630
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Rhythmic control of activity and sleep by class B1 GPCRs

, , , &
Pages 18-30 | Received 04 Aug 2014, Accepted 05 Nov 2014, Published online: 20 Nov 2014

References

  • Abrahamson EE, Moore RY. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–91
  • Agosto J, Choi JC, Parisky KM, et al. (2008). Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11:354–9
  • Allada R, Chung BY. (2010). Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–24
  • An S, Harang R, Meeker K, et al. (2013). A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci USA 110:E4355–61
  • An S, Irwin RP, Allen CN, et al. (2011). Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 105:2289–96
  • An S, Tsai C, Ronecker J, et al. (2012). Spatiotemporal distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachiasmatic nucleus. J Comp Neurol 520:2730–41
  • Ananthasubramaniam B, Herzog ED, Herzel H. (2014). Timing of neuropeptide coupling determines synchrony and entrainment in the mammalian circadian clock. PLoS Comput Biol 10:e1003565
  • Aston-Jones G, Chen S, Zhu Y, Oshinsky ML. (2001). A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–8
  • Aton SJ, Colwell CS, Harmar AJ, et al. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–83
  • Barrios A, Ghosh R, Fang C, et al. (2012). PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nat Neurosci 15:1675–82
  • Bass J. (2012). Circadian topology of metabolism. Nature 491:348–56
  • Beaule C, Mitchell JW, Lindberg PT, et al. (2009). Temporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN. J Biol Rhythms 24:126–34
  • Bedont JL, Legates TA, Slat EA, et al. (2014). Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 7:609–22
  • Beebe X, Darczak D, Davis-Taber RA, et al. (2008). Discovery and SAR of hydrazide antagonists of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor type 1 (PAC1-R). Bioorg Med Chem Lett 18:2162–6
  • Bonny O, Firsov D. (2013). Circadian regulation of renal function and potential role in hypertension. Curr Opin Nephrol Hypertens 22:439–44
  • Brancaccio M, Maywood ES, Chesham JE, et al. (2013). A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–28
  • Brown TM, Hughes AT, Piggins HD. (2005). Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J Neurosci 25:11155–64
  • Buhr ED, Takahashi JS. (2013). Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol 217:3–27
  • Busza A, Murad A, Emery P. (2007). Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J Neurosci 27:10722–33
  • Cao G, Nitabach MN. (2008). Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J Neurosci 28:6493–501
  • Cao G, Platisa J, Pieribone VA, et al. (2013a). Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–13
  • Cao R, Robinson B, Xu H, et al. (2013b). Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79:712–24
  • Cavanaugh DJ, Geratowski JD, Wooltorton JR, et al. (2014). Identification of a circadian output circuit for rest: activity rhythms in Drosophila. Cell 157:689–701
  • Chen D, Buchanan GF, Ding JM, et al. (1999). Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 96:13468–73
  • Choi C, Cao G, Tanenhaus AK, et al. (2012). Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in drosophila. Cell Rep 2:332–44
  • Choi C, Fortin JP, McCarthy E, et al. (2009). Cellular dissection of circadian peptide signals with genetically encoded membrane-tethered ligands. Curr Biol 19:1167–75
  • Choi S, Chatzigeorgiou M, Taylor KP, et al. (2013). Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78:869–80
  • Chung BY, Kilman VL, Keath JR, et al. (2009). The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 19:386–90
  • Colwell CS, Michel S, Itri J, et al. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285:R939–49
  • Colwell CS, Michel S, Itri J, et al. (2004). Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 287:R1194–201
  • Czeisler CA, Klerman EB. (1999). Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog Horm Res 54:97–130; discussion 130–2
  • Dibner C, Schibler U, Albrecht U. (2010). The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–49
  • Dickinson T, Fleetwood-Walker SM, Mitchell R, Lutz EM. (1997). Evidence for roles of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) receptors in modulating the responses of rat dorsal horn neurons to sensory inputs. Neuropeptides 31:175–85
  • Dickson L, Finlayson K. (2009). VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121:294–316
  • Dragich JM, Loh DH, Wang LM, et al. (2010). The role of the neuropeptides PACAP and VIP in the photic regulation of gene expression in the suprachiasmatic nucleus. Eur J Neurosci 31:864–75
  • Duvall LB, Taghert PH. (2012). The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila. PLoS Biol 10:e1001337
  • Duvall LB, Taghert PH. (2013). E and M circadian pacemaker neurons use different PDF receptor signalosome components in drosophila. J Biol Rhythms 28:239–48
  • Engelund A, Fahrenkrug J, Harrison A, Hannibal J. (2010). Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tissue Res 340:243–55
  • Engelund A, Fahrenkrug J, Harrison A, et al. (2012). Altered pupillary light reflex in PACAP receptor 1-deficient mice. Brain Res 1453:17–25
  • Falth M, Skold K, Norrman M, et al. (2006). SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 5:998–1005
  • Farajnia S, Van Westering TL, Meijer JH, Michel S. (2014). Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Natl Acad Sci USA 111:9627–32
  • Flavell SW, Pokala N, Macosko EZ, et al. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–35
  • Fogle KJ, Parson KG, et al. (2011). CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331:1409–13
  • Gmeiner F, Kolodziejczyk A, Yoshii T, et al. (2013). GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. J Exp Biol 216:3837–43
  • Gourlet P, Vandermeers A, Vertongen P, et al. (1997a). Development of high affinity selective VIP1 receptor agonists. Peptides 18:1539–45
  • Gourlet P, Vertongen P, Vandermeers A, et al. (1997b). The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 is highly selective of the VIP2 receptor subclass. Peptides 18:403–8
  • Grima B, Chelot E, Xia R, Rouyer F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–73
  • Guo F, Cerullo I, Chen X, Rosbash M. (2014). PDF neuron firing phase-shifts key circadian activity neurons in Drosophila. Elife (Cambridge) 3:e02780
  • Hall JC. (2003). Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Genet 48:1–280
  • Hamelink C, Tjurmina O, Damadzic R, et al. (2002). Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA 99:461–6
  • Hannibal J. (2002). Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 453:389–417
  • Hannibal J, Brabet P, Fahrenkrug J. (2008). Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol 295:R2050–8
  • Hannibal J, Ding JM, Chen D, et al. (1997). Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17:2637–44
  • Hannibal J, Jamen F, Nielsen HS, et al. (2001). Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci 21:4883–90
  • Harmar AJ. (2001). Family-B G-protein-coupled receptors. Genome Biol 2:Reviews3013
  • Harmar AJ, Marston HM, Shen S, et al. (2002). The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508
  • Harrington ME, Hoque S, Hall A, et al. (1999). Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci 19:6637–42
  • Hashimoto H, Nogi H, Mori K, et al. (1996). Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol 371:567–77
  • Hashimoto H, Shintani N, Tanaka K, et al. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci USA 98:13355–60
  • Hastings M, O'Neill JS, Maywood ES. (2007). Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 195:187–98
  • Hatori M, Gill S, Mure LS, et al. (2014). Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3:e03357
  • Hattar S, Liao HW, Takao M, et al. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70
  • Hattar S, Lucas RJ, Mrosovsky N, et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81
  • Hector CE, Bretz CA, Zhao Y, Johnson EC. (2009). Functional differences between two CRF-related diuretic hormone receptors in Drosophila. J Exp Biol 212:3142–7
  • Helfrich-Forster C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci USA 92:612–16
  • Helfrich-Forster C, Edwards T, Yasuyama K, et al. (2002). The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J Neurosci 22:9255–66
  • Helfrich-Forster C, Shafer OT, Wulbeck C, et al. (2007). Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 500:47–70
  • Helfrich-Forster C, Tauber M, Park JH, et al. (2000). Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20:3339–53
  • Hendricks JC, Finn SM, Panckeri KA, et al. (2000). Rest in Drosophila is a sleep-like state. Neuron 25:129–38
  • Hughes AT, Fahey B, Cutler DJ, et al. (2004). Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor. J Neurosci 24:3522–6
  • Hyun S, Lee Y, Hong ST, et al. (2005). Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48:267–78
  • Im SH, Li W, Taghert PH. (2011). PDFR and CRY signaling converge in a subset of clock neurons to modulate the amplitude and phase of circadian behavior in Drosophila. PLoS One 6:e18974
  • Im SH, Taghert PH. (2010). PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 518:1925–45
  • Janssen T, Husson SJ, Lindemans M, et al. (2008). Functional characterization of three G protein-coupled receptors for pigment dispersing factors in Caenorhabditis elegans. J Biol Chem 283:15241–9
  • Janssen T, Husson SJ, Meelkop E, et al. (2009). Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans. J Neurochem 111:228–41
  • Jeon M, Gardner HF, Miller EA, et al. (1999). Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286:1141–6
  • Johnson EC, Bohn LM, Taghert PH. (2004). Drosophila CG8422 encodes a functional diuretic hormone receptor. J Exp Biol 207:743–8
  • Kaneko M, Park JH, Cheng Y, et al. (2000). Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J Neurobiol 43:207–33
  • Kawaguchi C, Isojima Y, Shintani N, et al. (2010). PACAP-deficient mice exhibit light parameter-dependent abnormalities on nonvisual photoreception and early activity onset. PLoS One 5:e9286
  • Kawaguchi C, Tanaka K, Isojima Y, et al. (2003). Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem Biophys Res Commun 310:169–75
  • Konopka RJ, Benzer S. (1971). Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–16
  • Krupp JJ, Billeter JC, Wong A, et al. (2013). Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in drosophila. Neuron 79:54–68
  • Kudo T, Tahara Y, Gamble KL, et al. (2013). Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol 110:1097–106
  • Kunst M, Hughes ME, Raccuglia D, et al. (2014). CGRP neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 24:1–13
  • Larsson LI, Fahrenkrug J, De Muckadell OS, et al. (1976). Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci USA 73:3197–200
  • Lear BC, Merrill CE, Lin JM, et al. (2005). A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron 48:221–7
  • Lear BC, Zhang L, Allada R. (2009). The neuropeptide PDF acts directly on evening pacemaker neurons to regulate multiple features of circadian behavior. PLoS Biol 7:e1000154
  • Lebestky T, Chang JS, Dankert H, et al. (2009). Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64:522–36
  • Lee JE, Atkins N Jr, Hatcher NG, et al. (2010). Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 9:285–97
  • Li JD, Hu WP, Zhou QY. (2012). The circadian output signals from the suprachiasmatic nuclei. Prog Brain Res 199:119–27
  • Li Y, Guo F, Shen J, Rosbash M. (2014). PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci USA 111:E1284–90
  • Lin Y, Stormo GD, Taghert PH. (2004). The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24:7951–7
  • Matsuo T, Yamaguchi S, Mitsui S, et al. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–9
  • Maywood ES, Chesham JE, O'Brien JA, Hastings MH. (2011). A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108:14306–11
  • Maywood ES, Reddy AB, Wong GK, et al. (2006). Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605
  • Meelkop E, Temmerman L, Janssen T, et al. (2012). PDF receptor signaling in Caenorhabditis elegans modulates locomotion and egg-laying. Mol Cell Endocrinol 361:232–40
  • Meijer JH, Colwell CS, Rohling JH, et al. (2012). Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. Prog Brain Res 199:143–62
  • Mendel VE, Raghavan GV. (1964). A study of diurnal temperature patterns in sheep. J Physiol 174:206–16
  • Mertens I, Vandingenen A, Johnson EC, et al. (2005). PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48:213–19
  • Michel S, Itri J, Han JH, et al. (2006). Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7:15
  • Mikkelsen JD, Fahrenkrug J. (1994). Concentrations and distribution of vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and peptide histidine valine (PHV) in the cerebral cortex and the suprachiasmatic nucleus of the mouse. Brain Res 656:95–107
  • Miller JE, Granados-Fuentes D, Wang T, et al. (2014). Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction. J Neurosci 34:6040–6
  • Miyata A, Arimura A, Dahl RR, et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–74
  • Miyata A, Jiang L, Dahl RD, et al. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–8
  • Mohawk JA, Green CB, Takahashi JS. (2012). Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–62
  • Monsalve GC, van Buskirk C, Frand AR. (2011). LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Curr Biol 21:2033–45
  • Moore RY, Eichler VB. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–6
  • Moreno D, Gourlet P, de Neef P, et al. (2000). Development of selective agonists and antagonists for the human vasoactive intestinal polypeptide VPAC(2) receptor. Peptides 21:1543–9
  • Moro O, Lerner EA. (1997). Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J Biol Chem 272:966–70
  • Myers EM, Yu J, Sehgal A. (2003). Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster. Curr Biol 13:526–33
  • Nielsen HS, Hannibal J, Fahrenkrug J. (2002). Vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night. Eur J Neurosci 15:570–4
  • Nitabach MN, Taghert PH. (2008). Organization of the Drosophila circadian control circuit. Curr Biol 18:R84–93
  • Nitabach MN, Wu Y, Sheeba V, et al. (2006). Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J Neurosci 26:479–89
  • Obal F, Jr Alfoldi P, Cady AB, et al. (1988). Growth hormone-releasing factor enhances sleep in rats and rabbits. Am J Physiol 255:R310–16
  • Obal F, Jr Fang J, Taishi P, et al. (2001). Deficiency of growth hormone-releasing hormone signaling is associated with sleep alterations in the dwarf rat. J Neurosci 21:2912–18
  • Obal F, Jr Krueger JM. (2004). GHRH and sleep. Sleep Med Rev 8:367–77
  • Obal F, Jr Payne L, Kapas L, et al. (1991). Inhibition of growth hormone-releasing factor suppresses both sleep and growth hormone secretion in the rat. Brain Res 557:149–53
  • Obal F, Jr Payne L, Opp M, et al. (1992). Growth hormone-releasing hormone antibodies suppress sleep and prevent enhancement of sleep after sleep deprivation. Am J Physiol 263:R1078–85
  • Panda S, Sato TK, Castrucci AM, et al. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–16
  • Parisky KM, Agosto J, Pulver SR, et al. (2008). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60:672–82
  • Park JH, Helfrich-Forster C, Lee G, et al. (2000). Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–13
  • Parker DC, Sassin JF, Mace JW, et al. (1969). Human growth hormone release during sleep: electroencephalographic correlation. J Clin Endocrinol Metab 29:871–4
  • Partch CL, Green CB, Takahashi JS. (2014). Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–9
  • Peng Y, Stoleru D, Levine JD, et al. (2003). Drosophila free-running rhythms require intercellular communication. PLoS Biol 1:E13
  • Picot M, Cusumano P, Klarsfeld A, et al. (2007). Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol 5:e315
  • Piggins HD, Antle MC, Rusak B. (1995). Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 15:5612–22
  • Polak JM, Pearse AG, Garaud JC, Bloom SR. (1974). Cellular localization of a vasoactive intestinal peptide in the mammalian and avian gastrointestinal tract. Gut 15:720–4
  • Raizen DM, Zimmerman JE, Maycock MH, et al. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569–72
  • Ralph MR, Foster RG, Davis FC, Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–8
  • Reed HE, Cutler DJ, Brown TM, et al. (2002). Effects of vasoactive intestinal polypeptide on neurones of the rat suprachiasmatic nuclei in vitro. J Neuroendocrinol 14:639–46
  • Reed HE, Meyer-Spasche A, Cutler DJ, et al. (2001). Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur J Neurosci 13:839–43
  • Renn SC, Park JH, Rosbash M, et al. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802
  • Ruby NF, Brennan TJ, Xie X, et al. (2002). Role of melanopsin in circadian responses to light. Science 298:2211–13
  • Rusak B, Groos G. (1982). Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science 215:1407–9
  • Said SI, Mutt V. (1970). Polypeptide with broad biological activity: isolation from small intestine. Science 169:1217–18
  • Saper CB, Scammell TE, Lu J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–63
  • Schwartz WJ, Gainer H. (1977). Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197:1089–91
  • Schwartz WJ, Zimmerman P. (1990). Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10:3685–94
  • Sehgal A, Mignot E. (2011). Genetics of sleep and sleep disorders. Cell 146:194–207
  • Seluzicki A, Flourakis M, Kula-Eversole E, et al. (2014). Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior. PLoS Biol 12:e1001810
  • Shafer OT, Helfrich-Forster C, Renn SC, Taghert PH. (2006). Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J Comp Neurol 498:180–93
  • Shafer OT, Kim DJ, Dunbar-Yaffe R, et al. (2008). Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58:223–37
  • Shafer OT, Rosbash M, Truman JW. (2002). Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci 22:5946–54
  • Shafer OT, Taghert PH. (2009). RNA-interference knockdown of Drosophila pigment dispersing factor in neuronal subsets: the anatomical basis of a neuropeptide's circadian functions. PLoS One 4:e8298
  • Shang Y, Griffith LC, Rosbash M. (2008). Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci USA 105:19587–94
  • Shang Y, Haynes P, Pirez N, et al. (2011). Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 14:889–95
  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–7
  • Sheeba V, Gu H, Sharma VK, et al. (2008). Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol 99:976–88
  • Shen S, Spratt C, Sheward WJ, et al. (2000). Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci USA 97:11575–80
  • Shibata S, Moore RY. (1993). Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Res 615:95–100
  • Shioda S, Shuto Y, Somogyvari-Vigh A, et al. (1997). Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 28:345–54
  • Simmons DJ. (1964). Circadian mitotic rhythm in epiphyseal cartilage. Nature 202:906–7
  • Spoor RP, Jackson DB. (1966). Circadian rhythms: variation in sensitivity of isolated rat artria to acetylcholine. Science 154:782
  • Steiger A, Guldner J, Hemmeter U, et al. (1992). Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology 56:566–73
  • Stephan FK, Zucker I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–6
  • Sterman MB, Knauss T, Lehmann D, Clemente CD. (1965). Circadian sleep and waking patterns in the laboratory cat. Electroencephalogr Clin Neurophysiol 19:509–17
  • Stoleru D, Peng Y, Agosto J, Rosbash M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–8
  • Stoleru D, Peng Y, Nawathean P, Rosbash M. (2005). A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438:238–42
  • Takahashi Y, Kipnis DM, Daughaday WH. (1968). Growth hormone secretion during sleep. J Clin Invest 47:2079–90
  • Tatsuno I, Uchida D, Tanaka T, et al. (2001). Maxadilan specifically interacts with PAC1 receptor, which is a dominant form of PACAP/VIP family receptors in cultured rat cortical neurons. Brain Res 889:138–48
  • Uchida D, Tatsuno I, Tanaka T, et al. (1998). Maxadilan is a specific agonist and its deleted peptide (M65) is a specific antagonist for PACAP type 1 receptor. Ann N Y Acad Sci 865:253–8
  • van Alphen B, Yap MH, Kirszenblat L, et al. (2013). A dynamic deep sleep stage in Drosophila. J Neurosci 33:6917–27
  • Vaudry D, Gonzalez BJ, Basille M, et al. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324
  • Veleri S, Brandes C, Helfrich-Forster C, et al. (2003). A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr Biol 13:1758–67
  • Watanabe K, Vanecek J, Yamaoka S. (2000). In vitro entrainment of the circadian rhythm of vasopressin-releasing cells in suprachiasmatic nucleus by vasoactive intestinal polypeptide. Brain Res 877:361–6
  • Webb AB, Angelo N, Huettner JE, Herzog ED. (2009). Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA 106:16493–8
  • Welsh DK, Logothetis DE, Meister M, Reppert SM. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706
  • Wu Y, Cao G, Pavlicek B, et al. (2008). Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol 6:e273
  • Yamaguchi S, Isejima H, Matsuo T, et al. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–12
  • Yamaguchi Y, Suzuki T, Mizoro Y, et al. (2013). Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342:85–90
  • Yang Z, Sehgal A. (2001). Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29:453–67
  • Yao Z, Shafer OT. (2014). The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 343:1516–20
  • Yoshii T, Heshiki Y, Ibuki-Ishibashi T, et al. (2005). Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. Eur J Neurosci 22:1176–84
  • Yoshii T, Wulbeck C, Sehadova H, et al. (2009). The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila's clock. J Neurosci 29:2597–610
  • Zhang J, Obal F, Jr Fang J, et al. (1996). Non-rapid eye movement sleep is suppressed in transgenic mice with a deficiency in the somatotropic system. Neurosci Lett 220:97–100
  • Zhang J, Obal F Jr, Zheng T, et al. (1999). Intrapreoptic microinjection of GHRH or its antagonist alters sleep in rats. J Neurosci 19:2187–94
  • Zhang L, Chung BY, Lear BC, et al. (2010). DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila. Curr Biol 20:591–9
  • Zhang L, Lear BC, Seluzicki A, Allada R. (2009). The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila. Curr Biol 19:2050–5
  • Zhang Y, Emery P. (2013). GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron 78:152–65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.