nevalainen M, Bella M, Estrada A, Funke C, Zécri F and Bulat S. 2005a. Total synthesis of thiostrepton. Retrosynthetic analysis and construction of key building blocks. J Am Chem Soc 127:1159–1175.
  • Nicolaou K, Zak M, Safina M, Estrada A, Lee S and Nevalainen M. 2005b. Total synthesis of thiostrepton. Assembly of key building blocks and completion of the synthesis. J Am Chem Soc 127:11176–11183.
  • Nicolaou KC, Chen JS, Edmonds DJ and Estrada AA. 2009. Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed Engl 48:660–719.
  • Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF and Nyborg J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464–1472.
  • Nissen P, Hansen J, Ban N, Moore PB and Steitz TA. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930.
  • Nyssen E, Di Giambattista M and Cocito C. 1989. Analysis of the reversible binding of virginiamycin M to ribosome and particle functions after removal of the antibiotic. Biochim Biophys Acta 1009:39–46.
  • Ogle JM, Brodersen DE, Clemons Jr WM, Tarry MJ, Carter AP and Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902.
  • Ogle JM, Murphy FV, Tarry MJ and Ramakrishnan V. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–732.
  • Ogle J, Carter A and Ramakrishnan V. 2003. Insights into the decoding mechanism from recent ribosome structures. TIBS 28:259–266.
  • Okura A, Kinoshita T and Tanaka N. 1970. Complex formation of fusidic acid with G factor, ribosome and guanosine nucleotide. Biochem Biophys Res Comm 41:1545–1550.
  • Otaka T and Kaji A. 1975. Release of (oligo)peptidyl-tRNA from ribosomes by erythromycin A. Proc Natl Acad Sci USA 72:2649–2652.
  • Pan D, Kirillov SV and Cooperman BS. 2007. Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell 25:519–529.
  • Pape T, Wintermeyer W and Rodnina MV. 2000. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat Struct Bio 7:104–107.
  • Parfait R and Cocito C. 1980. Lasting damage to bacterial ribosomes by reversibly bound virginiamycin M. Proc Natl Acad Sci USA 77:5492–5496.
  • Parfait R, de Bethune MP and Cocito C. 1978. A spectrofluorimetric study of the interaction between virginiamycin S and bacterial ribosomes. Mol Gen Genet 166:45–51.
  • Parfait R, Di Giambattista M and Cocito C. 1981. Competition between erythromycin and virginiamycin for in vitro binding to the large ribosomal subunit. Biochim Biophys Acta 654:236–241.
  • Parish LC and Parish JL. 2008. Retapamulin: a new topical antibiotic for the treatment of uncomplicated skin infections. Drugs Today (Barc) 44:91–102.
  • Parmeggiani A and Nissen P. 2006b. Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action. FEBS Lett 580:4576–4581.
  • Parmeggiani A, Krab IM, Watanabe T, Nielsen RC, Dahlberg C, Nyborg J and Nissen P. 2006. Enacyloxin IIa pinpoints a binding pocket of elongation factor Tu for development of novel antibiotics. J Biol Chem 281:2893–2900.
  • Peske F, Savelsbergh A, Katunin VI, Rodnina MV and Wintermeyer W. 2004. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J Mol Biol 343:1183–1194.
  • Pestka S. 1969a. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Biochem Biophys Res Commun 36:589–595.
  • Pestka S. 1969b. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc Natl Acad Sci USA 64:709–714.
  • Petropoulos AD, Xaplanteri MA, Dinos GP, Wilson DN and Kalpaxis DL. 2004. Polyamines affect diversely the antibiotic potency: insight gained from kinetic studies of the blasticidin S and spiramycin interactions with functional ribosomes. J Biol Chem 279:26518–26525.
  • Petropoulos AD, Kouvela EC, Starosta AL, Wilson DN, Dinos GP and Kalpaxis DL. 2009. Time-resolved binding of azithromycin to Escherichia coli ribosomes. J Mol Biol 385:1179–1192.
  • Pfister P, Hobbie S, Vicens Q, Bottger E and Westhof E. 2003. The molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures. Chembiochem 4:1078–1088.
  • Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A and Franceschi F. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–1839.
  • Pittenger RC, Wolfe RN, Hoehn PN, Daily WA and McGuire JM. 1953. Hygromycin. I. Preliminary studies in the production and biologic activity on a new antibiotic. Antibiot Chemother 3:1268–1278.
  • Poehlsgaard J and Douthwaite S. 2003. Macrolide antibiotic interaction and resistance on the bacterial ribosome. Curr Opin Investig Drugs 4:140–148.
  • Poehlsgaard J, Pfister P, Bottger EC and Douthwaite S. 2005. Molecular mechanisms by which rRNA mutations confer resistance to clindamycin. Antimicrob Agents Chemother 49:1553–1555.
  • Polacek N and Mankin AS. 2005. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40:285–311.
  • Porse BT and Garrett RA. 1999. Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. J Mol Biol 286:375–387.
  • Porse B, Rodriguez-Fonseca C, Leviev I and Garrett R. 1995. Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity. Biochem Cell Biol 73:877–885.
  • Porse BT, Leviev I, Mankin AS and Garrett RA. 1998. The antibiotic thiostrepon inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol 276:391–404.
  • Porse BT, Cundliffe E and Garrett RA. 1999a. The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre. J Mol Biol 287:33–45.
  • Porse BT, Kirillov SV, Awayez MJ, Ottenheijm HC and Garrett RA. 1999b. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. Proc Natl Acad Sci USA 96:9003–9008.
  • Poulet FM, Veneziale R, Vancutsem PM, Losco P, Treinen K and Morrissey RE. 2005. Ziracin-induced congenital urogenital malformations in female rats. Toxicol Pathol 33:320–328.
  • Poulsen SM, Kofoed C and Vester B. 2000. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J Mol Biol 304:471–481.
  • Pringle M, Poehlsgaard J, Vester B and Long KS. 2004. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol 54:1295–1306.
  • Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR and Noskin GA. 2001. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother 45:2154–2156.
  • Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN and Nierhaus KH. 2006. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127:721–733.
  • Rakauskaite R and Dinman JD. 2008. rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance. Nucleic Acids Res 36:1497–1507.
  • Ramu H, Mankin A and Vazquez-Laslop N. 2009. Programmed drug-dependent ribosome stalling. Mol Microbiol 71:811–824.
  • Rasmussen BA, Gluzman Y and Tally FP. 1994. Inhibition of protein synthesis occurring on tetracycline-resistant, TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines. Antimicrob Agents Chemother 38:1658–1660.
  • Rheinberger HJ and Nierhaus KH. 1990. Partial release of AcPhe-Phe-transfer RNA from ribosomes during Poly(U)-dependent Poly(Phe) synthesis and the effects of chloramphenicol. Eur J Biochem 193:643–650.
  • Rife JP and Moore PB. 1998. The structure of a methylated tetraloop in 16S ribosomal RNA. Structure 6:747–756.
  • Rodnina MV, Savelsbergh A, Matassova NB, Katunin VI, Semenkov YP and Wintermeyer W. 1999. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc Natl Acad Sci USA 96:9586–9590.
  • Rodriguez-Fonseca C, Amils R and Garrett RA. 1995. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol 247:224–235.
  • Rogers MJ, Cundliffe E and McCutchan TF. 1998. The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42:715–716.
  • Rosendahl G and Douthwaite S. 1994. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res 22:357–363.
  • Ross JI, Eady EA, Cove JH and Cunliffe WJ. 1998. 16S rRNA mutation associated with tetracycline resistance in a gram- positive bacterium. Antimicrob Agents Chemother 42:1702–1705.
  • Saager B, Rohde H, Timmerbeil BS, Franke G, Pothmann W, Dahlke J, Scherpe S, Sobottka I, Heisig P and Horstkotte MA. 2008. Molecular characterisation of linezolid resistance in two vancomycin-resistant (VanB) Enterococcus faecium isolates using Pyrosequencing. Eur J Clin Microbiol Infect Dis 27:873–878.
  • Saarma U and Remme J. 1992. Novel mutants of 23S RNA – characterization of functional properties. Nucleic Acids Res 20:3147–3152.
  • Sanbonmatsu KY, Joseph S and Tung CS. 2005. Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci USA 102:15854–15859.
  • Sander P, Belova L, Kidan YG, Pfister P, Mankin AS and Bottger EC. 2002. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Mol Microbiol 46:1295–1304.
  • Savelsbergh A, Rodnina MV and Wintermeyer W. 2009. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15:772–780.
  • Sayle RA and Milner-White EJ. 1995. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20:374.
  • Schäfer MA, Tastan AO, Patzke S, Blaha G, Spahn CM, Wilson DN and Nierhaus KH. 2002. Codon-anticodon interaction at the P Site is a prerequisite for tRNA interaction with the small ribosomal subunit. J Biol Chem 277:19095–19105.
  • Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A and Franceschi F. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821.
  • Schlünzen F, Harms JM, Franceschi F, Hansen HA, Bartels H, Zarivach R and Yonath A. 2003. Structural basis for the antibiotic activity of ketolides and azalides. Structure (Camb) 11:329–338.
  • Schlünzen F, Pyetan E, Fucini P, Yonath A and Harms J. 2004. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54:1287–1294.
  • Schlünzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzu M, Nierhaus KH, et al. 2006. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13:871–878.
  • Schmeing TM, Seila AC, Hansen JL, Freeborn B, Soukup JK, Scaringe SA, Strobel SA, Moore PB and Steitz TA. 2002. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat Struct Biol 9:225–230.
  • Schmeing TM, Huang KS, Kitchen DE, Strobel SA and Steitz TA. 2005a. Structural insights into the roles of water and the 2’ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20:437–448.
  • Schmeing TM, Huang KS, Strobel SA and Steitz TA. 2005b. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438:520–524.
  • Schuette JC, Murphy FVt, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V and Spahn CM. 2009. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28:755–765.
  • Schuwirth BS, Day JM, Hau CW, Janssen GR, Dahlberg AE, Cate JH and Vila-Sanjurjo A. 2006. Structural analysis of kasugamycin inhibition of translation. Nat Struct Mol Biol 13:879–886.
  • Selmer M, Dunham C, Murphy Ft, Weixlbaumer A, Petry S, Kelley A, Weir J and Ramakrishnan V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942.
  • Seo H, Abedin S, Kamp D, Wilson DN, Nierhaus KH and Cooperman BS. 2006. EF-G-dependent GTPase on the ribosome. Conformational change and fusidic acid inhibition. Biochemistry 45:2504–2514.
  • Shastry M, Nielsen J, Ku T, Hsu MJ, Liberator P, Anderson J, Schmatz D and Justice MC. 2001. Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology 147:383–390.
  • Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM, Dunyak DS, Demyan WF and Buysse JM. 1997. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 41:2132–2136.
  • Shoji S, Walker SE and Fredrick K. 2006. Reverse translocation of tRNA in the ribosome. Mol Cell 24:931–942.
  • Sigmund CD and Morgan EA. 1982. Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli. Proc Natl Acad Sci USA 79:5602–5606.
  • Siibak T, Peil L, Xiong L, Mankin A, Remme J and Tenson T. 2009. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob Agents Chemother 53:563–571.
  • Simonovic M and Steitz TA. 2009. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Biochim Biophys Acta. Epub ahead of print.
  • Skinner R, Cundliffe E and Schmidt FJ. 1983. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258:12702–12706.
  • Skripkin E, McConnell TS, DeVito J, Lawrence L, Ippolito JA, Duffy EM, Sutcliffe J and Franceschi F. 2008. R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance. Antimicrob Agents Chemother 52:3550–3557.
  • Spahn CMT and Prescott CD. 1996. Throwing a spanner in the works: antibiotics and the translational apparatus. J Mol Med 74:423–439.
  • Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JP and Frank J. 2004. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–1019.
  • Spiegel PC, Ermolenko DN and Noller HF. 2007. Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13:1473–1482.
  • Spizek J, Novotna J and Rezanka T. 2004. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Adv Appl Microbiol 56:121–154.
  • Stark H, Rodnina MV, Rinkeappel J, Brimacombe R, Wintermeyer W and Vanheel M. 1997. Visualization of Elongation Factor Tu On the Escherichia Coli Ribosome. Nature 389:403–406.
  • Steitz TA. 2008. A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9:242–253.
  • Stirpe F and Battelli MG. 2006. Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866.
  • Suhadolnik R. 1970. Nucleoside Antibiotics, NY: Wiley.
  • Sutcliffe JA. 2005. Improving on nature: antibiotics that target the ribosome. Curr Opin Microbiol 8:534–542.
  • Svab Z and Maliga P. 1991. Mutation Proximal to the Transfer-RNA Binding Region of the Nicotiana Plastid 16S rRNA Confers Resistance to Spectinomycin. Mol Gen Genet 228:316–319.
  • Swaney SM, Aoki H, Ganoza MC and Shinabarger DL. 1998. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42:3251–3255.
  • Szaflarski W, Vesper O, Teraoka Y, Plitta B, Wilson DN and Nierhaus KH. 2008. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J Mol Biol 380:193–205.
  • Tai P-C, Wallace BJ and Davis BD. 1974. Selective action of erythromycin on initiating ribosomes. Biochemistry 13:4653–4659.
  • Takashima H. 2003. Structural consideration of macrolide antibiotics in relation to the ribosomal interaction and drug design. Curr Top Med Chem 3:991–999.
  • Takeuchi S, Hirayama K, Ueda K, Sakai H and Yonehara H. 1958. Blasticidin S, a new antibiotic. J Antibiot (Tokyo) 11:1–5.
  • Tan GT, Deblasio A and Mankin AS. 1996. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. J Mol Biol 261:222–230.
  • Tenson T and Ehrenberg M. 2002. Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591–594.
  • Tenson T and Mankin A. 2001. Short peptides conferring resistance to macrolide antibiotics. Peptides 22:1661–1668.
  • Tenson T, Lovmar M and Ehrenberg M. 2003. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330:1005–1014.
  • Thompson CJ, Skinner RH, Thompson J, Ward JM, Hopwood DA and Cundliffe E. 1982. Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes. J Bacteriol 151:678–685.
  • Thompson J, Cundliffe E and Stark M. 1979. Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11. Eur J Biochem 98:261–265.
  • Thompson J, Cundliffe E and Dahlberg AE. 1988. Site-directed mutagenesis of Escherichia coli 23S ribosomal RNA at position 1067 within the GTP hydrolysis center. J Mol Biol 203:457–465.
  • Thompson J, O’Connor M, Mills JA and Dahlberg AE. 2002. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J Mol Biol 322:273–279.
  • Thompson J, Pratt CA and Dahlberg AE. 2004. Effects of a number of classes of 50S inhibitors on stop codon readthrough during protein synthesis. Antimicrob Agents Chemother 48:4889–4891.
  • Ticu C, Nechifor R, Nguyen B, Desrosiers M and Wilson KS. 2009. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 28:2053-2065.
  • Trieber CA and Taylor DE. 2002. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol 184:2131–2140.
  • Tripathi S, Kloss PS and Mankin AS. 1998. Ketolide resistance conferred by short peptides. J Biol Chem 273:20073–20077.
  • Tu D, Blaha G, Moore P and Steitz T. 2005. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–270.
  • Ulbrich B, Mertens G and Nierhaus KH. 1978. Cooperative binding of 3’ fragments of tRNA to the peptidyltransferase centre of E. coli ribosomes. Arch Biochem Biophys 190:149–154.
  • Vallabhaneni H and Farabaugh PJ. 2009. Accuracy modulating mutations of the ribosomal protein S4-S5 interface do not necessarily destabilize the rps4-rps5 protein-protein interaction. RNA 15:1100–1109.
  • Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK and Frank J. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21:3557–3567.
  • Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M and Frank J. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol 10:899–906.
  • Vannuffel P, Digiambattista M and Cocito C. 1992. The role of rRNA bases in the interaction of peptidyltransferase inhibitors with bacterial ribosomes. J Biol Chem 267.
  • Vannuffel P, Digiambattista M and Cocito C. 1994. Chemical probing of a virginiamycin M-promoted conformational change of the peptidyl-transferase domain. Nucleic Acids Res 22:4449–4453.
  • Vasquez D. 1979. Inhibitors of Protein Synthesis, Berlin, Heidelberg, New York: Springer.
  • Vester B and Douthwaite S. 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45:1–12.
  • Vicens Q and Westhof E. 2001. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure (Camb) 9:647–658.
  • Vicens Q and Westhof E. 2003. Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolymers 70:42–57.
  • Vila-Sanjurjo A, Squires CL and Dahlberg AE. 1999. Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli. J Mol Biol 293:1–8.
  • Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT, Shaikh TR, Grassucci RA, Nissen P, Ehrenberg M, Schulten K and Frank J. 2009. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 106:1063–1068.
  • Vimberg V, Xiong L, Bailey M, Tenson T and Mankin A. 2004. Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel. Mol Microbiol 54:376–385.
  • Vogeley L, Palm GJ, Mesters JR and Hilgenfeld R 2001. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu.GDP and aurodox. J. Biol. Chem. 276:17149–17155.
  • Vourloumis D, Winters GC, Simonsen KB, Takahashi M, Ayida BK, Shandrick S, Zhao Q, Han Q and Hermann T. 2005. Aminoglycoside-hybrid ligands targeting the ribosomal decoding site. Chembiochem 6:58–65.
  • Walsh C. 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781.
  • Watanabe T, Izaki K and Takahashi H. 1982. New polyenic antibiotics active against Gram-positive and -negative bacteria. I. Isolation and purification of antibiotics produced by Gluconobacter sp. W-315. J Antibiot (Tokyo) 35:1141–1147.
  • Watanabe T, Sugiyama T, Takahashi M, Shima J, Yamashita K, Izaki K, Furihata K and Seto H. 1992. New polyenic antibiotics active against gram-positive and gram-negative bacteria. IV. Structural elucidation of enacyloxin IIa. J Antibiot (Tokyo) 45:470–475.
  • Weisblum B. 1995. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39:797–805.
  • Whitby M. 1999. Fusidic acid in the treatment of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 12 Suppl 2:S67–71.
  • Wieland Brown LC, Acker MG, Clardy J, Walsh CT and Fischbach MA. 2009. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci USA 106:2549–2553.
  • Willcox RR. 1962. Trobicin (actinospectacin), a new injectable antibiotic in the treatment of gonorrhoea. Br J Vener Dis 38:150–153.
  • Willie GR, Richman N, Godtfredsen WP and Bodley JW. 1975. Some characteristics of and structural requirements for the interaction of 24,25-dihydrofusidic acid with ribosome – elongation factor g Complexes. Biochemistry 14:1713–1718.
  • Wilson DN. 2004. Antibiotics and the inhibition of ribosome function, pp. 449–527. In: Nierhaus K and Wilson D, eds, Protein Synthesis and Ribosome Structure, Weinheim: Wiley-VCH.
  • Wilson DN and Nierhaus KH. 2006. The E-site Story: The importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell Mol Life Sci 63:2725–2737.
  • Wilson DN and Nierhaus KH. 2007. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 42:187–219.
  • Wilson DN, Harms JM, Nierhaus KH, Schlünzen F and Fucini P. 2005. Species-specific antibiotic-ribosome interactions: Implications for drug development. Biol Chem 386:1239–1252.
  • Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR and Fucini P. 2008. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci USA 105:13339–13344.
  • Wilson JE, Pestova TV, Hellen CUT and Sarnow P. 2000. Initiation of protein synthesis from the A site of the ribosome. Cell 102:511–520.
  • Wittmann HG, Stoffler G, Apirion D, Rosen L, Tanaka K, Tamaki M, Takata R, Dekio S and Otaka E. 1973. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet 127:175–189.
  • Woodcock J, Moazed D, Cannon M, Davies J and Noller HF. 1991. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J 10:3099–3103.
  • Wool IG. 1984. The mechanism of action of the cytotoxic nuclease a-sarcin and its use to analyse ribosome structure. TIBS 9:14–17.
  • Wool IG, Gluck A and Endo Y. 1992. Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269.
  • Wu YJ and Su WG. 2001. Recent developments on ketolides and macrolides. Curr Med Chem 8:1727–1758.
  • Wurmbach P and Nierhaus KH. 1983. The inhibition pattern of antibiotics on the extent and accuracy of tRNA binding to the ribosome, and their effect on the subsequent steps in chain elongation. Eur J Biochem 130:9–12.
  • Xing YY and Draper DE. 1996. Cooperative interactions of RNA and thiostrepton antibiotic with two domains of ribosomal protein L11. Biochemistry 35:1581–1588.
  • Xiong L, Shah S, Mauvais P and Mankin AS. 1999. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol Microbiol 31:633–639.
  • Yamada T, Mizugichi Y, Nierhaus KH and Wittmann HG. 1978. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275:460–461.
  • Yamaguchi I, Shibata H, Seto H and Misato T. 1975. Isolation and purification of blasticidin S deaminase from Aspergillus terreus. J Antibiot (Tokyo) 28:7–14.
  • Yassin A and Mankin AS. 2007. Potential new antibiotic sites in the ribosome revealed by deleterious mutations in RNA of the large ribosomal subunit. J Biol Chem 282:24329–24342.
  • Yassin A, Fredrick K and Mankin AS. 2005. Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Proc Natl Acad Sci USA 102:16620–16625.
  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH and Noller HF. 2001. Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896.
  • Zaher HS and Green R. 2009a. Fidelity at the molecular level: lessons from protein synthesis. Cell 136:746–762.
  • Zaher HS and Green R. 2009b. Quality control by the ribosome following peptide bond formation. Nature 457:161–166.
  • Zarazaga M, Tenorio C, Del Campo R, Ruiz-Larrea F and Torres C. 2002. Mutations in ribosomal protein L16 and in 23S rRNA in Enterococcus strains for which evernimicin MICs differ. Antimicrob Agents Chemother 46:3657–3659.
  • Zeef LAH, Bosch L, Anborgh PH, Cetin R, Parmeggiani A and Hilgenfeld R. 1994. Pulvomycin-resistant mutants of E-coli elongation factor Tu. EMBO J 13:5113–5120.
  • Zimmermann RA, Garvin RT and Gorini L. 1971. Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc Natl Acad Sci USA 68:2263–2267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.