165
Views
197
CrossRef citations to date
0
Altmetric
Research Article

The MIP Family of Integral Membrane Channel Proteins: Sequence Comparisons, Evolutionary Relationships, Reconstructed Pathway of Evolution, and Proposed Functional Differentiation of the Two Repeated Halves of the Proteins

, &
Pages 235-257 | Published online: 26 Sep 2008

References

  • Adams M. D., Dubnick M., Kerlavage A. R., Moreno R., Kelley J. M., Utterback T. R., Nagle J. W., Fields C., Venter J. C. Sequence identification of 2,375 human brain genes. Nature 1992; 355: 632–634
  • Aerts T., Xia J. Z., Slegers H., de Block J., Clauwaert J. Hydrodynamic characterization of the major intrinsic protein from the bovine lens fiber membranes. J. Biol. Chem. 1990; 265: 8675–8680
  • Bairoch A. Prosite a dictionary of sites and patterns in proteins. Nucl. Acids Res. 1992; 20(Suppl)S2013–S2018
  • Baker M. E., Saier M. H., Jr. A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin-26 protein, and E. coli glycerol facilitator. Cell 1990; 60: 185–186
  • Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analyses for the VAX. Nucl. Acids Res. 1984; 12: 387–395
  • Doolittle R.F. Of Urfs and Orfs. A Primer on How to Analyze Derived Amino Acid Sequences. University Science Books, Mill Valley, CA. 1986
  • Doolittle R. F., Feng D. F. Nearest neighbor procedure for relating progressively aligned amino acid sequences. Meth. Enzymol. 1990; 183: 659–669
  • Ehring G. R., Zampighi G., Horwitz J., Bok D., Hall J. E. Properties of channels reconstituted from the major intrinsic protein of lens fiber membranes. J. Gen. Physiol. 1990; 96: 631–664
  • Ehring G. R., Lagos N., Zampighi G. A., Hall J. E. Phosphorylation modulates the voltage dependence of channels reconstituted from the major intrinsic protein of lens fiber membranes. J. Membr. Biol. 1991; 126: 75–88
  • Ehring G. R., Zampighi G. A., Hall J. E. Does MIP play a role in cell-cell communication. Gap Junctions, Progress in Cell Research, III, J. E. Hall, G. A. Zampighi, R. M. Davis. Elsevier Publishers, Amsterdam 1993; 143–152
  • Feng D. F., Doolittle R. F. Progressive alignment and phylogenetic tree construction of protein sequences. Meth. Enzymol. 1990; 183: 375–387
  • Gorin M. B., Yancey S. B., Cline J., Revel J. P., Horwitz J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 1984; 39: 49–59
  • Griffith J. K., Baker M. E., Rouch D. A., Page M. G. P., Skuiray R. A., Paulsen I. T., Chater K. F., Baldwin S. A., Henderson P. J. F. Membrane transport proteins: implications of sequence comparisons. Curr. Opin. Cell Biol. 1992; 4: 684–695
  • Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol. 1990; 15: 11–26
  • Heller K. B., Lin E. C. C., Wilson T. H. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 1980; 144: 274–278
  • Henderson P. J. F. The homologous glucose transport proteins of prokaryotes and eukaryotes. Res. Microbiol. 1990; 141: 316–328
  • Henderson P. J. F. Sugar transport proteins. Curr. Opin. Struct. Biol. 1991; 1: 590–601
  • Henderson P. J. F., Maiden M. C. J. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Philos. Trans. R. Soc. London Ser. B 1990; 326: 391–410
  • Höfte H., Hubbard L., Reizer J., Ludevid D., Herman E. M., Chrispeels M. J. Vegetative and seed-specific forms of tonoplast intrinsic protein in the vacuolar membrane of Arabidopsis thaliana. Plant Physiol 1992; 99: 561–570
  • Holmberg C., Beijer L., Rutberg B., Rutberg L. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J. Gen. Microbiol. 1990; 136: 2367–2375
  • Horwitz J., Bok D. Conformational properties of the main intrinsic polypeptide (MIP26) isolated from lens plasma membranes. Biochemistry 1987; 26: 8092–8098
  • Jan L. Y., Jan Y. N. Tracing the roots of ion channels. Cell 1992; 69: 715–718
  • Johnson K. D., Chrispeels M. J. A tonoplastbound protein kinase phosphorylates tonoplast intrinsic protein. Plant Physiol. 1992; 100: 1787–1795
  • Johnson K. D., Höfte H., Chrispeels M. J. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GlpF). Plant Cell 1990; 2: 525–532
  • Johnson K. R., Lampe P. D., Hur K. C., Louis C. F., Johnson R. G. A lens intracellular junction protein, MP26, is a phosphoprotein. J. Cell. Biol. 1986; 102: 1334–1343
  • Kent N. A., Shiels A. Nucleotide and derived amino-acid sequence of the major intrinsic protein of rat eye-lens. Nucl. Acids Res. 1990; 18: 4256
  • Kodama R., Agata K., Mochii M., Eguchi G. Partial amino acid sequence of the major intrinsic protein (MTP) of the chicken lens deduced from the nucleotide sequence of a cDNA clone. Exp. Eye Res. 1990; 50: 737–741
  • Krupinski J., Coussen F., Bakalyar H. A., Tang W. J., Feinstein P. G., Orth K., Slaughter C., Reed R. R., Gilman A. G. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 1989; 244: 1558–1564
  • Kuan J., Saier M. H., Jr. The mitochondrial carrier family of transport proteins: structural, functional and evolutionary relationships. Crit. Revs. Biochem. Mol. Biol. 1993; 28: 209–233
  • Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157: 105–132
  • Lampe P. D., Johnson R. G. Phosphorylation of MP26, a lens junction protein, is enhanced by activators of protein kinase C. J. Membr. Biol 1989; 107: 145–155
  • Lampe P. D., Bazzi M. D., Nelsestuen G. L., Johnson R. G. Phosphorylation of lens intrinsic membrane proteins by protein kinase C. Eur. J. Biochem. 1986; 156: 351–357
  • Lampe P. D., Eccleston E. D., Howard J. B., Johnson R. G. The amino acid sequence of in vivo phosphorylation site of lens MP26. J. Cell. Biol. (Abstr.). 1988; 107: 558
  • Ludevid D., Höfte H., Himelblau E., Chrispeels M. J. The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol. 1992; 100: 1633–1639
  • Maeshima M. Characterization of the major integral protein of vacuolar membrane. Plant Physiol. 1992; 98: 1248–1254
  • Maloney P. C. A consensus structure for membrane transport. Res. Microbiol. 1990; 141: 374–383
  • Marger M. D., Saier M. H., Jr. A major super-family of transmembrane facilitators that catalyse uniport, symport and antiport. TIBS 1993; 18: 13–20
  • Maurel C., Reizer, Schroeder J. I., Chrispeels M. J. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO. J. 1993, in press
  • Mayo B., Kok J., Venema K., Brockelmann W., Teuber M., Reinke H., Venema G. Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris., Appl. Environ. Microbiol. 1991; 57: 38–44
  • Miao G. H., Hong Z., Verma D. P. S. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J. Cell Biol. 1992; 118: 481–490
  • Muramatsu S., Mizuno T. Nucleotide sequence of the region encompassing the glpKF operon and its upstream region containing a bent DNA sequence of Escherichia coli. Nucl. Acids Res. 1989; 17: 4378
  • Nikaido H., Rosenberg E. Y. Functional reconstitution of lens gap junction proteins into proteoliposomes. J. Membr. Biol. 1985; 85: 87–92
  • Nikaido H., Saier M. H., Jr. Transport proteins in bacteria: common themes in their design. Science 1992; 258: 936–942
  • Ouyang L., Whelan J., Weaver C. D., Roberts D. M., Day D. A. Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Letts. 1991; 293: 188–190
  • Pao G. M., Wu L. F., Johnson K. D., Höfte H., Chrispeels M. J., Sweet G., Sandal N. N., Saier M. H., Jr. Evolution of the MIP family of integral membrane transport proteins. Mol. Microbiol. 1991; 5: 33–37
  • Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 2444–2448
  • Pisano M. M., Chepelinsky A. B. Genomic cloning, complete nucleotide sequence, and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics 1991; 11: 981–990
  • Preston G. M., Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 11110–11114
  • Preston G. M., Carroll T. P., Guggino W. B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992; 256: 385–387
  • Rao Y., Jan L. Y., Jan Y. N. Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins. Nature 1990; 345: 163–167
  • Reizer A., Reizer J. Progressive multiple alignment of protein sequences and the construction of phylogenetic trees. Methods in Molecular Biology: Computer Analysis of Sequence Data, A. M. Griffin, H. G. Griffin. Humana Press, Totowa, NJ 1993, in press
  • Reizer J., Finley K., Kakuda D., MacLeod C. L., Reizer A., Saier M. H., Jr. Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Prot. Sci. 1993; 2: 20–30
  • Saier M. H., Jr. Evolution of permease diversity and energy-coupling mechanisms: an introduction. Res. Microbiol. 1990; 141: 281–286
  • Saier M. H., Jr., Reizer J. Families and super-families of transport proteins common to prokaryotes and eukaryotes. Curr. Opin. Struct. Biol. 1991; 1: 362–368
  • Sandal N. N., Marcker K. A. Soybean nodulin 26 is homologous to the major intrinsic protein of the bovine lens fiber membrane. Nucl. Acids Res. 1988; 16: 9347
  • Sandal N. N., Marcker K. A. Some nodulin and Nod proteins show similarity to specific animal proteins. Proceedings of the 8th International Congress on Nitrogen Fixation, P. M. Greshoff. Chapman and Hall, New York 1990; 687–692
  • Shiels A., Kent N. A., McHale M., Bangham J. A. Homology of MIP26 to Nod26. Nucl. Acids Res. 1988; 16: 9348
  • Smith B. L., Agre P. Erythrocyte M28,000 transmembrane protein exists as a multi-subunit oligomer similar to a channel protein. J. Biol. Chem. 1991; 266: 6407–6415
  • Smith C. P., Chater K. F. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 1988; 204: 569–580
  • Smith D. W. A complete and integrated system for DNA protein sequence analysis using VAX/VMS computers. Comp. Appl. BioSci. 1988; 4: 212
  • Takemoto L., Takehana M. Major intrinsic polypeptide (MIP26K) from human lens membrane: characterization of low-molecular-weight forms in the aging human lens. Exp. Eye Res. 1986; 43: 661–667
  • Takemoto L., Kodama T., Takemoto D. Antisera to synthetic peptides of MJP26K as probes of changes in opaque vs. transparent regions within the same human cataractous lens. Exp. Eye Res. 1987; 45: 179–183
  • Takemoto L., Kuck J., Kuck K. Changes in the major intrinsic polypeptide (MIP26K) during opacification of the Emory mouse lens. Exp. Eye Res. 1988; 47: 329–336
  • Van Aelst L., Hohmann S., Zimmermann F. K., Jans A. W. H., Thevelein J. M. A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J. 1991; 10: 2095–2104
  • van Hoek A. N., Verkman A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 1992; 267: 18267–18269
  • Verma D. P. S. Soybean nodulin-26: a channel protein conserved from bacteria to mammals. Transport and Receptor Proteins of Plant Membranes, D. T. Cooke, D. T. Clarkson. Plenum Press, New York 1992; 113–117
  • Voegele R., Sweet G., Boos W. Isolation and characterization of the glycerol transport protein, GlpF, from Escherichia coli. Bio Engineering February, 1992; 57, (abst P212)
  • von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 1992; 225: 487–494
  • Weaver C. D., Roberts D. M. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry 1992; 31: 8954–8959
  • Weaver C. D., Crombie B., Stacey G., Roberts D. M. Calcium-dependent phosphorylation of symbiosome membrane proteins from nitrogen-fixing soybean nodules. Plant Physiol. 1991; 95: 222–227
  • Yamaguchi-Shinozaki K., Koizumi M., Urao S., Shinozaki K. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 1992; 33: 217–224
  • Yamamoto Y. T., Cheng C. L., Conkling M. A. Root-specific genes from tobacco and Arabidopsis homologous to an evolutionary conserved gene family of membrane channel proteins. Nucl. Acids Res. 1990; 18: 7449
  • Yamamoto Y. T., Taylor C. G., Acedo G. N., Cheng C. L., Conkling M. A. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 1991; 3: 371–382
  • Zampighi G. A., Hall J. E., Ehring G. R., Simon S. A. The structural organization and protein composition of lens fiber junctions. J. Cell Biol. 1989; 108: 2255–2276
  • Zeidel M. L., Ambudkar S. V., Smith B. L., Agre P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 1992; 31: 7436–7440

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.