2,182
Views
44
CrossRef citations to date
0
Altmetric
Review Article

Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins

, &
Pages 231-241 | Received 28 Jan 2015, Accepted 23 Feb 2015, Published online: 19 Mar 2015

References

  • Bai J, Pagano RE. (1997). Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36:8840–8
  • Balch WE, Dunphy WG, Braell Wa, et al. (1984). Reconstitution of the transport of protein between successive compartments of the golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39:405–16
  • Bhalla A, Chicka MC, Tucker WC, et al. (2006). Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat Struct Mol Biol 13:323–30
  • Bowen ME, Weninger K, Brunger AT, et al. (2004). Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). Biophys J 87:3569–84
  • Brunger AT, Weninger K, Bowen M, et al. (2009). Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 78:903–28
  • Chan Y-HM, van Lengerich B, Boxer SG. (2009). Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc Natl Acad Sci USA 106:979–84
  • Chen X, Araç D, Wang T-M, et al. (2006). SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys J 90:2062–74
  • Choi B-K, Choi M-G, Kim J-Y, et al. (2013). Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci USA 110:4087–92
  • Chung M, Lowe RD, Chan Y-HM, et al. (2009). DNA-tethered membranes formed by giant vesicle rupture. J Struct Biol 168:190–9
  • Cypionka A, Stein A, Hernandez JM, et al. (2009). Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS. Proc Natl Acad Sci USA 106:18575–80
  • Dennison S, Bowen M, Brunger A, et al. (2006). Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys J 90:1661–75
  • Diao J, Su Z, Ishitsuka Y, et al. (2010). A single-vesicle content mixing assay for SNARE-mediated membrane fusion. Nat Commun 1:54. doi:10.1038/ncomms1054
  • Diao J, Grob P, Cipriano DJ, et al. (2012). Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. Elife 1:e00109
  • Diao J, Cipriano DJ, Zhao M, et al. (2013). Complexin-1 enhances the on-rate of vesicle docking via simultaneous SNARE and membrane interactions. J Am Chem Soc 135:15274–7
  • Domanska MK, Kiessling V, Stein A, et al. (2009). Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion. J Biol Chem 284:32158–66
  • Fix M, Melia TJ, Jaiswal JK, et al. (2004). Imaging single membrane fusion events mediated by SNARE proteins. Proc Natl Acad Sci USA 101:7311–16
  • Floyd DL, Ragains JR, Skehel JJ, et al. (2008). Single-particle kinetics of influenza virus membrane fusion. Proc Natl Acad Sci USA 105:15382–7
  • Giraudo CG, Garcia-Diaz A, Eng WS, et al. (2009). Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:512–16
  • Hernandez JM, Stein A, Behrmann E, et al. (2012). Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–4
  • Hu C, Ahmed M, Melia TJ, et al. (2003). Fusion of cells by flipped SNAREs. Science 300:1745–9
  • Jahn R, Fasshauer D. (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–7
  • Jun Y, Wickner W. (2007). Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci USA 104:13010–15
  • Karatekin E, Rothman JE. (2012). Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells. Nat Protoc 7:903–20
  • Karatekin E, Di Giovanni J, Iborra C, et al. (2010). A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci USA 107:3517–21
  • Kiessling V, Domanska MK, Tamm LK. (2010). Single SNARE-mediated vesicle fusion observed in vitro by polarized TIRFM. Biophys J 99:4047–55
  • Kiessling V, Ahmed S, Domanska MK, et al. (2013). Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes. Biophys J 104:1950–8
  • Kim J-Y, Choi B-K, Choi M-G, et al. (2012). Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO J 31:2144–55
  • Kyoung M, Srivastava A, Zhang Y, et al. (2011). In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Natl Acad Sci USA 108:E304–13
  • Kyoung M, Zhang Y, Diao J, et al. (2013). Studying calcium-triggered vesicle fusion in a single vesicle–vesicle content and lipid-mixing system. Nat Protoc 8:1–16
  • Lai Y, Diao J, Liu Y, et al. (2013). Fusion pore formation and expansion induced by Ca2 + and synaptotagmin 1. Proc Natl Acad Sci USA 110:1333–8
  • Lai Y, Diao J, Cipriano DJ, et al. (2014). Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms. Elife 3:1–14
  • Lee H-K, Yang Y, Su Z, et al. (2010). Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328:760–3
  • Liu T, Tucker WC, Bhalla A, et al. (2005). SNARE-Driven, 25-millisecond vesicle fusion in vitro. Biophys J 89:2458–72
  • Lu X, Zhang F, McNew JA, et al. (2005). Membrane fusion induced by neuronal SNAREs transits through hemifusion. J Biol Chem 280:30538–41
  • Ma C, Su L, Seven AB, et al. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–5
  • Malinin VS, Frederik P, Lentz BR. (2002). Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys J 82:2090–100
  • Mima J, Hickey CM, Xu H, et al. (2008). Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 27:2031–42
  • Nickel W, Weber T, McNew JA, et al. (1999). Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc Natl Acad Sci USA 96:12571–6
  • Niles WD. (1987). Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of release of contents. J Gen Physiol 90:703–35
  • Ohki S, Flanagan TD, Hoekstra D. (1998). Probe transfer with and without membrane fusion in a fluorescence fusion assay. Biochemistry 37:7496–503
  • Otterstrom J, van Oijen A. (2013). Visualization of membrane fusion, one particle at a time. Biochemistry 53:1654–68
  • Rawle RJ, van Lengerich B, Chung M, et al. (2011). Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys J 101:L37–9
  • Schuette CG, Hatsuzawa K, Margittai M, et al. (2004). Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci USA 101:2858–63
  • Shi L, Shen Q-T, Kiel A, et al. (2012). SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–9
  • Struck DK, Hoekstra D, Pagano RE. (1981). Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–9
  • Südhof TC. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–90
  • Südhof TC, Rothman JE. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–7
  • Vennekate W, Schröder S, Lin C-C, et al. (2012). Cis- and trans-membrane interactions of synaptotagmin-1. Proc Natl Acad Sci USA 109:11037–42
  • Wang T, Smith EA, Chapman ER, et al. (2009). Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1–5 ms resolution. Biophys J 96:4122–31
  • Weber T, Zemelman BV, McNew JA, et al. (1998). SNAREpins: minimal machinery for membrane fusion. Cell 92:759–72
  • Wilschut J, Düzgüneş N, Fraley R, et al. (1980). Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry 19:6011–21
  • Xu Y, Zhang F, Su Z, et al. (2005). Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12:417–22
  • Yoon T-Y, Okumus B, Zhang F, et al. (2006). Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci USA 103:19731–6
  • Yu H, Rathore SS, Lopez Ja, et al. (2013). Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci USA 110:E3271–80
  • Zhang Y, Diao J, Colbert KN, et al. (2015). Munc18a does not alter fusion rates mediated by neuronal SNAREs, synaptotagmin, and complexin. J Biol Chem doi:10.1074/jbc.M114.630772
  • Zick M, Wickner WT. (2014). A distinct tethering step is vital for vacuole membrane fusion. Elife 3:e03251
  • Zucchi PC, Zick M. (2011). Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis. Mol Biol Cell 22:4635–46