270
Views
72
CrossRef citations to date
0
Altmetric
Original Article

Bacterial Motility and Chemotaxis: The molecular Biology of a Behavioral System

&
Pages 291-341 | Published online: 23 Dec 2009

References

  • Macnab R. M. Mechanisms of locomotion: bacterial flagella. Encyclopedia of Plant Physiology, New Series, Physiology of Movements, W. Haupt, M. E. Feinleib. Springer-Verlag, Heidelberg, in press
  • Krieg N. R. Biology of the chemoheterotrophic spirilla. Bacteriol. Rev. 1976; 40: 55
  • Berg H. C. How spirochetes may swim. J. Theor. Biol. 1976; 56: 269
  • Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 1972; 36: 478
  • Doetsch R. N., Hageage G. J. Motility in procaryotic organisms: problems, points of view, and perspectives. Biol. Rev. 1968; 43: 317
  • Adler J. Chemoreceptors in bacteria. Science 1969; 166: 1588
  • Adler J. Chemotaxis in bacteria. Annu. Rev. Biochem. 1975; 44: 341
  • Adler J. The sensing of chemicals by bacteria. Sci. Am. 1976; 234: 40
  • Adler J. The sensing of chemicals by bacteria. Sci. Am. 1976; 234: 41
  • Doetsch R. N. Functional aspects of bacterial flagellar motility. CRC Crit. Rev. Microbiol. 1971; 1(1)73
  • Berg H. C. Bacterial behaviour. Nature (London) 1975; 254: 389
  • Berg H. C. How bacteria swim. Sci. Am. 1975; 233: 36
  • Berg H. C. How bacteria swim. Sci. Am. 1975; 233: 39
  • Hazelbauer G. L., Parkinson J. S. Bacterial chemotaxis. Microbial Interactions (Receptors and Recognition), J. Reissig. Chapman & Hall, London 1977
  • Macnab R. M. Chemoresponsiveness in bacteria and unicellular eukaryotes. I. Bacterial chemotaxis. Encyclopedia of Plant Physiology, New Series, Physiology of Movements, W. Haupt, M. E. Feinleib. Springer-Verlag, Heidelberg, in press
  • Koshland D. E., Jr. Bacterial chemotaxis. The Bacteria, J. R. Sokatch, L. N. Ornston. Academic Press, New York 1978; Vol. 7
  • Weibull C. Movement. The Bacteria, I. C. Gunsalus, R. Y. Stanier. Academic Press, New York 1960; Vol. 1: 153
  • Ziegler H. Chemotaxis. Handbuch der Pflanzenphysiologie, W. Ruhland. Springer-Verlag, Berlin 1962; Vol. 17: 484
  • Berg H. C. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng. 1975; 4: 119
  • Iino T. Genetics and chemistry of bacterial flagella. Bacteriol. Rev. 1969; 33: 454
  • Hilmen M., Silverman M., Simon M. I. The regulation of flagellar formation and function. J. Supramol. Struct. 1974; 2: 360
  • Parkinson J. S. Genetics of chemotactic behavior in bacteria. Cell 1975; 4: 183
  • Silverman M., Simon M. I. Bacterial flagella. Annu. Rev. Microbiol. 1977; 31: 397
  • Iino T. Genetics of structure and function of bacterial flagella. Annu. Rev. Genetics 1977; 11: 161
  • Parkinson J. S. Behavioral genetics in bacteria. Annu. Rev. Genetics 1977; 11: 397
  • Lowy J., Spencer M. Structure and function of bacterial flagella. Symp. Soc. Exp. Biol. 1968; 22: 215
  • Asakura S. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1970; 1: 99
  • Smith R. W., Koffler H. Bacterial flagella. Adv. Microb. Physiol. 1971; 6: 219
  • Bode W. The bacterial flagella and the flagellar protein flagellin. Angew. Chem. Int. Ed. Engl. 1973; 12: 683
  • Hilmen M., Simon M. I. Motility and the structure of bacterial flagella. Cell Motility, R. Goldman, T. Pollard, J. Rosenbaum. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1976; 35
  • Koshland D. E., Jr. Chemotaxis as a model for sensory systems. FEBS Lett. 1974; 40: S3
  • Koshland D. E., Jr. The chemotactic response as a potential model for neural systems. The Neurosciences Third Study Program, F. O. Schmitt, F. G. Worden. MIT Press, Cambridge, Mass. 1974; 841
  • Koshland D. E., Jr. A response regulator model in a simple sensory system. Science 1977; 196: 1055
  • Koshland D. E., Jr. Sensory response in bacteria. Advances in Neurochemistry, B. W. Agranoff, M. H. Aprison. Plenum Press, New York 1977; Vol. 2: 277
  • Chet I., Mitchell R. Ecological aspects of microbial chemotactic behavior. Annu. Rev. Microbiol. 1976; 30: 221
  • Satir P., Ojakian G. K. Plant cilia. Encyclopedia of Plant Physiology, New Series, Physiology of Movements, W. Haupt, M. E. Feinleib. Springer-Verlag, Heidelberg, in press
  • Leifson E. Atlas of Bacterial Flagellation. Academic Press, New York 1960
  • Macnab R. M., Koshland D. E., Jr. Bacterial motility and chemotaxis: light-induced tumbling response and visualization of individual flagella. J. Mol. Biol. 1974; 84: 399
  • Macnab R. M. Examination of bacterial flagellation by dark-field microscopy. J. Clin. Microbiol. 1976; 4: 258
  • Weibull C. Ordered aggregation of salted out and dried bacterial flagella. Ark. Kemi 1950; 1: 573
  • Shimada K., Kamiya R., Asakura S. Left-handed to right-handed helix conversion in Salmonella flagella. Nature (London) 1975; 254: 332
  • Abram D., Koffler H., Vatter A. E. Basal structure and attachment of flagella in cells of Proteus vulgaris. J. Bacteriol. 1965; 90: 1337
  • Abram D., Vatter A. E., Koffler H. Attachment and structural features of flagella of certain bacilli. J. Bacteriol. 1966; 91: 2045
  • Hoeniger J. F. M., van Iterson W., van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. II. Electron microscopy of negatively stained material. J. Cell Biol. 1966; 31: 603
  • Vaituzis Z., Doetsch R. N. Relationship between cell wall, cytoplasmic membrane, and bacterial motility. J. Bacteriol. 1969; 100: 512
  • Cohen-Bazire G., London J. Basal organelles of bacterial flagella. J. Bacteriol. 1967; 94: 458
  • DePamphilis M. L., Adler J. Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 1971; 105: 376
  • Dimmitt K., Simon M. I. Purification and thermal stability of intact Bacillus subtilis flagella. J. Bacteriol. 1971; 105: 369
  • DePamphilis M. L., Adler J. Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 1971; 105: 384
  • Murray R. G. E., Birch-Andersen A. Specialized structure in the region of the flagella tuft in Spirillum serpens. Can. J. Microbiol. 1963; 9: 393
  • van Iterson W., Hoeniger J. F. M., van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. I. Electron microscopy of sectioned material. J. Cell Biol. 1966; 31: 585
  • DePamphilis M. L., Adler J. Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membrane. J. Bacteriol. 1971; 105: 396
  • Coulton J. W., Murray R. G. E. Membrane-associated components of the bacterial flagellar apparatus. Biochim. Biophys. Acta 1977; 465: 290
  • Smith R. W., Koffler H. Production and isolation of flagella. Methods in Microbiology, J. R. Norris, D. W. Ribbons. Academic Press, New York 1971; Vol. 5A: 165
  • Suzuki H., Iino T. In vitro synthesis of phase-specific flagellin of Salmonella. J. Mol. Biol. 1973; 81: 57
  • Kondoh H., Hotani H. Flagellin from Escherichia coli K12: polymerization and molecular weight comparison with Salmonella flagellins. Biochim. Biophys. Acta 1974; 336: 117
  • DeLange R. J., Chang J. Y., Shaper J. H., Glazer A. N. Amino acid sequence of flagellin of Bacillus subtilis 168. III. Tryptic peptides, N-bromosuccinimide peptides, and the complete amino acid sequence. J. Biol. Chem. 1976; 251: 705
  • Armstrong J. B., Adler J. Location of genes for motility and chemotaxis on the Escherichia coli genetic map. J. Bacteriol. 1969; 97: 156
  • Silverman M., Simon M. I. Positioning flagellar genes in Escherichia coli by deletion analysis. J. Bacteriol. 1974; 117: 73
  • Silverman M., Simon M. I. Genetic analysis of bacteriophage Mu-induced flagellar mutants in Escherichia coli. J. Bacteriol. 1973; 116: 114
  • DeLange R. J., Chang J. Y., Shaper J. H., Martinez R. J., Komatsu S. K., Glazer A. N. On the amino-acid sequence of flagellin from Bacillus subtilis 168: comparison with other bacterial flagellins. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 3428
  • Ambler R. P., Rees M. W. ϵ-N-Methyl-lysine in bacterial flagellar protein. Nature (London) 1959; 184: 56
  • Gerber B. R., Routledge L. M., Takashima S. Self-assembly of bacterial flagellar protein: dielectric behavior of monomers and polymers. J. Mol. Biol. 1972; 71: 317
  • Bode W., Engel J., Winklmair D. A model of bacterial flagella based on small-angle X-ray scattering and hydrodynamic data which indicate an elongated shape of the flagellin protomer. Eur. J. Biochem. 1972; 26: 313
  • Abram D., Koffler H. In vitro formation of flagella-like filaments and other structures from flagellin. J. Mol. Biol. 1964; 9: 168
  • Asakura S., Eguchi G., Iino T. The recontitution of bacterial flagella in vitro. J. Mol. Biol. 1964; 10: 42
  • Lowy J., McDonough M. W. Structure of filaments produced by reaggregation of Salmonella flagellin. Nature (London) 1964; 204: 125
  • Iino T. Assembly of Salmonella flagellin in vitro and in vivo. J. Supramol. Struct. 1974; 2: 372
  • Fujime S., Hada Y., Usami T., Maruyama M., Asakura S. Self-limited length of in vitro reconstituted flagella of Salmonella. Biochim. Biophys. Acta 1972; 278: 585
  • Hotani H., Asakura S. Growth-saturation in vitro of Salmonella flagella. J. Mol. Biol. 1974; 86: 285
  • Asakura S., Eguchi G., Iino T. Unidirectional growth of Salmonella flagella in vitro. J. Mol. Biol. 1968; 35: 227
  • Iino T. Polarity of flagellar growth in Salmonella. J. Gen. Microbiol. 1969; 56: 227
  • Emerson S. U., Tokuyasu K., Simon M. I. Bacterial flagella: polarity of elongation. Science 1970; 169: 190
  • Suzuki T., Iino T. Appearance of straight flagellar filaments in the presence of p-fluorophenylalanine in Pseudomonas aeruginosa. J. Bacteriol. 1977; 129: 527
  • Gerber B. R., Asakura S., Oosawa F. Effect of temperature on the in vitro assembly of bacterial flagella. J. Mol. Biol. 1973; 74: 467
  • Hotani H., Kagawa H. Unidirectional melting of Salmonella flagella in vitro. J. Mol. Biol. 1974; 90: 169
  • Klug A. The design of self-assembling systems of equal units. Symp. Int. Soc. Cell Biol. 1967; 6: 1
  • O'Brien E. J., Bennett P. M. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 1972; 70: 133
  • Lowy J., Hanson J. Electron microscope studies of bacterial flagella. J. Mol. Biol. 1965; 11: 293
  • Czajkowski J., Soltesz V., Weibull C. Absence of an electron microscopic substructure in intact flagella of Proteus mirabilis and Bacillus subtilis. J. Ultrastruct. Res. 1974; 46: 79
  • Kondoh H., Yanagida M. Structure of straight filaments from a mutant of Escherichia coli. J. Mol. Biol. 1975; 96: 641
  • Champness J. N. X-ray and optical diffraction studies of bacterial flagella. J. Mol. Biol. 1971; 56: 295
  • Wakabayashi K., Mitsui T. An X-ray diffraction study of reconstituted straight Salmonella flagella. J. Mol. Biol. 1970; 53: 567
  • Yamaguchi T., Wakabayashi K., Mitsui T. X-ray equatorial diffraction studies on the cross-sectional structure of Salmonella flagella. Biochim. Biophys. Acta 1974; 372: 450
  • Sleytr U. B., Glauert A. M. Evidence for an empty core in a bacterial flagellum. Nature (London) 1973; 241: 542
  • Iino T., Mitani M. Flagella-shape mutants in Salmonella. J. Gen. Microbiol. 1966; 44: 27
  • Iino T., Mitani M. A mutant of Salmonella possessing straight flagella. J. Gen. Microbiol. 1967; 49: 81
  • Enomoto M., Iino T. The comparison of normal and curly flagella in Salmonella abortus-equi by two-dimensional separation of peptides. Jpn. J. Genet. 1966; 41: 131
  • Martinez R. J., Ichiki A. T., Lundh N. P., Tronick S. R. A single amino acid substitution responsible for altered flagellar morphology. J. Mol. Biol. 1968; 34: 559
  • Kerridge D. The effect of amino acid analogues on the synthesis of bacterial flagella. Biochim. Biophys. Acta 1959; 31: 579
  • Horiguchi T., Yamaguchi S., Yao K., Taira T., Iino T. Genetic analysis of H1, the structural gene for phase-1 flagellin in Salmonella. J. Gen. Microbiol. 1975; 91: 139
  • Asakura S., Eguchi G., Iino T. Salmonella flagella: in vitro reconstruction and over-all shapes of flagellar filaments. J. Mol. Biol. 1966; 16: 302
  • Asakura S., Iino T. Polymorphism of Salmonella flagella as investigated by means of in vitro copolymerization of flagellins derived from various strains. J. Mol. Biol. 1972; 64: 251
  • Kamiya R., Asakura S. Helical transformations of Salmonella flagella in vitro. J. Mol. Biol. 1976; 106: 167
  • Kamiya R., Asakura S. Flagellar transformations at alkaline pH. J. Mol. Biol. 1977; 108: 513
  • Schalch W., Bode W. Involvement of tyrosine residues in the protomer-protomer interaction of Proteus mirabilis flagella as studied by spectroscopic methods, chemical modification and aggregation experiments. Biochim. Biophys. Acta 1975; 405: 292
  • Calladine C. R. Design requirements for the construction of bacterial flagella. J. Theor. Biol. 1976; 57: 469
  • Calladine C. R. Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol. 1978; 118: 457
  • Iino T., Oguchi T., Kuroiwa T. Polymorphism in a flagellar-shape mutant of Salmonella typhimurium. J. Gen. Microbiol. 1974; 81: 37
  • Fujime S., Maruyama M., Asakura S. Flexural rigidity of bacterial flagella studied by quasielastic scattering of laser light. J. Mol. Biol. 1972; 68: 347
  • Larsen S. H., Reader R. W., Kort E. N., Tso W.-W., Adler J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (London) 1974; 249: 74
  • Macnab R. M. Smooth and tumbling motility in peritrichous bacteria. Proc. 1st Int. Congr. Int. Assoc. Microbiol. Soc. 1975; 1: 674
  • Macnab R. M., Ornston M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 1977; 112: 1
  • Kagawa H., Asakura S., Iino T. Serological study of bacterial flagellar hooks. J. Bacteriol. 1973; 113: 1474
  • Dimmitt K., Simon M. I. Purification and partial characterization of Bacillus subtilis flagellar hooks. J. Bacteriol. 1971; 108: 282
  • Kagawa H., Owaribe K., Asakura S., Takahashi N. Flagellar hook protein from Salmonella SJ25. J. Bacteriol. 1976; 125: 68
  • Matsumura P., Silverman M., Simon M. I. Cloning and expression of the flagellar hook gene on hybrid plasmids in minicells. Nature (London) 1977; 265: 758
  • Komeda Y., Silverman M., Simon M. Genetic analysis of Escherichia coli K-12 region I flagellar mutants. J. Bacteriol. 1977; 131: 801
  • Silverman M., Simon M. I. Flagellar rotation and the mechanism of bacterial motility. Nature (London) 1974; 249: 73
  • Silverman M., Simon M. I. Flagellar assembly mutants in Escherichia coli. J. Bacteriol. 1972; 112: 986
  • Vaituzis Z. Localization of adenosine triphosphatase activity in motile bacteria. Can. J. Microbiol. 1973; 19: 1265
  • Silverman M., Simon M. I. Identification of polypeptides necessary for chemotaxis in Escherichia coli. J. Bacteriol. 1977; 130: 1317
  • Silverman M., Matsumura P., Simon M. I. The identification of the mot gene product with Escherichia coli-lambda hybrids. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 3126
  • Silverman M., Matsumura P., Draper R., Edwards S., Simon M. I. Expression of flagellar genes carried by bacteriophage lambda. Nature (London) 1976; 261: 248
  • Silverman M., Simon M. I. Operon controlling motility and chemotaxis in E. coli. Nature (London) 1976; 264: 577
  • Silverman M., Matsumura P., Hilmen M., Simon M. I. Characterization of lambda Escherichia coli hybrids carrying chemotaxis genes. J. Bacteriol. 1977; 130: 877
  • Matsumura P., Silverman M., Simon M. Synthesis of mot and che gene products of Escherichia coli programmed by hybrid ColE1 plasmids in minicells. J. Bacteriol. 1977; 132: 996
  • Suzuki H., Iino T. Absence of messenger ribonucleic acid specific for flagellin in non-flagellate mutants of Salmonella. J. Mol. Biol. 1975; 95: 549
  • Silverman M., Simon M. I. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 1974; 120: 1196
  • Yokota T., Gots J. S. Requirement of adenosine 3', 5'-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1970; 103: 513
  • Dobrogosz W. J., Hamilton P. B. The role of cyclic AMP in chemotaxis in Escherichia coli. Biochem. Biophys. Res. Commun. 1971; 42: 202
  • Komeda Y., Suzuki H., Ishidsu J., Iino T. The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 1975; 142: 289
  • Tsui Collins A.L., Stocker B. A. D. Salmonella typhimurium mutants generally defective in chemotaxis. J. Bacteriol. 1976; 128: 754
  • Warrick H. M., Taylor B. L., Koshland D. E., Jr. Chemotactic mechanism of Salmonella typhimurium: mapping and characterization of mutants. J. Bacteriol. 1977; 130: 223
  • Vaituzis Z., Doetsch R. N. Flagella of Salmonella typhimurium spheroplasts. J. Bacteriol. 1965; 89: 1586
  • Vaituzis Z., Doetsch R. N. Flagella of Escherichia coli spheroplasts. J. Bacteriol. 1966; 91: 2103
  • McGroarty E. J., Koffler H., Smith R. W. Regulation of flagellar morphogenesis by temperature: involvement of the bacterial cell surface in the synthesis of flagellin and the flagellum. J. Bacteriol. 1973; 113: 295
  • Ames G. F., Spudich E. N., Nikaido H. Protein composition of outer membrane of Salmonella typhimurium: effect on lipopolysaccharide mutations. J. Bacteriol. 1974; 117: 406
  • Komeda Y., Icho T., Iino T. Effects of galU mutation on flagellar formation in Escherichia coli. J. Bacteriol. 1977; 129: 908
  • Bar Tana J., Howlett B. J., Koshland D. E., Jr. Flagellar formation in Escherichia coli electron transport mutants. J. Bacteriol. 1977; 130: 787
  • Adler J., Templeton B. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 1967; 46: 175
  • Yamaguchi S., Iino T., Kuroiwa T. Possession of flagellar hooks by some non-flagellate mutants of Salmonella abortusequi. J. Gen. Microbiol. 1972; 70: 299
  • Iino T., Suzuki H., Yamaguchi S. Reconstitution of Salmonella flagella attached to cell bodies, Nature (London). New Biol. 1972; 237: 238
  • Silverman M., Simon M. I. Assembly of hybrid flagellar filaments. J. Bacteriol. 1974; 118: 750
  • Stocker B. A. D. Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhi-murium. J. Hyg. 1949; 47: 398
  • Iino T. Genetic analysis of O-H variation in Salmonella. Jpn. J. Genet. 1961; 36: 268
  • Iino T. Phase specific regulator of flagellin genes (H1 and H2) in Salmonella. Annu. Rep. Natl. Inst. Genet. (Japan) 1962; 13: 72
  • Fujita H., Yamaguchi S., Iino T. Studies on H-O variants in Salmonella in relation to phase variation. J. Gen. Microbiol. 1973; 76: 127
  • Iino T. A stabilizer of antigenic phases in Salmonella abortus-equi. Genetics 1961; 46: 1465
  • Makela P. H. Genetic homologies between flagellar antigens of Escherichia coli and Salmonella abony. J. Gen. Microbiol. 1964; 35: 503
  • Smith S. M., Stocker B. A. D. Colicinogeny and recombination. Br. Med. Bull. 1962; 18: 46
  • Enomoto M. Genetic studies of paralyzed mutants in Salmonella II. Mapping of three mot loci by linkage analysis. Genetics 1966; 54: 1069
  • Sanderson K. E. Linkage map of Salmonella typhimurium, edition IV. Bacteriol. Rev. 1972; 36: 558
  • Zieg J., Silverman M., Hilmen M., Simon M. Recombinational switch for gene expression. Science 1977; 196: 170
  • Enomoto M. Genetic studies of paralyzed mutants in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics 1966; 54: 715
  • Yamaguchi S., Iino T., Horiguchi T., Ohta K. Genetic analysis of fla and mot cistrons closely linked to H1 in Salmonella abortusequi and its derivatives. J. Gen. Microbiol. 1972; 70: 59
  • Ridgway H. F., Silverman M., Simon M. I. Localization of proteins controlling motility and chemotaxis in Escherichia coli. J. Bacteriol. 1977; 132: 657
  • Bohlin T., Burman L. G. Influence on motility of Escherichia coli and Salmonella typhimurium by a naturally occurring conjugative plasmid. J. Bacteriol. 1977; 130: 604
  • Barlow G. H., Blum J. J. On the “contractility” of bacterial flagella. Science 1952; 116: 572
  • Newton B. A., Kerridge D. Flagellar and ciliary movement in microorganisms. Symp. Soc. Gen. Microbiol. 1965; 15: 220
  • Thipayathasana P., Valentine R. C. The requirement for energy transducing ATPase for anaerobic motility in Escherichia coli. Biochim. Biophys. Acta 1974; 347: 464
  • Larsen S. H., Adler J., Gargus J. J., Hogg R. W. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1239
  • Mitchell P. Vectorial chemiosmotic processes. Annu. Rev. Biochem. 1977; 46: 996
  • Williams R. J. P. The separation of electrons and protons during electron transfer: the distinction between membrane potentials and transmembrane gradients. Ann. N. Y. Acad. Sci. 1974; 227: 98
  • Manson M. D., Tedesco P., Berg H. C., Harold F. M., van der Drift C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. USA 1977; 74: 3060
  • Matsuura S., Shioi J., Imae Y. Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett. 1977; 82: 187
  • van der Drift C., Duiverman J., Bexkens H., Krijnen A. Chemotaxis of a motile Streptococcus toward sugars and amino acids. J. Bacteriol. 1975; 124: 1142
  • Tso W.-W., Adler J. Negative chemotaxis in Escherichia coli. J. Bacteriol. 1974; 118: 560
  • Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 1973; 74: 77
  • Pijper A. Bacterial flagella and motility. Ergeb. Mikrobiol. Immunitaetsforsch. Exp. Ther. 1957; 30: 37
  • Harris W. F. Bacterial flagella: do they rotate or do they propagate waves of bending?. Protoplasma 1973; 77: 477
  • Harris W. F. The bacterial flagellum as an imperfect cylindrical crystal: flagellar geometry, movement and polymorphism, and the role of partial dislocations. J. Theor. Biol. 1974; 47: 295
  • Berg H. C., Anderson R. A. Bacteria swim by rotating their flagellar filaments. Nature (London) 1973; 245: 380
  • Greenbury C. L., Moore D. H. The mechanism of bacterial immobilization by antiflagellar IgG antibody. Immunology 1966; 11: 617
  • DiPierro J. M., Doetsch R. N. Enzymatic reversibility of flagellar immobilization. Can. J. Microbiol. 1968; 14: 487
  • Meynell E. W. A phage, ϕχ, which attacks motile bacteria. J. Gen. Microbiol. 1961; 25: 253
  • Coakley C. J., Holwill M. E. J. Propulsion of micro-organisms by three-dimensional flagellar waves. J. Theor. Biol. 1972; 35: 525
  • Mussill M., Jarosch R. Bacterial flagella rotate and do not contract. Protoplasma 1972; 75: 465
  • Berg H. C. Dynamic properties of bacterial flagellar motors. Nature (London) 1974; 249: 77
  • Berg H. C. Does the flagellar rotary motor step?. Cell Motility, R. Goldman, T. Pollard, J. Rosenbaum. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1976; 47
  • Morowitz H. J. Proton semiconductors and energy transduction in biological systems. Adv. Biol. Med. Phys., 17, in press
  • Lauger P. Ion transport and rotation of bacterial flagella. Nature (London) 1977; 268: 360
  • Adam G. Rotation of bacterial flagella as driven by cytomembrane streaming. J. Theor. Biol. 1977; 65: 713
  • Maeda K., Imae Y., Shioi J.-I., Oosawa F. Effect of temperature on motility and chemotaxis of Escherichia coli. J. Bacteriol. 1976; 127: 1039
  • Miller J. B., Koshland D. E., Jr. Membrane fluidity and chemotaxis: effects of temperature and membrane lipid composition on the swimming behavior of Salmonella typhimurium and Escherichia coli. J. Mol. Biol. 1977; 111: 183
  • Lofgren K. W., Fox C. F. Attractant-directed motility in Escherichia coli: requirement for a fluid lipid phase. J. Bacteriol. 1974; 118: 1181
  • Ordal G. W. Control of tumbling in bacterial chemotaxis by divalent cation. J. Bacteriol. 1976; 126: 706
  • Anderson R. A. Formation of the bacterial flagellar bundle. Swimming and Flying in Nature, T. Y.-T. Wu, C. J. Brokaw, C. J. Brennen. Plenum Press, New York 1975; Vol. 1: 45
  • Macnab R. M. Bacterial flagella rotating in bundles: a study in helical geometry. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 221
  • Gerber B. R., Minakata A., Kahn L. D. Electric birefringence of bacterial flagellar protein filaments: evidence for field-induced interactions. J. Mol. Biol. 1975; 92: 507
  • Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature (London) 1972; 239: 500
  • Hotani H. Light microscope study of mixed helices in reconstituted Salmonella flagella. J. Mol. Biol. 1976; 106: 151
  • Schreiner K. E. The helix as propeller of microorganisms. J. Biomech. 1971; 4: 73
  • Chwang A. T., Wu T. Y.-T. A note on the helical movement of microorganisms. Proc. R. Soc. London Ser. B 1971; 178: 327
  • Taylor G. The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. London Ser. A 1952; 211: 225
  • Purcell E. M. Life at low Reynolds number. Am. J. Phys. 1976; 45: 3
  • Schneider W. R., Doetsch R. N. Effect of viscosity on bacterial motility. J. Bacteriol 1974; 117: 696
  • Gray J., Hancock G. J. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 1955; 32: 802
  • Biology Data Book, P. L. Altman, D. S. Dittmer. Federation of American Societies for Experimental Biology, , Washington, D.C. 1964; 225
  • Yoshida T., Shimada K., Asakura S. Cinemicrographic analysis of the movement of flagellated bacteria. I. The ratio of the propulsive velocity to the frequency of bodily rotation. J. Mechanochem. Cell Motil. 1975; 3: 87
  • Shimada K., Ikkai T., Yoshida T., Asakura S. Cinemicrographic analysis of the movement of flagellated bacteria. II. The ratio of the propulsive velocity to the frequency of the wave propagation along flagellar tail. J. Mechanochem. Cell Motil. 1976; 3: 185
  • Keller E. F., Segel L. A. Model for chemotaxis. J. Theor. Biol. 1971; 30: 225
  • Keller E. F., Segel L. A. Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 1971; 30: 235
  • Nossal R. Boundary movement of chemotactic bacterial populations. Math. Biosci. 1972; 13: 397
  • Rosen G. Fundamental theoretical aspects of bacterial chemotaxis. J. Theor. Biol. 1973; 41: 201
  • Keller E. F. Mathematical aspects of bacterial chemotaxis. Antibiot. Chemother. (Basel) 1974; 19: 79
  • Scribner T. L., Segel L. A., Rogers E. H. A numerical study of the formation and propagation of traveling bands of chemotactic bacteria. J. Theor. Biol. 1974; 46: 189
  • Odell G. M., Keller E. F. Traveling bands of chemotactic bacteria revisited. J. Theor. Biol. 1976; 56: 243
  • Nossal R., Chen S. H. Laser measurements of chemotactic response of bacteria. Opt. Commun. 1972; 5: 117
  • Nossal R., Chen S. H. Effects of chemo-attractants on the motility of Escherichia coli, Nature (London). New Biol. 1973; 244: 253
  • Schaefer D. W. Dynamics of number fluctuations: motile microorganisms. Science 1973; 180: 1293
  • Schaefer D. W., Banks G., Alpert S. S. Intensity fluctuation spectroscopy of motile microorganisms. Nature (London) 1974; 248: 162
  • Boon J. P., Nossal R., Chen S.-H. Light-scattering spectrum due to wiggling motions of bacteria. Biophys. J. 1974; 14: 847
  • Banks G., Schaefer D. W., Alpert S. S. Light-scattering study of the temperature dependence of Escherichia coli motility. Biophys. J. 1975; 15: 253
  • Spudich J. L., Koshland D. E., Jr. Non-genetic individuality: chance in the single cell. Nature (London) 1976; 262: 467
  • Macnab R., Koshland D. E., Jr. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2509
  • de Jong M. H., van der Drift C., Stumm C., Arends J. J. A. The effect of amino acids on the motile behavior of Bacillus subtilis. Arch. Microbiol. 1977; 113: 153
  • Spudich J. L., Koshland D. E., Jr. Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 710
  • Tsang N., Macnab R. M., Koshland D. E., Jr. Common mechanism for repellents and attractants in bacterial chemotaxis. Science 1973; 181: 60
  • Brown D. A., Berg H. C. Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1388
  • Berg H. C., Tedesco P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3235
  • Dahlquist F. W., Lovely P., Koshland D. E., Jr. Quantitative analysis of bacterial migration in chemotaxis, Nature (London). New Biol. 1972; 236: 120
  • Lovely P., Dahlquist F. W. Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 1975; 50: 477
  • Dahlquist F. W., Elwell R. A., Lovely P. Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine. J. Supramol. Struct. 1976; 4: 329
  • Nossal R., Weiss G. H. Analysis of a densitometry assay for bacterial chemotaxis. J. Theor. Biol. 1973; 41: 143
  • Segel L. A., Jackson J. L. Theoretical analysis of chemotactic movement in bacteria. J. Mechanochem. Cell Motil. 1973; 2: 25
  • Lapidus I. R., Schiller R. A mathematical model for bacterial chemotaxis. Biophys. J. 1974; 14: 825
  • Lapidus I. R., Schiller R. Bacterial chemotaxis in a fixed attractant gradient. J. Theor. Biol. 1975; 53: 215
  • Rosen G. Bacterial chemotaxis in the temporal gradient apparatus. Math. Biosci. 1975; 24: 17
  • Macnab R. M., Koshland D. E., Jr. Persistence as a concept in the motility of chemotactic bacteria. J. Mechanochem. Cell Motil. 1973; 2: 141
  • Mesibov R., Ordal G. W., Adler J. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J. Gen. Physiol. 1973; 62: 203
  • Mesibov R., Adler J. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 1972; 112: 315
  • Adler J., Hazelbauer G. L., Dahl M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 1973; 115: 824
  • Aksamit R., Koshland D. E., Jr. A ribose binding protein of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 1972; 48: 1348
  • Strange P. G., Koshland D. E., Jr. Receptor interactions in a signaling system: competition between ribose receptor and galactose receptor in the chemotaxis response. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 762
  • Ordal G. W. Effect of methionine on chemotaxis by Bacillus subtilis. J. Bacteriol. 1976; 125: 1005
  • van der Drift C., de Jong M. H. Chemotaxis toward amino acids in Bacillus subtilis. Arch. Microbiol. 1974; 96: 83
  • Ordal G. W., Gibson K. J. Chemotaxis toward amino acids by Bacillus subtilis. J. Bacteriol. 1977; 129: 151
  • Bezdek M., Soska J. Sex-determined chemotaxis in Salmonella typhimurium LT2. Folia Microbiol. (Prague) 1972; 17: 366
  • Lederberg J. Linear inheritance in transductional clones. Genetics 1956; 41: 845
  • Ordal G. W. Recognition sites for chemotactic repellents of Bacillus subtilis. J. Bacteriol. 1976; 126: 72
  • Ordal G. W., Goldman D. J. Chemotactic repellents of Bacillus subtilis. J. Mol. Biol. 1976; 100: 103
  • Ordal G. W., Adler J. Isolation and complementation of mutants in galactose taxis and transport. J. Bacteriol. 1974; 117: 509
  • Ordal G. W., Adler J. Properties of mutants in galactose taxis and transport. J. Bacteriol. 1974; 117: 517
  • Anraku Y. Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins. J. Biol. Chem. 1968; 243: 3116
  • Willis R. C., Furlong C. E. Purification and properties of a ribose-binding protein from Escherichia coli. J. Biol. Chem. 1974; 249: 6926
  • Kellerman O., Szmelcman S. Active transport of maltose in Escherichia coli K12. Involvement of a “periplasmic” maltose binding protein. Eur. J. Biochem. 1974; 47: 139
  • Boos W., Gordon A. S., Hall R. E., Price H. D. Transport properties of the galactose-binding protein of Escherichia coli. Substrate-induced conformational change. J. Biol. Chem. 1972; 247: 917
  • Zukin R. S., Strange P. G., Heavey L. R., Koshland D. E., Jr. Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. Biochemistry 1977; 16: 381
  • Hazelbauer G. L., Adler J. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (London) New Biol. 1971; 230: 101
  • Kalckar H. M. The periplasmic galactose binding protein of Escherichia coli. Science 1971; 174: 557
  • Aksamit R. R., Koshland D. E., Jr. Identification of the ribose binding protein as the receptor for ribose chemotaxis in Salmonella typhimurium. Biochemistry 1974; 13: 4473
  • Hazelbauer G. L. Maltose chemoreceptor of Escherichia coli. J. Bacteriol. 1975; 122: 206
  • Adler J., Epstein W. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 2895
  • Lengeler J. Mutations affecting transport of the hexitols d-mannitol, d-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J. Bacteriol. 1975; 124: 26
  • Aksamit R. R., Howlett B. J., Koshland D. E., Jr. Soluble and membrane-bound aspartate-binding activities in Salmonella typhimurium. J. Bacteriol. 1975; 123: 1000
  • Hazelbauer G. L., Mesibov R. E., Adler J. Escherichia coli mutants defective in chemotaxis toward specific chemicals. Proc. Natl. Acad. Sci. U.S.A. 1969; 64: 1300
  • Springer M. S., Goy M. F., Adler J. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3312
  • Silverman M., Simon M. Chemotaxis in Escherichia coli: methylation of che gene products. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3317
  • Boos W. The properties of the galactose-binding protein, the possible chemoreceptor for galactose chemotaxis in Escherichia coli. Antibiot. Chemother. (Basel) 1974; 19: 21
  • Silhavy T. J., Boos W., Kalckar H. M. The role of the Escherichia coli galactose-binding protein in galactose transport and chemotaxis. Biochemistry of Sensory Functions, L. Jaenicke. Springer-Verlag, New York 1974; 165
  • Zukin R. S., Hartig P. R., Koshland D. E., Jr. Use of a distant reporter group as evidence for a conformational change in a sensory receptor. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 1932
  • Ordal G. W., Villani D. P., Gibson K. J. Amino acid chemoreceptors of Bacillus subtilis. J. Bacteriol. 1977; 129: 156
  • Parkinson J. S. Data processing by the chemotaxis machinery of Escherichia coli. Nature (London) 1974; 252: 317
  • Parkinson J. S. cheA, cheB and cheC genes of Escherichia coli and their role in chemotaxis. J. Bacteriol. 1976; 126: 758
  • Adler J., Tso W.-W. “Decision”-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science 1974; 184: 1292
  • Armstrong J. B., Adler J., Dahl M. M. Nonchemotactic mutants of Escherichia coli. J. Bacteriol. 1967; 93: 390
  • Springer W. R., Koshland D. E., Jr. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 533
  • Adler J., Dahl M. M. A method for measuring the motility of bacteria and for comparing random and nonrandom motility. J. Gen. Microbiol. 1967; 46: 161
  • Aswad D., Koshland D. E., Jr. The role of methionine in bacterial chemotaxis. J. Bacteriol. 1974; 118: 640
  • Armstrong J. B. Chemotaxis and methionine metabolism in Escherichia coli. Can. J. Microbiol. 1972; 18: 591
  • Armstrong J. B. An S-adenosylmethionine requirement for chemotaxis in Escherichia coli. Can. J. Microbiol. 1972; 18: 1695
  • Aswad D., Koshland D. E., Jr. Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. J. Mol. Biol. 1975; 97: 207
  • Kort E. N., Goy M. F., Larsen S. H., Adler J. Methylation of a membrane protein involved in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3939
  • van der Werf P., Koshland D. E., Jr. Identification of a γ-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. J. Biol. Chem. 1977; 252: 2793
  • Kleene S. J., Toews M. L., Adler J. Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. J. Biol. Chem. 1977; 252: 3214
  • Goy M. F., Springer M. S., Adler J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4964
  • Springer M. S., Kort E. N., Larsen S. H., Ordal G. W., Reader R. W., Adler J. Role of methionine in bacterial chemotaxis: requirement for tumbling and involvement in information processing. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 4640
  • Segel L. A. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 1976; 57: 23
  • Springer M. S., Goy M. F., Adler J. Sensory transduction in Escherichia coli: a requirement for methionine in sensory adaptation. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 183
  • Frère J.-M. Bacterial tumble regulator may be inactivated by methylation. Nature (London) 1977; 266: 261
  • Taylor B. L., Miller J. B., Warrick H. M., Koshland D. E., Jr. Electron transfer pathways are essential for tactic responses to light and electron acceptors by Salmonella typhimurium and Escherichia coli, manuscript in preparation
  • Clayton R. K. On the interplay of environmental factors affecting taxis and motility in Rhodospirillum rubrum. Arch. Mikrobiol. 1958; 29: 189
  • Harayama S., Iino T. Phototactic response of aerobically cultivated Rhodospirillum rubrum. J. Gen. Microbiol. 1976; 94: 173
  • Ordal G. W., Goldman D. J. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science 1975; 189: 802
  • Miller J. B., Koshland D. E., Jr. Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4752
  • Taylor B. L., Koshland D. E., Jr. Intrinsic and extrinsic light responses of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 1975; 123: 557
  • Spikes J. D., Livingston R. The molecular biology of photodynamic action: sensitized photoautoxidations in biological systems. Adv. Radiat. Biol. 1969; 3: 29
  • Zukin R. S., Koshland D. E., Jr. Mg2+, Ca2+-dependent adenosine triphosphatase as receptor for divalent cations in bacterial sensing. Science 1976; 193: 405
  • Alberty R. A. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J. Biol. Chem. 1968; 243: 1337
  • Caraway B. H., Krieg N. R. Uncoordination and recoordination in Spirillum volutans. Can. J. Microbiol. 1972; 18: 1749
  • Szmelcman S., Adler J. Change in membrane potential during bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 4387
  • Doetsch R. N. A unified theory of bacterial motile behavior. J. Theor. Biol. 1972; 35: 55
  • Ordal G. W. Calcium ion regulates chemotactic behavior in bacteria. Nature (London) 1977; 270: 66
  • Ordal G. W., Fields R. B. A biochemical mechanism for bacterial chemotaxis. J. Theor. Biol. 1977; 68: 491
  • Krieg N. R., Tomelty J. P., Wells J. S., Jr. Inhibition of flagellar co-ordination in Spirillum volutans. J. Bacteriol. 1967; 94: 1431
  • Wood W. B., Edgar R. S. Building a bacterial virus. Sci. Am. 1967; 217: 61
  • Vary P. S., Stocker B. A. D. Nonsense motility mutants in Salmonella typhimurium. Genetics 1973; 73: 229
  • Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 1976; 40: 116
  • Aswad D., Koshland D. E., Jr. Isolation, characterization, and complementation of Salmonella typhimurium chemotaxis mutants. J. Mol. Biol. 1975; 97: 225
  • Hotani H., unpublished data
  • Macnab R. M., Koshland D. E., Jr., unpublished data
  • Khan S., Macnab R. M., unpublished data
  • Dean G., Macnab R. M., unpublished data
  • Macnab R. M., Koshland D. E., Jr., unpublished data
  • Macnab R. M., Koshland D. E., Jr., unpublished data
  • de Franco, Koshland D. E., Jr., unpublished data

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.