1,786
Views
444
CrossRef citations to date
0
Altmetric
Research Article

Reverse Turns in Peptides and Protein

, &
Pages 315-399 | Published online: 26 Sep 2008

References

  • Némethy G., Printz M. P. The γ turn, a possible folded conformation of the polypeptide chain. Comparison with the β-tur. Macromolecules 1972; 5: 755
  • Matthews B. W. The γ-turn. Evidence of a new folded conformation in protein. Macromolecules 1972; 5: 818
  • Urry D. W., Ohnishi M. Nuclear magnetic resonance and the conformation of cyclic polypeptide antibiotic. Spectroscopic Approaches to Biomolecular Conformation, D. W. Urry. American Medical Association, Chicago 1970; 263
  • Zimmerman S. S., Scheraga H. A. Local interactions in bends of protein. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4126
  • Crawford J. L., Lipscomb W. N., Schellman C. G. The reverse turn as a polypeptide conformation in globular protein. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 538
  • Kuntz I. D. Protein foldin. J. Am. Chem. Soc. 1972; 94: 4009
  • Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein foldin. Advances in Protein Chemistry, C. B. Anfinsen, J. T. Edsall, F. M. Richards. Academic Press, New York 1975; Vol. 29: 205
  • Lewis P. N., Momany F. A., Scheraga H. A. Folding of polypeptide chains in proteins: a proposed mechanism of foldin. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 2293
  • Chou P. Y., Fasman G. D. personal communication. 1978
  • Schmidt G. M. J., Hodgkin D. C., Oughton B. M. A crystallographic study of some derivatives of gramicidi. Biochem. J. 1957; 65: 744
  • Schwyzer R., Sieber P., Gorup B. Synthese zyklisher Peptide mit der Methode de activierten Este. Chimia 1958; 12: 90
  • Shields J. E., McDowell S. T. Conformation of small peptides. I. Secondary structure in a tetrapeptid. J. Am. Chem. Soc. 1967; 89: 2499
  • Shields J. E., McDowell S. T., Pavlos J., Gray G. R. Conformation of small peptides. II. Synthesis and infrared studies of small peptide. J. Am. Chem. Soc. 1968; 90: 35
  • Geddes A. J., Parker K. D., Atkins E. D. T., Brighton E. “Cross β” conformation in protein. J. Mol. Biol. 1968; 32: 343
  • Stern A., Gibbons W. A., Craig L. C. A conformational analysis of gramicidin S-A by nuclear magnetic resonanc. Proc. Natl. Acad. Sci. U.S.A. 1968; 61: 734
  • Kopple K. D., Ohnishi M., Go A. Conformations of cyclic peptides. IV. Nuclear magnetic resonance studies of cyclo-pentaglycyl-L-leucyl and cyclo-diglycyl-L-histidyl-diglycyl-L-tyrosy. Biochemistry 1969; 8: 4087
  • Portnova S. L., Shilin V. V., Balashova T. A., Biernat J., Bystrov V. F., Ivanov V. T., Ovchinnikov Y. A. Conformational studies of cyclic peptides in solution. Nmr spectra of cyclo-hexapeptides consisting of L(D)-alanine and glycine residue. Tetrahedron Lett. 1971; 3085
  • Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide unit. Biopolymers 1968; 6: 1425
  • Woody R. W. Studies of theoretical circular dichroism of polypeptides: contributions of β-turn. Peptides, Polypeptides and Proteins, E. R. Blout, F. A. Bovey, M. Goodman, N. Lotan. John Wiley & Sons, New York 1974; 338
  • Benedetti E., Palumbo M., Bonora G. M., Toniolo C. On the oxy analogues to the 4 ← 1 intramolecularly hydrogen-bonded peptide conformation. Macromolecules 1976; 9: 417
  • Printz M. P., Némethy G., Bleich H. Proposed models for angiotensin II in aqueous solution and conclusions about receptor topograph. Nature 1972; 237: 135
  • Chandrasekaran R., Lakshminarayanan A. V., Pandya U. V., Ramachandran G. N. Conformation of the LL and LD hairpin bends with internal hydrogen bonds in proteins and peptide. Biochim. Biophys. Acta 1973; 303: 14
  • Lewis P. N., Momany F. A., Scheraga H. A. Chain reversals in protein. Biochim. Biophys. Acta 1973; 303: 211
  • Deber C. M. Evidence for β-turn analogs in proline peptides in the solid state. An infrared stud. Macromolecules 1974; 7: 47
  • Hruby V. J. Conformations of peptides in solution as determined by nmr spectroscopy and other physical method. Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, B. Weinstein. Marcel Dekker, New York 1974; Vol. 3: 1
  • Richardson J. S., Getzoff E. D., Richardson D. C. The β bulge: a common small unit of nonrepetitive protein structur. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 2574
  • Bystrov V. F., Portnova S. L., Tsetlin V. I., Ivanov V. T., Ovchinnikov Y. A. Conformational studies of peptide systems. The rotational states of the NH-CH fragment of alanine dipeptides by nuclear magnetic resonanc. Tetrahedron 1969; 25: 493
  • Karle I. L. The state of the art of X-ray crystallography of peptide. Peptides: Chemistry, Structure and Biology, R. Walter, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1975; 61
  • Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and protein. Adv. Protein Chem. 1968; 23: 283
  • Maigret B., Pullman B., Perahia D. Molecular orbital calculations on the conformation of polypeptides and proteins. VII. Refined calculations on the alanyl residu. J. Theor. Biol. 1971; 31: 269
  • Benedetti E. Structure and conformation of peptides: a critical analysis of crystallographic dat. Peptides, M. Goodman, J. Meienhofer. John Wiley & Sons, New York 1977; 257
  • Karle I. L., Karle J. An application of a new phase determination procedure to the structure of cyclo(hexaglycyl) hemihydrat. Acta Crystallogr. 1963; 16: 969
  • Smith G. D., Duax W. L., Langs D. A., DeTitta G. T., Edmonds J. W., Rohrer D. C., Weeks C. M. The crystal and molecular structure of the triclinic and monoclinic forms of valino-mycin, C34H90N6O18. J. Am. Chem. Soc. 1975; 97: 7242
  • Neupert-Laves K., Dobler M. The crystal structure of a K+ complex of vaiinomyci. Helv. Chim. Acta 1975; 58: 432
  • Rudko A. D., Lovell F. M., Low B. W. Crystal structure of the C-terminal tetrapeptides of oxytoci. Nature London New Biol. 1971; 232: 12
  • Ueki T., Ashida T., Kakudo M., Sasada Y., Katsube Y. Molecular structure of p-bromo-carbobenzoxy-glycyl-L-propyl-L-leucyl-glycin. Nature(London) 1967; 216: 1205
  • Ueki T., Ashida T., Kakudo M., Sasada Y., Katsube Y. Structure of p-bromocarbobenzoxy-glycyl-propyl-leucyl-glycin. Acta Crystallogr., Sec. B 1969; 25: 1840
  • Ukei T., Bando S., Ashida T., Kakudo M. The structure of o-bromocarbobenzoxy-glycyl-L-propyl-L-leucyl-glycyl-L-proline ethyl acetate monohydrate: a substrate of the enzyme, collagenas. Acta Crystallogr., Sec. B 1971; 27: 2219
  • Lecomte C., Aubury A., Protas J., Boussard G., Maurraud M. Etude de la conformation moléculaire à l'état solide de la N-acétyl-L-propyl-L-lactyl-méthylamid. Acta Crystallogr., Sec. B 1992; 30: 1974
  • Karle I. L., Gibson J. W., Karle J. The conformation and crystal structure of the cyclic polypeptide Gly-Gly-D-Ala-P-Ala-Gly-Gly·H2. J. Am. Chem. Soc. 1970; 92: 3755
  • Karle I. L. Conformation of the lithium ion complex of antamanide, cyclic decapeptide and ion carrier, in the crystalline stat. J. Am. Chem. Soc. 1974; 96: 4000
  • Smith G. D., Duax W. L., Kendrick N. F., Marshall G. R., Mathews F. S. The crystal and molecular structure of a tetrapeptide, the benzyl ester of Boc-L-Pro-Aib-L-Ala-Ai. Peptides, M. Goodman, J. Meinhofer. John Wiley & Sons, New York 1977; 277
  • Hossain M. B., van der Helm D. Conformation and crystal structures of two cycloisomeric hexapeptides: cyclo-(L-alanyl-L-alanyl-glycylglycyl-L-alanylg)ycyl) monohydrate (I) and cyclo-(L-alanyl-L-alanylglycyl-L-alanylglycylglycyl) dihydrate (II. J. Am. Chem. Soc. 1978; 100: 5191
  • Smith G. D., Griffin J. F. Conformation of [Leu5] enkephalin from X-ray diffraction: features important for recognition at opiate recepto. Science 1978; 199: 1214
  • Zalkin A., Forrester J. D., Templeton D. H. Ferrichrome A hemihydrate. Determination of crystal and molecular structur. J. Am. Chem. Soc. 1966; 88: 1810
  • Reed L. L., Johnson P. L. Solid state conformation of the C-terminal tripeptide of oxytocin, L-Pro-L-Leu-Gly-NH2·0.5 H2. J. Am. Chem. Soc. 1973; 95: 7523
  • LeComte C., Aubry A., Protas J., Boussard G., Maurraud M. Etude de la conformation molécuiaire à l'éiat solide de la N-acetyl-L-prolyl-D-lactyl-methylamid. Acta Crystallogr., Sec. B 1974; 30: 2343
  • Brown J. N., Teller R. G. Crystal structure and molecular conformation of the hydrated cyclic hexapeptidecyclo-(L-Ala-L-Pro-D-Phe)2. J. Am. Chem. Soc. 1976; 98: 7565
  • Karle I. L. 3 ← 1 and 4 ← 1 intramolecular hydrogen bonds in cyclo(Gly-Pro-Gly-D-Ala-Pro) (crystal structure analysis. Peptides. Halsted Press, New York 1977; 274
  • Karle I. L. Crystal structure and conformation of cyclo(glycylprolylglycyl-D-alanylpolyl) containing 4 ← 1 and 3 ← 1 intramolecular hydrogen bond. J. Am. Chem. Soc. 1978; 100: 1286
  • Kostansek E. C., Lipscomb W. N., Thiessen W. E. The crystal structure and conformation of the cyclic hexapeptide cyclo(Gly-L-Pro-D-Ala)2. J. Am. Chem. Soc. 1979; 101: 834
  • Gisin B. F., Steinrauf L. K. personal communication. 1978
  • Brown J. N., Yang C. H. The crystal and molecular structure of the cyclic hexapeptide cyclo-(Gly-Pro-D-Phe)2. J. Am. Chem. Soc. 1979; 101: 445
  • Karle I. L. Conformation of the cyclic pentapeptide Gly-L-Pro-L-Ser-D-Ala-L-Pro in the crystalline state and example of rotational “isomerism” between analog. J. Am. Chem. Soc. 1979; 101: 181
  • Flippen-Anderson J., Karle I. L. personal communication. 1978
  • Petcher T. J., Weber H.-P., Rüegger A. Crystal and molecular structure of an iodo-derivative of the cyclic undecapeptide cyclosporin . Helv. Chim. Acta 1976; 59: 1480
  • Farrar T. C., Becker E. D. Pulse and Fourier Transform NMR. Academic Press, New York 1971
  • Bovey F. A. High Resolution NMR of Macromolecules. Academic Press, New York 1972
  • Dwek R. A. Nuclear Magnetic Resonance in Biochemistry: Applications to Enzyme Systems. Clarendon Press, Oxford 1973
  • Wüthrich K. NMR in Biological Research: Peptides and Proteins. North-Holland, Amsterdam 1976
  • Kopple K. D., Schamper T. J. Determining solvent exposure of peptide protons by proton magnetic resonanc. Chemistry and Biology of Peptides, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1972; 75
  • Pitner T. P., Urry D. W. Proton magnetic resonance studies in trifluoroethanol. Solvent mixtures as a means of delineating peptide proton. J. Am. Chem. Soc. 1972; 94: 1399
  • Ovchinnikov Y. A., Ivanov V. T., Bystrov V. F., Miroshnikov A. I., Shepel E. N., Abdullaev N. D., Efremov E. S., Senyavina L. B. The conformation of gramicidin S and its N, N′-diacetyl derivative in solution. Biochem. Biophys. Res. Commun. 1970; 39: 217
  • Kopple K. D., Go A., Schamper T. J., Wilcox C. S. Conformation of cyclic peptides. VII. Cyclic hexapeptides containing the D-Phe-L-Pro sequenc. J. Am. Chem. Soc. 1973; 95: 6090
  • Pease L. G. Solution Conformations of (X-L-Pro-Y)2 Cyclic Hexapeptides: Sequence and Solvent as Conformational Determinants. Ph.D. thesis, Harvard University, Boston 1975
  • Davis D. G., Tosteson D. C. Nuclear magnetic resonance studies of the interactions of anions and solvent with cation complexes of valinomyci. Biochemistry 1975; 14: 3962
  • Watson C. Cyclic-(Gly-Pro-Gly(d2)-D-Ala-Pro): Study of a Cyclic Pentapeptide. B.A. thesis, Amherst College, Amherst, Mass 1976
  • Pease L. G., Watson C. Conformational and ion binding studies on a cyclic pentapeptide: evidence for β and γ turns in solutio. Peptides, M. Goodman, J. Meienhofer. Halsted Press, New York 1977; 346
  • Pease L. G., Watson C. Conformational and ion binding studies of a cyclic pentapeptide. Evidence for β and γ turns in solutio. J. Am. Chem. Soc. 1978; 100: 1279
  • Urry D. W., Long M. M. Conformations of the repeat peptides of elastin in solution: an application of protein and carbon-13 magnetic resonance to the determination of polypeptide secondary structur. CRC Crit. Rev. Biochem. 1976; 4: 1
  • Kopple K. D., Go A., Pilipaukas D. R. Studies of peptide conformation. Evidence for β structures in solution of linear tetrapeptides containing prolin. J. Am. Chem. Soc. 1975; 97: 6830
  • Llinás M., Klein M. P. Charge relay at the peptide band. A proton magnetic resonance study of solvation effects on the amide electron density distributio. J. Am. Chem. Soc. 1975; 97: 4731
  • Kopple K. D., Go A., Schamper T. J. Conformation of cyclic peptides. X. Conformational averaging in peptides with the sequence cyclo-(Gly-D-Xxx-L-Yyy)2. J. Am. Chem. Soc. 1978; 100: 4289
  • Kopple K. D., Ohnishi M., Go A. Conformations of cyclic peptides. III. Cyclo-pentaglycyl-tyrosyl and related compound. J. Am. Chem. Soc. 1969; 91: 4264
  • Glickson J. D., Cunningham W. D., Marshall G. R. Proton magnetic resonance study of angiotensin II (Asn1,Val5) in aqueous solutio. Chemistry and Biology of Peptides, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1972; 563
  • Urry D. W., Ohnishi T. Recurrence of β turns in repeat peptides of elastin: the hexapeptide Ala-Pro-Gly-Val-Gly-Val sequences and derivative. Peptides, Polypeptides and Proteins, E. R. Blout, F. A. Bovey, M. Goodman, N. Lotan. John Wiley & Sons, New York 1974; 230
  • Karplus M. Contact electron-spin coupling of nuclear magnetic resonanc. J. Chem. Phys. 1959; 30: 11
  • Bystrov V. F., Portnova S. L., Balashova T. A., Koz'min S. A., Gavrilov Y. D., Afanas'ev V. A. Some aspects of nmr techniques for the conformational analysis of peptide. Pure Appl Chem. 1973; 36: 19
  • Ramachandran G. N., Chandrasakaran R., Kopple K. D. Variation of the NH-C-H coupling constant with dihedral angle in the nmr spectra of peptide. Biopolymers 1971; 10: 2113
  • Aubry A., Giessner-Pettre C., Marraud M., Neel J. Caractéristiques géométriques de la sequence H-C-NH de l'isoquinuclidone-3 examinee dans differents etats physiques. Influence sur la constante de couplage vicinal JHαH. Biopolymers 1974; 13: 523
  • Demarco A., Llinás M., Wüthrich K. Analysis of the 3H-nmr spectra of ferrichrome peptides. II. The amide resonance. Biopolymers 1978; 17: 637
  • Barfield M., Gearhart H. L. Conformational dependence of vicinal H-N-C-H coupling constants in peptide. J. Am. Chem. Soc. 1973; 95: 641
  • Demarco A., Llinás M., Wüthrich K. Analysis of the 1H-nmr spectra of ferrichrome peptides. I. The non-amide proton. Biopolymers 1978; 17: 617
  • Bystrov V. F., Gavrilov Y. D., Ivanov V. T., Ovchinnikov Y. A. Refinement of the solution conformation of valinomycin with the aid of coupling constants from the 13C-nuclear-magnetic-resonance spectr. Eur. J. Biochem. 1977; 78: 63
  • Cowburn D., Fischman A. J., Live D. H., Agosta W. C., Wyssbrod H. R. An approach to the unequivocal determination of peptide conformation. Peptides, M. Goodman, J. Meienhofer. John Wiley & Sons, New York 1977; 322
  • Barfield M., Hruby V. J., Meraldi J.-P. The dependence of geminal H-H spin-spin coupling constants on θ and ψ angles of peptides in solutio. J. Am. Chem. Soc. 1976; 98: 1308
  • Ballardin A., Fischman A. J., Gibbons W. A., Roy J., Schwartz I. L., Smith C. W., Walter R., Wyssbrod H. Conformational studies on [Pro3, Gly4]-oxytocin in dimethyl sulfoxide by 1H nuclear magnetic resonance spectroscopy: evidence for a type II β-turn in the cyclic moiet. Biochemistry 1978; 17: 4443
  • Karplus S., Karplus M. Nuclear magnetic resonance determination of the angle ψ in peptide. Proc Natl. Acad. Sci. U.S.A. 1972; 69: 3204
  • Berger S., Roberts J. D. Nuclear magnetic resonance spectroscopy. 13C-15N coupling constants as a conformational prob. J. Am. Chem. Soc. 1974; 96: 6757
  • Noggle J. H., Schirmer R. E. The Nuclear Overhauser Effect. Chemical Applications. Academic Press, New York 1971
  • Rowan R., III, McCammon J. A., Sykes B. D. A study of the distances obtained from nuclear magnetic resonance nuclear Overhauser effect and relaxation time measurements in organic structure determination. Distances involving internally rotating methyl groups. Application to cis- and trans-crotonaldehyd. J. Am. Chem. Soc. 1974; 96: 4773
  • Shirmer R. E., Davis J. D., Noggle J. H., Hart P. A. Conformational analysis of nucleosides in solution by quantitative application of the nuclear Overhauser effec. J. Am. Chem. Soc. 1972; 94: 2561
  • Glickson J. D., Gordon S. L., Pitner T. P., Agresti D. G., Walter R. Intramolecular 1H-nuclear Overhauser effect study of the solution conformation of valinomycin in dimethyl sulfoxid. Biochemistry 1976; 15: 5721
  • Rae I. D., Stimson E. R., Scheraga H. A. Nuclear Overhauser effects and the conformation of gramicidin . Biochem. Biophys. Res. Commun. 1977; 77: 225
  • Jones C. R., Sikakana C. T., Kuo M., Gibbons W. A. Interproton distances for the β-turn residues of the peptide gramicidin S determined from nuclear Overhauser effect ratio. J. Am. Chem. Soc. 1978; 100: 5960
  • Bell R. A., Saunders J. K. Correlation of the intramolecular nuclear Overhauser effect with internuclear distanc. Can. J. Chem. 1970; 48: 1116
  • Leach S. J., Némethy G., Scheraga H. A. Use of proton nuclear Overhauser effects for the determination of conformations of amino acid residues in oligopeptide. Biochem. Biophys. Res. Commun. 1977; 75: 207
  • Howard J. C., Ali A., Scheraga H. A., Momany F. A. Investigation of the conformations of four tetrapeptides by nuclear magnetic resonance and circular dichroism spectroscopy, and conformational energy calculation. Macromolecules 1975; 8: 607
  • Pitner T. P., Walter R., Glickson J. D. Mechanism of the intramolecular 1H nuclear Overhauser effect in peptides and depsipeptide. Biochem. Biophys. Res. Commun. 1976; 70: 746
  • Urry D. W., Khaled M. A., Rapaka R. S., Okamoto K. Nuclear Overhauser enhancement evidence for inverse temperature dependence of hydrophobic side chain proximity in the polytetra-peptide of tropoelasti. Biochem. Biophys. Res. Commun. 1977; 79: 700
  • Von Dreele P. H., Rae I. D., Scheraga H. A. Nuclear magnetic resonance study of fibrinogen-like peptides and their structure in dimethyl sulfoxide and wate. Biochemistry 1978; 17: 956
  • Khaled M. A., Urry D. W. Nuclear Overhauser enhancement demonstration of the type II β-turn in repeat peptide of tropoelasti. Biochem. Biophys. Res. Commun. 1976; 70: 485
  • Smith I. C. P., Deslauriers R., Saito H., Walter R., Garrigou-Lagrange C., McGregor H., Sarantakis D. Carbon-13 nmr studies of peptide hormones and their component. Ann. N. Y. Acad. Sci. 1973; 222: 597
  • Grant D. M., Cheney B. V. Carbon-13 magnetic resonance. VII. Steric perturbation of the carbon-13 chemical shif. J. Am. Chem. Soc. 1967; 89: 5315
  • Madison V., Atreyi M., Deber C. M., Blout E. R. Cyclic peptides. IX. Conformations of a synthetic ion-binding cyclic peptide, cyclo-(Pro-Gly)3, from circular dichroism and 1H and 13C nuclear magnetic resonanc. J. Am. Chem. Soc. 1974; 96: 6725
  • Deber C. M., Madison V., Blout E. R. Why cyclic peptides?. Acc. Chem. Res. 1976; 9: 106
  • Pease L. G., Niu C. H., Zimmerman G. Solution conformation of cyclo-(Gly-Pro-Ser-D-Ala-Phe). Hydrogen-bonded reverse turns in cyclic pentapeptide. J. Am. Chem. Soc. 1979; 101: 184
  • Siemion I. Z., Wieland T., Pook K. H. Influence of the distance of the proline carbonyl from the β and γ carbon on the 13C chemical shift. Angew. Chem. Int. Ed. Engl. 1975; 14: 702
  • Urry D. W., Mitchell L. W., Ohnishi T. Solvent dependence of peptide carbonyl carbon chemical shifts and polypeptide secondary structures: the repeat tetrapeptide of elasti. Biochem. Biophys. Res. Commun. 1974; 59: 62
  • Llinás M., Wilson D. M., Klein M. P. Peptide hydrogen bonding. Conformation dependence of the carbonyl carbon-13 nuclear magnetic resonance chemical shifts in ferrichrome. A study by 13C-[15N) Fourier double resonance spectroscop. J. Am. Chem. Soc. 1977; 99: 6846
  • Smith I. C. P., Deslauriers R., Schaumburg K. Conformational mobility of peptides as evaluated from spin-lattice relaxation times of 13C and 2. Peptides: Chemistry, Structure and Biology, R. Walter, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1975; 97
  • Deslauriers R., Paiva A. C. M., Schaumburg K., Smith I. C. P. Conformational flexibility of angiotensin II. A carbon-13 spin-lattice relaxation stud. Biochemistry 1975; 14: 878
  • Niu C.-H., Pease L. G., Blout E. R. Cyclic peptides. XVIII. 13C spin-lattice relaxation times of (X-Pro-Y)2 cyclic hexapeptide. Biopolymers 1978; 17: 115
  • Hawkes G. E., Randall E. W., Bradley C. H. Theory and practice for studies of peptides by 15N nuclear magnetic resonance at natural abundance: gramicidin . Nature (London) 1975; 257: 767
  • Llinás M., Horsely W. J., Klein M. P. Nitrogen-15 nuclear magnetic resonance spectrum of alumichrome. Detection by a double resonance Fourier transform techniqu. J. Am. Chem. Soc. 1976; 98: 7554
  • Williamson K. L., Pease L. G., Roberts J. D. Conformational analysis by nuclear magnetic resonance spectroscopy: 15N nmr of a cyclic pentapeptid. J. Am. Chem. Soc. 1979; 101: 714
  • Khaled M. A., Renugopalakrishnan V., Urry D. W. Proton magnetic resonance and conformational energy calculations of repeat peptides of tropoelastin: the tetrapeptid. J. Am. Chem. Soc. 1976; 98: 7547
  • Pease L. G., Deber C. M., Blout E. R. Cyclic peptides. V. 1H and 13C nuclear magnetic resonance determination of the preferred β conformation for proline-containing cyclic hexapeptide. J. Am. Chem. Soc. 1973; 95: 258
  • Schwyzer R., Grathwohl Ch., Meraldi J. P., Tun-Kyi A., Vogel R., Wuthrich K. The solution conformation of cyclo-(Glycyl-L-prolyl-glycyl-glycyl-L-prolyl-glycyl. Helv. Chim. Acta 1972; 55: 2545
  • Kopple K. D., Schamper T. J., Go A. Conformation of cyclic peptides. VIII. Cyclic hexapeptides containing the L-Pro-D-Phe sequenc. J. Am. Chem. Soc. 1974; 95: 2597
  • Demel D., Kessler H. Conformation of cyclo [Pro-Phe-Gly-Phe-Gly]. Tetrahedron Lett. 1976; 2801
  • Bara Y. A., Friedrich A., Kessler H., Molter M. Conformation of peptides. II. 1H nmr investigation of the conformation of cyclo[Phe3-Gly2]. Chem. Ber. 1978; 111: 1045
  • Davis D. G., Gisin B. F., Tosteson D. C. Conformational studies of peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro)3, a cation-binding analogue of valinomyci. Biochemistry 1976; 15: 768
  • Easwaran K. R. K., Pease L. G., Blout E. R. Conformations of an ion-binding cyclic peptide analogue of valinomycin, cyclo-(L-Val-Gly-Gly-L-Pro)3. Biochemistry 1979; 18: 61
  • Patel D. J., Tonelli A. E. Solvent-dependent conformations of valinomycin in solutio. Biochemistry 1973; 12: 486
  • Patel D. J. Carbon framework of valinomycin and its metal ion complex in solutio. Biochemistry 1973; 12: 496
  • Llinás M., Klein M. P., Neilands J. B. Solution conformation of ferrichrome, a microbial iron transport cyclohexapeptide, as deduced by high resolution proton magnetic resonanc. J. Mol. Biol. 1970; 52: 399
  • Ivanov V. T., Miroshnikov A. I., Abdullaev N. D., Senyavina L. B., Arkhipova S. F., Uvarova N. N., Khalilulina K. K., Bystrov V. F., Ovchinnikov Y. A. Conformation of the Na+ complex of antamanide in solutio. Biochem. Biophys. Res. Commun. 1971; 42: 654
  • Patel D. J. Conformation of antamanide-sodium in solutio. Biochemistry 1973; 12: 677
  • Patel D. J., Tonelli A. E. A comparison of the solution and crystal conformation for the alkali metal ion complex of antamanid. Biochemistry 1974; 13: 788
  • Urry D. W., Ohnishi M., Walter R. Secondary structure of the cyclic moiety of the peptide hormone oxytocin and its deamino analo. Proc. Natl. Acad. Sci. U.S.A. 1970; 66: 111
  • Urry D. W., Walter R. Proposed conformation of oxytocin in solutio. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 956
  • Brewster A. I. R., Hruby V. J., Glasel J. A., Tonelli A. E. Proposed conformations of oxytocin and selected analogues in dimethyl sulfoxide as deduced from proton magnetic resonance studie. Biochemistry 1973; 12: 5294
  • Walter R., Wyssbrod H. R., Glickson J. D. Conformational studies on [3-D alaninej-oxytoxin and [4-D-alanine]-oxytocin in dimethyl sulfoxide by 1H nuclear magnetic resonance spectroscopy. Interpretation in terms of a β turn in the cyclic moiet. J. Am. Chem. Soc. 1977; 99: 7326
  • Madison V., Deber C. M., Blout E. R. Cyclic peptides. XVII. Metal and amino acid complexes of cyclo(Pro-Gly)., and analogues studied by nuclear magnetic resonance and circular dichrois. J. Am. Chem. Soc. 1977; 99: 4788
  • Sears D. W., Beychok S. Circular dichrois. Physical Principles and Techniques of Protein Chemistry, S. J. Leach. Academic Press, New York 1973; 445, Part C
  • Schellman J. A. Symmetry rules for optical rotatio. Acc. Chem. Res. 1968; 1: 144
  • Condon E. U., Altar W., Eyring H. One-electron rotatory powe. J. Chem. Phys. 1937; 5: 753
  • Kirkwood J. G. On the theory of optical rotatory powe. J. Chem. Phys. 1937; 5: 479
  • Moffitt W. Optical rotatory dispersion of helical polymer. J. Chem. Phys. 1956; 25: 467
  • Höhn E. G., Weigang O. E., Jr. Electron correlation models for optical activit. J. Chem. Phys. 1968; 48: 1127
  • Bayley P. M., Nielsen E. B., Schellman J. A. The rotatory properties of molecules containing two peptide groups: theor. J. Phys. Chem. 1969; 73: 228
  • Madison V. Conformational energy and circular dichroism computed for cyclo-(Pro-Gly)3. Biopolymers 1973; 12: 1837
  • Laiken S., Printz M., Craig L. C. Circular dichroism of the tyrocidines and gramicidin S-. J. Biol. Chem. 1969; 244: 4454
  • Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformatio. Biochemistry 1969; 8: 4108
  • Woody R. W. Improved calculation of the nn* rotational strength in polypeptide. J. Chem. Phys. 1968; 49: 4797
  • Woody R. W. Optical properties of polypeptides in the β-conformatio. Biopolymers 1969; 8: 669
  • Stimson E. R., Zimmerman S. S., Scheraga H. A. Conformational studies of oligopeptides containing proline and glycin. Macromolecules 1977; 10: 1049
  • Helbecque N., Loucheux-Lefebvre M.-H. Synthesis and circular dichroism studies of two polypeptides H-[Gly-(Pro)3]n-OH and H-[Gly-(Pro)4]n-O. Int. J. Pept. Protein Res. 1978; 11: 353
  • Greff D., Fermandjian S., Fromageot P., Khosla M. C., Smeby R. R., Bumpus F. M. Circular-dichroism spectra of truncated and other analogues of angiotensin I. Eur. J. Biochem. 1976; 61: 297
  • Chen Y.-H., Lo T.-B., Yang J. T. Optical activity and conformation of cobra neurotoxi. Biochemistry 1977; 16: 1826
  • Visser L., Louw A. I. The conformation of cardiotoxins and neurotoxins from snake venom. Biochim. Biophys. Acta 1978; 533: 80
  • Kawai M., Fasman G. A model β turn. Circular dichroism and infrared spectra of a tetrapeptid. J. Am. Chem. Soc. 1978; 100: 3630
  • Urry D. W., Ohnishi T. Studies on the conformations and interactions of elastin. Proton magnetic resonance of the repeating tetrame. Biopolymers 1974; 13: 1223
  • Brahms S., Brahms J., Spach G., Brack A. Identification of β, β-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichrois. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3208
  • Bush C. A., Sarkar S. K., Kopple K. D. Circular dichroism of β turns in peptides and protein. Biochemistry 1978; 17: 4951
  • Pease L. G., Gilbert D. A., Bingaman B. M., Freilich S. C. 1978, unpublished data
  • Urry D. W., Ruiter A. L., Starcher B. C., Hinners T. A. Conformational studies on polypeptide antibiotics. I. Circular dichroism studies on tyrocidine B, gramicidin S, and their hydrogenated derivative. Antimicrobial Agents Chemother. 1968; 87
  • Crippen G. M., Yang J. T. Conformation of N-acetyl-L-alanine-N′-methylamide in 1,2-dich-loroethane by circular dichroism and optical rotatory dispersio. J. Phys. Chem. 1974; 78: 1127
  • Smith J. A. Synthesis, Structure and Immunochemistry of Peptide Sequences in Globins and Staphylococcal Nuclease. Ph.D. thesis, University of Melbourne, Parkville, VicAustralia 1977
  • Cann J. R., Stewart J. M., Matsueda G. R. A circular dichroism study of the secondary structure of bradykini. Biochemistry 1973; 12: 3780
  • Madison V., Schellman J. Location of proline derivatives in conformational space. I. Conformational calculations; optical activity and nmr experiment. Biopolymers 1970; 9: 511
  • Chou P. Y., Fasman G. D. β-turns in protein. J. Mol. Biol. 1977; 115: 135
  • Urry D. W., Long M. M., Ohnishi T., Jacobs M. Circular dichroism and absorption of the polytetrapeptide of elastin: a polymeric model for the β-tur. Biochem. Biophys. Res. Commun. 1974; 61: 1427
  • Strickland E. H. Aromatic contributions to circular dichroism spectra of protein. CRC Crit. Rev. Biochem. 1974; 2: 113
  • Woody R. W. Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and protein. Biopolymers 1978; 17: 1451
  • Madison V., Schellman J. A. Location of proline derivatives in conformational space. II. Theoretical optical activit. Biopolymers 1970; 9: 569
  • Miyazawa T. Infrared spectra and helical conformation. Poly-α-Amino Acids, G. D. Fasman. Marcel Dekker, New York 1967; 69
  • Susi H. Infrared spectra of biological macromolecules and related system. Structure and Stability of Biological Macromolecules, S. N. Timasheff, G. D. Fasman. Marcel Dekker, New York 1969; 575
  • Hanlon S. Infrared studies on biopolymers and related model. Spectroscopic Approaches to Biomolecular Conformation, D. W. Urry. American Medical Association, Chicago 1970; 161
  • Fraser R. D. B., Suzuki E. Infrared method. Physical Principles and Techniques of Protein Chemistry, S. J. Leach. Academic Press, New York 1970; 213, Part B
  • Pimental G. C., McClellan A. L. The Hydrogen Bond. W. H. Freeman, San Francisco 1960
  • Shimanouchi T., Mizushima S. Intramolecular rotation and the structure of high polymers. I. The structure of polypeptide chai. Bull. Chem. Soc. Jpn. 1948; 21: 1
  • Mizushima S., Shimanouchi T., Tsuboi M., Souda R. Additional studies on the intramolecular hydrogen bonding in acetylglycine N-methylamid. J. Am. Chem. Soc. 1952; 74: 270
  • Tsuboi M., Shimanouchi T., Mizushima S. Near infrared spectra of compounds with two peptide bonds and the configuration of a polypeptide chain. VII. On the extended forms of polypeptide chain. J. Am. Chem. Soc. 1959; 81: 1406
  • Avignon M., Huong P. V., Lascombe J., Marraud M., Neal J. Etude, par spectroscopic infra-rouge, de la conformation de quelques composes peptideques modele. Biopolymers 1969; 8: 69
  • Smolíková J., Vítak A., Bláha K. Amino acids and peptides. CIII. Infrared spectra and conformations of methylamides of N-acylated amino acids with a hydroxyl group in the side chai. Collect. Czech. Chem. Commun. 1971; 36: 2424
  • Lewis P. N., Momany F. A., Scheraga H. A. Energy parameters in polypeptides. VI. Conformational energy analysis of the N-acetyl N′-methylamides of the twenty naturally occurring amino acid. Isr. J. Chem. 1973; 11: 121
  • Burgess A. W., Scheraga H. A. Stable conformations of dipeptide. Biopolymers 1973; 12: 2177
  • Grenie Y., Avignon M., Garrigou-Lagrange C. Molecular structure study of dipeptides isolated in an argon matrix by infrared spectroscop. J. Mol. Struct. 1975; 24: 293
  • Marraud M., Neel J., Avignon M., Huong P. Y. Contribution a l'étude conformationnelle des composés dipeptideques en solutio. J. Chim. Phys. 1970; 67: 959
  • Boussard G., Marraud M., Neel J. Etude experimentale du mode de repliement β dans quelques molécules tripeptideques modèles. Interprétation des spectres d'absorption infraroug. J. Chim. Phys. 1974; 71: 1081
  • von Dreele P. H., Stenhouse I. A. A method for assigning hydrogen bonds using isotope effects in nuclear magnetic resonance and infrared spectroscop. J. Am. Chem. Soc. 1974; 96: 7546
  • Stanley H. E., Asher I. M., Rothschild K. J., Phillies G. D. J., Carew E. B., Bansil R., Michaels I. A. Resonance and non-resonance Raman spectroscopy: a probe of peptide and protein conformatio. Peptides: Chemistry, Structure and Biology, R. Walter, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1975; 227
  • Stephens R. M. Infrared and Raman spectroscop. Amino-acids, Peptides and Proteins, R. C. Sheppard. The Chemical Society, London 1974; Vol. 5: 223
  • Avignon M., Garrigou-Lagrange C., Bothorel P. Conformational analysis of dipeptides in aqueous solution. II. Molecular structure of glycine and alanine dipeptides by depolarized Rayleigh scattering and laser Raman spectroscop. Biopolymers 1973; 12: 1651
  • Koyama Y., Shimanouchi T. An experimental study of the internal rotation potentials about the N-Cα and Cα-C′ axes of the peptide backbon. Peptides, Polypeptides and Proteins, E. R. Blout, F. A. Bovey, M. Goodman, N. Lotan. John Wiley & Sons, New York 1974; 396
  • Koyama Y., Shimanouchi T. Conformations of model compounds of protein. I. Acetyl glycine N-methylamid. Biopolymers 1968; 6: 1037
  • Tu A. T., Bjamason J. B., Hruby V. J. Conformation of oxytocin studies by laser Raman spectroscop. Biochim. Biophys. Acta 1978; 533: 530
  • Donzel B., Gilon C., Blagdon D., Erisman M., Burnier J., Goodman M., Rivier J., Monahan M. Conformational studies on the luteinizing hormone releasing factor (LRF) and related compound. Peptides: Chemistry, Structure and Biology, R. Walter, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1975; 165
  • Deranleau D. A., Schwyzer R. Charge transfer as a molecular probe in systems of biological interest. Intermolecular interactions of the indole-pyridinium typ. Biochemistry 1969; 9: 126
  • Scheraga H. A. Calculations of conformations of polypeptide. Adv. Phys. Org. Chem. 1968; 6: 103
  • Momany F. A., McGuire R. F., Burgess A. W., Scheraga H. A. Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acid. J. Phys. Chem. 1974; 79: 2361
  • Scheraga H. A. Conformational energy calculations on peptide. Peptides, M. Goodman, J. Meienhofer. Halsted Press, New York 1977; 246
  • Ramachandran G. N., Chandrasekaran R. Conformational energy map of a dipeptide unit in relation to infrared and nuclear magnetic resonance dat. Biopolymers 1971; 10: 935
  • Tonelli A. E., Brewster A. I. The conformational characteristics in solution of the cyclic hexa-peptide Gly-Gly-D-Ala-D-Ala-Gly-Gl. J. Am. Chem. Soc. 1972; 94: 2851
  • Ramakrishnan C., Sarathy K. P. Stereochemical studies on cyclic peptides. V. Conformational analysis of cyclohexapeptide. Int. J. Protein Res. 1969; 1: 103
  • Sarathy K. P., Ramakrishnan C. Stereochemical studies on cyclic peptides. VII. Effect of different types of energies on the hydrogen-bonded conformations of cyclic hexapeptide. Int. J. Protein Res. 1972; 4: 1
  • Go N., Scheraga H. A. Calculation of the conformation of cyclo-hexaglycy. Macromolecules 1973; 6: 525
  • Go N., Scheraga H. A. Calculation of the conformation of cyclo-hexaglycyl (corrections. Macromolecules 1974; 7: 148
  • Schwyzer R., Ludescher U. Untersuchungen uber die Konformation des cyclischen Hexapeptids cyclo-Glycyl-L-prolyl-glycyl-glycyl-L-prolyl-glycyl mittels protonenmagnetischer Resonanz und Par-allen zum cyclodecapeptid Gramicidin . Helv. Chim. Acta 1969; 52: 2033
  • Madison V. S. Guides to the evaluation of peptide conformatio. Peptides, Polypeptides and Protein, E. R. Blout, F. A. Bovey, M. Goodman, N. Lotan. John Wiley & Sons, New York 1974; 89
  • Torchia D. A., di Corato A., Wong S. C. K., Deber C. M., Blout E. R. Cyclic peptides. II. Solution conformations of cyclo(Prolylserylglycylprolylserylglycyl) from nuclear magnetic resonanc. J. Am. Chem. Soc. 1972; 94: 609
  • Torchia D. A., Wong S. C. K., Deber C. M., Blout E. R. Cyclic peptides. III. Solution conformations of cyclo(Serylprolylglycylserylprolylglycyl) from nuclear magnetic resonanc. J. Am. Chem. Soc. 1972; 94: 616
  • Tonelli A. E. An approximate treatment of the conformational characteristics of the cyclic hexa-L-peptides (Pro-Ser-Gly-Pro-Ser-Gly) and (Ser-Pro-Gly-Ser-Pro-Gly. J. Am. Chem. Soc. 1972; 94: 346
  • Momany F. A., Vanderkooi G., Tuttle R. W., Scheraga H. A. Minimization of polypeptide energy. IV. Further studies of gramicidin . Biochemistry 1969; 8: 744
  • De Santis P., Liquori A. M. Conformation of gramicidin . Biopolymers 1971; 10: 699
  • Dygert M., Go N., Scheraga H. A. Use of a symmetry condition to compute the conformation of gramicidin . Macromolecules 1975; 8: 750
  • Deber C. M., Torchia D. A., Wong S. C. K., Blout E. R. Conformational interconversions of the cyclic hexapeptide cyclo (Pro-Gly)3. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 1825
  • Simon I., Némethy G., Scheraga H. A. Conformational energy calculations of the effects of sequence variations on the conformations of two tetrapeptide. Macromolecules 1978; 11: 797
  • Hurwitz F. I., Hopfinger A. J. Conformational analysis of a chain reversal in α-chymotrypsi. Int. J. Pept. Protein Res. 1976; 8: 543
  • Chandrasekaran R., Prasad B. V. V. V. Conformation of polypeptides containing alternating L-amino and D-aminoacid. CRC Crit. Rev. Biochem. 1978; 5: 125
  • Hiltner W. A., Walton A. G. Energetics of folding of a lysozyme β-ben. J. Mol. Biol. 1975; 92: 567
  • Nishikawa K., Momany F. A., Scheraga H. A. Low-energy structures of two dipeptides and their relationship to bend conformation. Macromolecules 1974; 7: 797
  • Zimmerman S. S., Scheraga H. A. Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N′-methylamides of Pro-X and X-Pro dipeptide. Biopolymers 1977; 16: 811
  • Zimmerman S. S., Scheraga H. A. Influence of local interactions on protein structure. II. Conformational energy studies of N-acetyl-N′-methylamides of Ala-X and X-Ala dipeptide. Biopolymers 1978; 17: 1849
  • Zimmerman S. S., Scheraga H. A. Influence of local interactions on protein structure. III. Conformational energy studies of N-acetyl-N′-methylamides of Gly-X and X-Gly dipeptide. Biopolymers 1978; 17: 1871
  • Zimmerman S. S., Scheraga H. A. Influence of local interactions on protein structure. IV. Conformational energy studies of N-acetyl-N′-methylamides of Ser-X and X-Ser dipeptide. Biopolymers 1978; 17: 1885
  • Renugopalakrishnan V., Khaled M. A., Urry D. W. Proton magnetic resonance and conformational energy calculations of repeat peptides of tropoelastin: the pentapeptid. J. Chem. Soc. Perkin Trans. 1978; 2: 111
  • Renugopalakrishnan V., Khaled M. A., Rapaka R. S., Urry D. W. Proton magnetic resonance and conformational energy calculations of repeat peptides of tropoelastin: a permutation of the hexapeptid. Biochim. Biophys. Acta 1978; 536: 421
  • Kang S., Walter R. Theoretical studies on Pro-Leu-Gly-NH2 conformatio. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1199
  • Blagdon D. E., Rivier J., Goodman M. Proposed tertiary structure for the hypothalamic thyrotropin-releasing facto. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1166
  • Burgess A. W., Momany F. A., Scheraga H. A. Conformational analysis of thyrotropin releasing facto. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1456
  • Momany F. A. Conformational analysis of methionine-enkephalin and some analog. Biochem. Biophys. Res. Commun. 1977; 75: 1098
  • Isogai Y., Némethy G., Scheraga H. A. Enkephalin: conformational analysis by means of empirical energy calculation. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 414
  • DeCoen J. L., Humblet C., Koch M. H. Theoretical conformational analysis of met-enkephali. FEBS Lett. 1977; 73: 38
  • Loew G. H., Burt S. K. Energy conformation study of met-enkephalin and its D-Ala2 analogue and their resemblance to rigid opiate. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 7
  • Anderson J. S., Scheraga H. A. Conformational energy calculations on the contraceptive tetra-peptide H-Thr-Pro-Arg-Lys-O. Macromolecules 1978; 11: 812
  • Tonelli A. E. Approximate treatment of the conformational characteristics of the cyclic deca-L-peptide antamanide and its sodium complex in solutio. Biochemistry 1973; 12: 689
  • Pullman B., Pullman A. Molecular orbital calculations on the conformation of amino acid residues of protein. Adv. Protein Chem. 1974; 28: 348
  • Flurry R. L., Jr., Abdulnur S. F., Bopp J. M., Jr. Studies of the thyrotropin-releasing factor. II. Conformations of TRF and some analog. Biopolymers 1978; 17: 2679
  • Matthews B. W. X-ray structure of protein. The Proteins, H. Neurath, R. L. Hill. Academic Press, New York 1977; Vol. III: 403
  • Campbell I. D., Dobson C. M., Williams R. J. P. N.m.r. studies on the structure of lysozyme in solutio. Proc. R. Soc. London Ser. A 1975; 345: 41
  • Campbell I. D., Dobson C. M., Williams R. J. P. Proton magnetic resonance studies of tyrosine residues of hen lysozyme; assignment and detection of conformational mobilit. Proc. R. Soc. London Ser. B 1975; 189: 503
  • Wagner G., DeMarco A., Wüthrich K. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H nmr studie. Biophys. Struct. Mechanism 1976; 2: 139
  • DeMarco A., Tschesche H., Wagner G., Wüthrich K. 1H nmr studies at 360 Mhz of the methyl groups in native and chemically modified basic pancreatic trypsin inhibitor (BPTI. Biophys. Struct. Mechanism 1977; 3: 303
  • Snyder G. H., Rowan R., III, Sykes B. D. Complete tyrosine assignments in the high-field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor selectively reduced and carboxamidomethylated at cystine 14–3. Biochemistry 1976; 15: 2275
  • Dwek R. A., Wain-Hobson S., Dower S. K., Gettins P., Sutton B. J., Perkin S. J., Givol D. Structure of an antibody combining site by magnetic resonanc. Nature (London) 1977; 266: 31
  • Morris A. T., Dwek R. A. Some recent applications of the use of paramagnetic centres to probe biological systems using nuclear magnetic resonanc. Q. Rev. Biophys. 1977; 10: 421
  • Perkins S. J., Wüthrich K. Structural interpretation of lanthanide binding to the basic pancreatic trypsin inhibitor by 1H nmr at 360 Mh. Biochim. Biophys. Acta 1978; 536: 406
  • Gordon S. L., Wúthrich K. Transient proton-proton Overhauser effects in horse ferrocytochrome. J. Am. Chem. Soc. 1978; 100: 7094
  • Némethy G., Scheraga H. A. Protein foldin. Q. Rev. Biophys. 1977; 10: 239
  • Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequenc. Adv. Enzymol. Relat. Areas Mol. Biol. 1978; 47: 45
  • Chou P. Y., Fasman G. D. Empirical predictions of protein conformatio. Annu. Rev. Biochem. 1978; 47: 251
  • Burgess A. W., Ponnuswamy P. I., Scheraga H. A. Analysis of conformations of amino acids of prediction of backbone topography in protein. Isr. J. Chem. 1974; 12: 259
  • Bunting J. R., Athey T. W., Cathou R. E. Backbone folding of immunoglobulin light and heavy chains: a comparison of predicted β-bend position. Biochim. Biophys. Acta 1972; 285: 60
  • Krigbaum W. R., Knutton S. P. Prediction of the amount of secondary structure in a globular protein from its amino acid compositio. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2809
  • Rose G., Seltzer J. A new algorithm for finding the peptide chain turns in a globular protei. J. Mol. Biol. 1977; 113: 153
  • Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from protein. Biochemistry 1974; 13: 211
  • Chou P. Y., Fasman G. D. Prediction of protein conformatio. Biochemistry 1974; 13: 222
  • Nagano K. Logical analysis of the mechanism of protein folding. II. The nucleation proces. J. Mol. Biol. 1974; 84: 337
  • Argos P., Hanei M., Garavito R. M. The Chou-Fasman secondary structure prediction method with an extended data bas. FEBS Lett. 1978; 93: 19
  • Nagano K. Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops and β-structures from primary structur. J. Mol. Biol. 1973; 75: 401
  • Levitt M., Greer J. Automatic identification of secondary structure in globular protein. J. Mol. Biol. 1977; 114: 181
  • Levitt M. Conformational preferences of amino acids in globular protein. Biochemistry 1978; 17: 4277
  • Chou P. Y., Fasman G. D. Prediction of protein structur. Peptides, M. Goodman, J. Meienhofer. Halsted Press, New York 1977; 284
  • Tanaka S., Scheraga H. A. Statistical mechanical treatment of protein conformation. IV. A four-state model for specific-sequence copolymers of amino acid. Macromolecules 1976; 9: 812
  • Rose G. D., Wetlaufer D. B. The number of turns in globular protein. Nature (London) 1977; 268: 769
  • Rose G. D. Prediction of chain turns in globular proteins on a hydrophobic basi. Nature (London) 1978; 272: 586
  • Matheson R. R., Jr., Scheraga H. A. A method for predicting nucleation sites for protein folding based on hydrophobic contact. Macromolecules 1978; 11: 819
  • Robson B., Pain R. H. Analysis of the code relating sequence to conformation in globular proteins: the distribution of residue pairs in turns and kinks in the backbone chai. Biochem. J. 1974; 141: 869
  • Maxfield F. R., Scheraga H. A. Status of empirical methods for the prediction of protein backbone topograph. Biochemistry 1976; 15: 5138
  • Denisov D. A. Pattern recognition methods for prediction of secondary structure of proteins. II. Elimination of “contradicting” signs and prediction of turns of polypeptide chains in protein. J. Theor. Biol. 1975; 55: 107
  • Finkelstein A. V., Ptitsyn O. B. A theory of protein molecule self-organization. IV. Helical and irregular local structures of unfolded protein chain. J. Mol. Biol. 1976; 103: 15
  • Atassi M. Z. Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of protein. Immunochemistry 1975; 12: 423
  • Atassi M. Z. The complete antigenic structure of myoglobin: approaches and conclusions for antigenic structures of protein. Immunochemistry of Proteins, M. Z. Atassi. Plenum Press, New York 1977; Vol. 2: 77
  • Kazim A. L., Atassi M. Z. Prediction and confirmation by synthesis of two antigenic sites in human hemoglobin by extrapolation from the known antigenic structure of sperm-whale myoglobi. Biochem. J. 1977; 167: 275
  • Atassi M. Z., Smith J. A. A proposal for the nomenclature of antigenic sites in peptides and protein. Immunochemistry 1978; 15: 609
  • Atassi M. Z., Habeeb A. F. S. A. The antigenic structure of hen egg-white lysozyme: a model for disulfide-containing protein. Immunochemistry of Proteins, M. Z. Atassi. Plenum Press, New York 1977; Vol. 2: 177
  • Atassi M. Z. The precise and entire antigenic structure of lysozyme: implications of “surface-stimulation” synthesis and the molecular features of protein antigenic site. Immunology of Proteins and Peptides, M. A. Atassi, A. B. Stavitsky. Plenum Press, New York 1978; Vol. 1: 41
  • Atassi M. Z. Precise determination of the entire antigenic structure of lysozyme: molecular features of protein antigenic structures and potential of “surface-stimulation” synthesis, a powerful new concept for protein binding site. Immunochemistry 1978; 15: 909
  • Arnon R., Sela M. Antibodies to a unique region in lysozyme provoked by a synthetic antigen conjugat. Proc. Natl. Acad. Sci. U.S.A. 1969; 62: 163
  • Maron E., Shiozawa C., Arnon R., Sela M. Chemical and immunological characterization of a unique antigenic region in lysozym. Biochemistry 1971; 10: 763
  • Arnon R., Teicher E., Scheraga H. A. Correlation of conformation and biological activity in lysozyme “loop” homolog. J. Mol. Biol. 1974; 90: 403
  • Fainaru M., Wilson A. C., Arnon R. Correlation of structural differences in several bird lysozymes and their loop regions with immunological cross-reactivit. J. Mol. Biol. 1974; 84: 635
  • Najjar V. A., Nishioka K. Tuftsin: a natural phagocytosis stimulating peptid. Nature (London) 1970; 228: 672
  • Najjar V. A., Constantopoulos A. A new phagocytosis-stimulating tetrapeptide hormone, tuftsin, and its role in diseas. J. Reticuloendothel. Soc. 1972; 12: 197
  • Stabinsky Y., Gottlieb P., Zakuth V., Spirer Z., Fridkin M. Specific binding sites for the phagocytosis stimulating peptide tuftsin on human polymorphonuclear leukocytes and monocyte. Biochem. Biophys. Res. Commun. 1978; 83: 599
  • Fridkin M., Stabinsky Y., Zakuth V., Spirer Z. Synthesis, structure-activity relationships and radioimmunoassay of tuftsi. Peptides, 1976, A. Loffet. Editions de l'Université de Bruxelles, Belgique 1976; 541
  • Konopinska D., Nawrocka E., Siemion I. Z., St. Szymaniec Slopek S. Synthetic and conformational studies with tuftsin and its analogue. Peptides 1976, A. Loffet. Editions de l'Université de Bruxelles, Belgique 1976; 535
  • Fridkin M., Stabinsky Y., Zakuth V., Spirer Z. Tuftsin and some analogs: synthesis and interaction with human polymorphonuclear leukocyte. Biochim. Biophys. Acta 1977; 496: 203
  • König W., Seiler F. R. Tetrapeptides with phagocytosis-stimulating actio. Chem. Absts. 1975; 83: 10892
  • Matsuura S., Takasaki A., Hiratani H., Kotera T., Fujiwara S. Tetrapeptide promoting phagocytosis activity of the leukocyt. Chem. Absts. 1975; 83: 114937
  • Hayward C. F., Morley J. S. The effect of reversal of the direction of peptide bonds on the interaction between peptide hormones and receptor. Peptides 1974, Y. Wolman. John Wiley & Sons, New York 1975; 287
  • Blumenstein M., Najjar V. A. 1978, unpublished data
  • Fitzwater S., Hodes Z. I., Scheraga H. A. Conformational energy study of tuftsi. Macromolecules 1978; 11: 805
  • Tzehoval E., Segal S., Stabinsky Y., Fridkin M., Spirer Z., Feldman M. Tuftsin (an Ig-associated tetrapeptide) triggers the immunogenic function of macrophages. Implications for activation of programmed cell. Proc. Natl. Acad. Sci. U.S. A. 1978; 75: 3400
  • Carnegie P. R. Digestion of an Arg-Pro bond by trypsin in the encephalitogenic basic protein of human myeli. Nature 1969; 223: 958
  • Uy R., Wold F. Posttranslational covalent modification of protein. Science 1977; 198: 890
  • Protein Phosphorylation in Control Mechanisms, F. Huijing, E. Y. C. Lee. Academic Press, New York 1973
  • Taborsky G. Phosphoprotein. Adv. Protein Chem. 1974; 28: 1
  • Roses A. D., Appel S. H. Phosphorylation of component a of the human erythrocyte membrane in myotonic muscular dystroph. J. Membr. Biol. 1975; 20: 51
  • Roses A. D., Roses M. J., Miller S. E., Hull K. L. Jr., and Appel, S. H., Carrier detection in Duchenne muscular dystroph. N. Engl. J. Med. 1976; 294: 193
  • Beutler E., Guinto E., Johnson C. Human red cell protein kinase in normal subjects and patients with hereditary spherocytosis, sickle cell disease, and autoimmune hemolytic anemi. Blood 1976; 48: 887
  • Greenquist A. C., Shohet S. B. Phosphorylation in erythrocyte membranes from abnormally shaped cell. Blood 1976; 48: 877
  • Wyatt J. L., Greenquist A. C., Shohet S. B. Analyses of phosphorylated tryptic peptide of spectrin from human erythrocyte membran. Biochem. Biophys. Res. Commun. 1977; 79: 1279
  • Hosey M., Tao M. Altered erythrocyte membrane phosphorylation in sickle cell diseas. Nature (London) 1976; 263: 424
  • Williams R. E. Phosphorylated sites in substrates of intracellular protein kinases: a common feature in amino acid sequence. Science 1976; 192: 473
  • Small D., Chou P. Y., Fasman G. D. Occurrence of phosphorylated residues in predicted β-turns: implications for β-turn participation in control mechanism. Biochem. Biophys. Res. Commun. 1977; 79: 341
  • Neuberger A., Gottschalk A., Marshall R. D., Spiro R. G. Carbohydrate-peptide linkages in glycoproteins and methods for their elucidatio. Glycoproteins: Their Composition, Structure and Function, A. Gottschalk. Elsevier, Amsterdam 1972; Vol. 5: 450, Part A
  • Marshall R. D. The nature and metabolism of the carbohydrate-peptide linkages of glycoprotein. Biochem. Soc. Symp. 1974; 40: 17
  • Aubert J.-P., Biserte G., Loucheux-Lefebvre M.-H. Carbohydrate-peptide linkage in glycoprotein. Arch. Biochem. Biophys. 1976; 175: 410
  • Waechter C. J., Lennarz W. J. The role of polyprenol-linked sugars in glycoprotein synthesi. Annu. Rev. Biochem. 1976; 45: 95
  • Pless D. D., Lennarz W. J. Enzymatic conversion of proteins to glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 134
  • Struck D. K., Lennarz W. J., Brew K. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoprotein. J. Biol. Chem. 1978; 253: 5786
  • Kronquist K. E., Lennarz W. J. Enzymatic conversion of proteins to glycoproteins by lipid-linked saccharides: a study of potential exogenous acceptor protein. J. Supramol. Struct. 1978; 8: 51
  • Ronin C., Granier C., van Reitschoten J., Bouchilloux S. Enzymatic transfer of oligosaccharide from oligosaccharide-lipids to an Asn-Ala-Thr containing heptapeptid. Biochem. Biophys. Res. Commun. 1978; 81: 772
  • Baxter E., Muir H. The nature of the protein moieties of cartilage proteoglycans of pig and o. Biochem. J. 1975; 149: 657
  • Hardingham T. E., Ewins R. J. F., Muir H. Cartilage proteoglycans: structure and heterogeneity of the protein core and the effects of specific protein modifications on the binding to hyaluronat. Biochem. J. 1976; 157: 127
  • Robinson H. C., Horner A. A., Höök M., Ögren S., Lindahl U. A proteoglycan form of heparin and its degradation to single-chain molecule. J. Biol. Chem. 1978; 253: 6687
  • Bhatnagar R. S., Rapaka R. S., Urry D. W. Interaction of polypeptide models of elastin with prolyl hydroxylas. FEBS Lett. 1978; 95: 61
  • Brahmachari S. K., Ananthanarayanan V. S. Conformational criteria for the enzymatic hydroxylation of proline in collage. Curr. Sci. 1978; 47: 107
  • Rosenbloom J., Harsh M., Jimenez S. A. Hydroxyproline content determines the denaturation temperature of chick tendon collage. Arch. Biochem. Biophys. 1973; 158: 478
  • Berg R. A., Prockop D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collage. Biochem. Biophys. Res. Commun. 1973; 52: 115
  • Torchia D. A. The poly (hydroxy-L-proline) ring conformation determined by proton magnetic resonanc. Macromoleculcs 1972; 5: 566
  • Ramachandran G. N., Bansal M., Bhatnagar R. S. A hypothesis on the role of hydroxyproline in stabilizing collagen structur. Biochim. Biophys. Acta 1973; 322: 166
  • Ramachandran G. N., Bansal M., Ramakrishnan C. Hydroxyproline stabilizes both intrafibrillar structure as well as interprotofibrillar linkages in collage. Curr. Sci. 1975; 44: 1
  • Urry D. W., Mitchell L. W., Ohnishi T., Long M. M. Proton and carbon magnetic resonance studies of the synthetic polypentapeptide of elasti. J. Mol, Biol. 1975; 96: 101
  • Rapaka R. S., Urry D. W. Coacervation of sequential polypeptide models of tropoelastin. Synthesis of H-(Val-Ala-Pro-Gly)n-Val-OMe and H-(Val-Pro-Gly-Gly)n-Val-OM. Int. J. Pep. Protein Res. 1978; 11: 97
  • Rapaka R. S., Okamoto K., Urry D. W. Non-elastomeric polypeptide models of elastin. Synthesis of polyhexapeptides and a cross-linked polyhexapeptid. Int. J. Pep. Protein Res. 1978; 11: 109
  • Rapaka R. S., Okamoto K., Urry D. W. Coacervation properties in sequential polypeptide models of elasti. Int. J. Pep. Protein Res. 1978; 12: 81
  • Foster J. A., Bruenger E., Gray W. R., Sandberg L. B. Isolation and amino acid sequences of tropoelastin peptide. J. Biol. Chem. 1973; 248: 2876
  • Feeney R. E., Yeh Y. Antifreeze proteins from fish blood. Adv. Prot. Chem. 1978; 32: 191
  • Morris H. R., Thompson M. R., Osuga D. T., Ahmed A. I., Chan S. M., Vandenheede J. R., Feeney R. E. Antifreeze glycoproteins from the blood of an antarctic fish: the structure of the proline-containing glycopeptide. J. Biol. Chem. 1978; 253: 5155
  • DeVries A. L. Survival at freezing temperatur. Biochemical and Biophysical Perspectives in Marine Biology, D. C. Malins, J. R. Sargent. Academic Press, London 1974; Vol. 1: 290
  • Feeney R. E. A biological antifreez. Am. Sci. 1974; 62: 712
  • Osuga D. T., Feeney R. E. Antifreeze glycoproteins from arctic fis. J. Biol. Chem. 1978; 253: 5338
  • Osuga D. T., Ward F. C., Yeh Y., Feeney R. E. Cooperative functioning between antifreeze glycoprotein. J. Biol. Chem. 1978; 253: 6669
  • DeVries A. L., Lin Y. Structure of a peptide antifreeze and mechanism of adsorption to ic. Biochim. Biophys. Acta 1977; 495: 388
  • Loucheux-Lefebvre M.-H. Predicted β-turns in peptide and glycopeptide anti-freeze. Biochem. Biophys. Res. Commun. 1978; 81: 1352
  • Raymond J. A., DeVries A. L. Circular dichroism of protein and glycoprotein fish antifreeze. Biopolymers 1977; 16: 2575
  • Lin Y., Duman J. G., DeVries A. L. Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fis. Biochem. Biophys. Res. Commun. 1972; 46: 87
  • Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activit. Nature (London) 1975; 258: 577
  • Iversen L. Chemical identification of a natural opiate receptor agonist in brai. Nature, (London) 1975; 258: 567
  • Jones C. R., Gibbons W. A., Garsky V. Proton magnetic resonance studies of conformation and flexibility of enkephalin peptide. Nature (London) 1976; 262: 779
  • Garbay-Jaureguiberry C., Roques B. P., Oberlin R., Anteunis M., Lala A. K. Preferential conformation of the endogenous opiate-like pentapeptide met-enkephalin in DMSO-d6 solution determined by high field 1H nm. Biochem. Biophys. Res. Commun. 1976; 71: 558
  • Bleich H. E., Cutnell J. D., Day A. R., Freer R. J., Glasel J. A., McKelvy J. F. Preliminary analysis of 1H and 13C spectral and relaxation behavior in methionine-enkephali. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2589
  • Jones C. R., Alper J. B., Kuo M.-C., Gibbons W. A. Multiple conformations of the zwitter-ionic and cationic forms of enkephalins and other peptide. Peptides, M. Goodman, J. Meienhofer. Halsted Press, New York 1977; 329
  • Khaled M. A., Long M. M., Thompson W. D., Bradley R. J., Brown G. B., Urry D. W. Conformational states of enkephalins in solutio. Biochem. Biophys. Res. Commun. 1977; 76: 224
  • Combrisson S., Roques B. P., Oberlin R. Analyse conformationelle de la met-enkephaline par etude en RMN 13C des temps de relaxation longitudinale T1. Tetrahedron Lett. 1976; 3455
  • Tancréde P., Deslauriers R., McGregor W. H., Ralston E., Sarantakis D., Somorjai R. L., Smith I. C. P. A carbon-13 nuclear magnetic resonance study of the molecular dynamics of methionine-enkephalin and α-endorphin in aqueous solutio. Biochemistry 1978; 17: 2905
  • Schiller P. W., Yam C. F., Lis M. Evidence for topographical analogy between methionine-enkephalin and morphine derivative. Biochemistry 1977; 16: 1831
  • Bradbury A. F., Smyth D. G., Snell C. R. Biosynthetic origin and receptor conformation of methionine enkephali. Nature (London) 1976; 260: 165
  • Horn A. S., Rodgers J. R. Structural and conformational relationships between the enkephalins and the opiate. Nature (London) 1976; 260: 795
  • Walter R., Bernal I., Johnson L. F. Has the MSH-release-inhibiting hormone a preferred conformation?. Chemistry and Biology of Peptides, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1972; 131
  • Frič I., Buděšinsky M., Brtník F., Zaoral M. The conformation of C-terminal tripeptides of neurohypophyseal hormones. Proton magnetic resonance and circular dichroism studie. Collect. Czech. Chem. Commun. 1976; 41: 1704
  • Ralston E., De Coen J.-L., Walter R. Tertiary structure of H-Pro-Leu-Gly-NH2, the factor that inhibits release of melanocyte stimulating hormone, derived by conformational energy calculation. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1142
  • Montagut M., Lemanceau B., Bellocq A.-M. Conformational analysis of thyrotropin releasing factor by proton magnetic resonance spectroscop. Biopolymers 1974; 13: 2615
  • Donzel B., Rivier J., Goodman M. Conformational studies on the hypothalamic thyrotropin releasing factor and related compounds by 1H nuclear magnetic resonance spectroscop. Biopolymers 1974; 13: 2631
  • Deslauriers R., Garrigou-Lagrangc C., Bellocq A. M., Smith I. C. P. Carbon-13 nuclear magnetic resonance studies on thyrotropin-releasing factor and related peptide. FEBS Lett. 1973; 31: 59
  • Glickson J. D., Cunningham W. D., Marshall G. R. Proton magnetic resonance study of angiotensin II (Asn1Val5) in aqueous solutio. Biochemistry 1973; 12: 3684
  • Ivanov V. T., Filatova M. P., Reissman Z., Reutova T. O., Efremov E. S., Pashkov V. S., Galaktionov S. G., Grigoryan G. L., Ovchinnikov Y. A. The solution conformation of bra-dykini. Peptides: Chemistry, Biology and Structure, R. Walter, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1975; 151
  • Glickson J. D., Urry D. W., Havran R. T., Walter R. Method for correlation of proton magnetic resonance assignments in different solvents: conformational transition of oxytocin and lysine vasopressin from dimethylsulfoxide to wate. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2566
  • Walter R., Smith I. C. P., Deslauriers R. The conformation of oxytocin in dimethylsulfoxide as revealed by carbon-13 spin-lattice relaxation time. Biochem. Biophys. Res. Commun. 1974; 58: 216
  • Donzel B., Sakarellos C., Goodman M. Study of the conformational and dynamic properties of the luteinizing hormone-releasing factor and various analogs using intramolecular charge transfer complexe. Peptides, M. Goodman, J. Meienhofer. Halsted Press, New York 1977; 171
  • Wessels P. L., Feeney J., Gregory H., Gormley J. L. High resolution nuclear magnetic resonance studies of the conformation of luteinizing hormone-releasing hormone (LH-RH) and its component peptide. J. Chem. Soc. Perkin Trans. 1973; 2: 1691
  • Momany F. A. Conformational energy analysis of the molecule, luteinizing hormone-releasing hormone. I. Native decapeptid. J. Am. Chem. Soc. 1976; 98: 2990
  • Veber D. F., Holly F. W., Paleveda W. J., Nutt R. F., Bergstrand S. J., Torchiana M., Glitzer M. S., Saperstein R., Hirschmann R. Conformationally restricted bicyclic analogs of somatostati. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 2636
  • Veber D. F., Hirschmann R. 1978, Unpublished data
  • Holladay L. A., Puett D. Somatostatin conformation: evidence for a stable intramolecular structure from circular dichroism, diffusion, and sedimentation equilibriu. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1199
  • Holladay L. A., Rivier J., Puett D. Conformational studies on somatostatin and analogue. Biochemistry 1977; 16: 4895
  • Williams R. J. P. Flexible drug molecules and dynamic receptor. Angew. Chem. Int. Ed. Engl. 1977; 16: 766
  • Nair R. M. G., Kastin A. J., Schally A. V. Isolation and structure of hypothalmic MSH release inhibiting hormon. Biochem. Biophys. Res. Commun. 1971; 43: 1376
  • Cells M. E., Taleisnik S., Walter R. Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormon. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 1428
  • Folkers K., Enzmann F., Boler J., Bowers C. Y., Schally A. V. Discovery of modification of the synthetic tripeptide-séquence of the thyrotropin releasing hormone having activit. Biochem. Biophys. Res. Commun. 1969; 37: 123
  • Burgus R., Dunn T. F., Desiderio D. M., Guillemin R. Structure moléculaire du facteur hypothalamique hypophysiotrope TRF d'origine ovine: mise en evidence par spectrométrie de mass de la sequence PCA-His-Pro-NH2. C.R. Acad. Sci. Ser. D 1969; 269: 1870
  • Kent H. A., Jr. Contraceptive polypeptide from hamster embryos: sequence of amino acids in the compoun. Biol. Reprod. 1975; 12: 504
  • Rocha e Silva M., Beraldo W. T., Rosenfield G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsi. Am. J. Physiol. 1949; 156: 261
  • Elliott D. F., Lewis G. P., Horton E. W. The structure of bradykinin-a plasma kinin from ox bloo. Biochem. Biophys. Res. Commun. 1960; 3: 87
  • Du Vigneaud V. Hormones of the mammalian posterior pituitary gland and their naturally occurring analogue. Johns Hopkins Med. J. 1969; 124: 53
  • Matsuo H., Baba Y., Nair R. M. G., Arimura A., Schally A. V. Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequenc. Biochem. Biophys. Res. Commun. 1971; 43: 1334
  • Brazeau P., Vale W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalmic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormon. Science 1973; 179: 78
  • Guillemin R., Gerich J. E. Somatostatin: physiological and clinical significanc. Annu. Rev. Med. 1976; 27: 379
  • Vale W., Rivier C., Brown M. Regulatory peptides of the hypothalamu. Annu. Rev. Physiol. 1977; 39: 473
  • Tanaka S., Scheraga H. A. Model of protein folding: inclusion of short-, medium-, and long-range interaction. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3802
  • Tanaka S., Scheraga H. A. Hypothesis about the mechanism of protein foldin. Macromolecules 1977; 10: 291
  • Gause G. F., Brazhnikova M. G. Gramicidin S and its use in the treatment of infected wound. Nature (London) 1944; 154: 703
  • Hodgkin D. C., Oughton B. M. Possible molecular models for gramicidin S and their relationship to present ideas of protein structur. Biochem. J. 1957; 65: 752
  • Schwyzer R., Ludescher U. Conformational study of gramicidin S using the phthalimide group as nuclear magnetic resonance marke. Biochemistry 1968; 7: 2519
  • Ohnishi M., Urry D. W. Temperature dependence of amide proton chemical shifts: the secondary structures of gramicidin S and valinomyci. Biochem. Biophys. Res. Commun. 1969; 36: 194
  • Hull S. E., Karlsson R., Main P., Woolfson M. M., Dodson E. J. The crystal structure of a hydrated gramicidin S-urea comple. Nature (London) 1978; 275: 206
  • Ovchinnikov Y. A., Ivanov V. T. Conformational states and biological activity of cyclic peptide. Tetrahedron 1975; 31: 2177
  • Ivanov V. T. Solution structures of peptide. Peptides, M. Goodman, J. Meienhofer. Halsted Press, New York 1977; 307
  • Gibbons W. A., Beyer C. F., Dadok J., Sprecher R. F., Wyssbrod H. R. Studies of individual amino acid residues of the decapeptide tyrocidine A by proton double-resonance difference spectroscopy in the correlation mod. Biochemistry 1975; 14: 420
  • Brockmann H., Schmidt-Kastner G. Valinomycin I, XXVII. Mitteil liber Antibiotica aus Actinomycete. Chem. Ber. 1955; 88: 57
  • Ovchinnikov Y. A., Ivanov V. T., Shkrob A. M. Membrane-Active Complexones. Elsevier, New York 1974
  • Moore C., Pressman B. C. Mechanism of action of valinomycin on mitochondri. Biochem. Biophys. Res. Commun. 1964; 15: 562
  • Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barrier. Proc. Natl. Acad. Sci. U.S.A. 1949; 58: 1967
  • Ivanov V. T., Laine I. A., Abdulaev N. D., Senyavina L. B., Popov E. M., Ovchinnikov Y. A., Shemyakin M. M. The physicochemical basis of the functioning of biological membranes: the conformation of valinomycin and its K+ complex in solutio. Biochem. Biophys. Res. Commun. 1969; 34: 803
  • Pinkerton M., Steinrauf L. K., Dawkins P. The molecular structure and some transport properties of valinomyci. Biochem. Biophys. Res. Commun. 1969; 35: 512
  • Duax W. L., Hauptman H., Weeks C. M., Norton D. A. Valinomycin crystal structure determination by direct method. Science 1972; 176: 911
  • Wieland T., Faulstich H. Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushroom. CRC Crit. Rev. Biochem. 1978; 5: 185
  • Patel D. J., Tonelli A. E., Pfaender P., Faulstich H., Wieland T. Experimental and calculated conformational characteristics of the bicyclic heptapeptide phalloidi. J. Mol. Biol. 1973; 79: 185
  • Kostansek E. C., Lipscomb W. N., Yocum R. R., Tiessen W. E. The crystal structure of the mushroom toxin β-amaniti. J. Am. Chem. Soc. 1977; 99: 1273
  • Tonelli A. E., Patel D. J., Wieland T., Faulstich H. The structure of α-amanitin in dimethylsulfoxide solutio. Biopolymers 1973; 17: 1978
  • Karle I. L., Karle J., Wieland T., Burgermeister W., Faulstich H., Witkop B. Conformations of the Li-antamanide complex and Na-[Phe4, Val6]antamanide complex in the crystalline stat. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1836
  • Karle I. L. The conformation of the sodium complex of a biologically active analog of antamanide in the crystalline stat. Biochemistry 1974; 13: 2155
  • Karle I. L., Karle J., Wieland T., Burgermeister W., Witkop B. Conformation of uncomplexed [Phe4,Val6] antamanide crystallized from nonpolar solvent. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1782
  • Karle J. L. [Phe4, Val6)antamanide crystallized from methyl acetate/n-hexane. Conformation and packin. J. Am. Chem. Soc. 1977; 99: 5152
  • Nielands J. B. A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena). J. Am. Chem. Soc. 1952; 74: 4846
  • Emery T. F. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 1971; 10: 1483
  • Yoshioka H., Aoki T., Goko H., Nakatsu K., Noda T., Sakakibara H., Take T., Nagata A., Abe J., Wakamiya T., Shiba T., Kaneko T. Chemical studies on tuberactinomycin. II. The structure of tuberactinomycin . Tetrahedron Lett. 1971; 2043
  • Bycroft B. W. The crystal structure of viomycin, a tuberculostatic antibioti. J. Chem. Soc. Chem. Commun. 1972; 660
  • Jolad S. D., Hoffman J. J., Torrance S. J., Wiedhopf R. M., Cole J. R., Arora S. K., Bates R. B., Gargiulo R. L., Kriek G. R. Bouvardin and deoxybouvardin, antitumor cyclic hexapeptides from Bouvardia ternifolia(Rubiaceae. J. Am. Chem. Soc. 1977; 99: 8040
  • Iitaka Y., Nakamura H., Takada K., Takita T. An X-ray study of ilamycin B1, a cyclic heptapeptide antibioti. Acta Crystallogr. Sect. B 1974; 30: 2817
  • Cary L. W., Takita T., Ohnishi M. A study of the secondary structure of ilamycin B1 by 300 MHz proton magnetic resonanc. FEBS Lett. 1971; 17: 145
  • Kopple K. D. Conformations of cyclic peptides. V. A proton magnetic resonance study of evolidine, Cyclo-Ser-Phe-Leu-Pro-Val-Asn-Le. Biopolymers 1972; 10: 1139
  • Pitner T. P., Urry D. W. Conformational studies of polypeptide antibiotics. Proton magnetic resonance of stendomyci. Biochemistry 1972; 11: 4132
  • Kumar N. G., Urry D. W. Proton magnetic resonance assignments of the polypeptide antibiotic telomyci. Biochemistry 1973; 12: 3811
  • Kumar N. G., Urry D. W. Conformational analysis of the polypeptide antibiotic telomycin by nuclear magnetic resonanc. Biochemistry 1973; 12: 4392
  • IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rule. Biochemistry 1969; 9: 3471, 1970
  • Pease L. G. Preferred hydrogen-bonded conformations of cyclic pentapeptide. Peptides: Structure and Biological Function, E. Gross, J. Meienhofer. Pierce Chemical, Rockford, Ill. 1980, in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.