89
Views
84
CrossRef citations to date
0
Altmetric
Research Article

Regulation of Proteolytic Activity in Tissues

Pages 315-383 | Published online: 26 Sep 2008

References

  • Hazuda D. J., Strickler J., Kueppers F., Simon P. L., Young P. R. Processing of precursor interleukin 1 beta and inflammatory disease. J. Biol. Chem. 1990; 265: 6318
  • Rosser B. G., Powers S. P., Gores G. J. Calpain activity increases in hepatocytes following addition of ATP. J. Biol. Chem. 1993; 268: 23593
  • Rivett A. J. Proteasomes. Multicatalytic proteinase complexes. Biochem. J. 1993; 291: 1
  • Cierchanover A., Schwartz A. L. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 1994; 8: 182
  • Finley D., Chau V. Ubiquination. Annu. Rev. Cell Biol. 1991; 7: 25
  • Woessner J. F. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991; 5: 2145
  • Hirschi K. K., Vasiloudes P., Brannon P. M. Effects of secretin and caerulein on pancreatic digestive enzymes in cultured rat acinar cells. Pancreas 1994; 9: 91
  • Scott G. K. Proteinases and proteinase inhibitors as modulators of animal cell growth. Comp. Biochem. Physiol. B 1992; 103: 785
  • Hembry R. M., Bagga M. R., Murphy G., Henderson B., Reynolds J. J. Rabbit models of arthritis: immunolocalization of matrix metalloproteinases and tissue inhibitor of metalloproteinase in synovium and cartilage. Am. J. Pathol. 1993; 143: 628
  • Genever P. G., Wood E. J., Cunliffe W. J. Fibroblast-keratinocyte interactions: influence on collagenase activity in wound healing models. Biochem. Soc. Trans. 1992; 20: 373S
  • Agren M. S., Taplin C. J., Woessner J. F., Jr., Eaglstein W. H., Mertz P. M. Collagenase in wound healing: effect of wound age and type. Journal of Investigative Dermatology 1992; 99: 709
  • Girard M. T., Matsubara M., Kublin C., Tessier M. J., Cintron C., Fini M. E. Stromal fibroblasts synthesize collagenase and stromelysin during long-term tissue remodeling. J. Cell Sci. 1993; 104: 1101
  • Mann K. G., Jenny R. J., Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu. Rev. Biochem. 1988; 57: 915
  • Collen D., Lijnen H. R. Fibrin-specific fibrinolysis. Ann. N.Y. Acad. Sci. 1992; 667: 259
  • Sim R. B., Kolble K., McAleer M. A., Dominguez O., Dee V. M. Genetics and deficiencies of the soluble regulatory proteins of the complement system. Int. Rev. Immunol. 1993; 10: 65
  • Neurath H. The versatility of proteolytic enzymes. J. Cell. Biochem. 1986; 32: 35
  • Sasaki M., Kunimatsu M., Tada T., Nishimura J., Ma X. J., Ohkubo I. Calpain and kininogen mediated inflammation. Biomed. Biochim. Acta 1991; 50: 499
  • Matrisian L. M., Hogan B. L. M. Growth factor-regulated proteases and extracellular matrix remodeling during mammalian development. Curr. Top. Develop. Biol. 1990; 24: 219
  • Werb Z., Alexander C. M., Adler R. R. Expression and function of matrix metalloproteinases in development. Matrix Suppl. 1992; 1: 337
  • Hamilton R. T., Bruns K. A., Delgado M. A., Shim J. K., Fang Y., Denhardt D. T., Nilsen-Hamilton M. Developmental expression of cathespin L and c-rasHa in the mouse placenta. Molecular Reproduction & Development 1991; 30: 285
  • Niedbaia M. J. Cytokine regulation of endothelial cell extracellular proteolysis. Agents Act.—Suppl. 1993; 42: 179
  • Rechberger T., Woessner J. F. Collagenase, its inhibitors, and decorin in the lower uterine segment in pregnant women. Am. J. Obstet. Gynecol. 1993; 168: 1598
  • Talhouk R. S., Bissell M. J., Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell. Biol. 1992; 118: 1271
  • Cunningham D. D. Regulation of neuronal cells and astrocytes by protease nexin-1 and thrombin. Ann. New York Acad. Aci. 1992; 674: 228
  • Fridman R., Bird R. E., Hoyhtya M., Oelkuct M., Komarek D., Liang C. M., Berman M. L., Liotta L. A., Stetler-Stevenson W. G., Fuerst T. R. Expression of human recombinant 72 kDa gelatinase and tissue inhibitor of metallo-proteinase-2 (TIMP-2): characterization of complex and free enzyme. Biochem. J. 1993; 289: 411
  • Scott G. K., Tse C. A. Growth-related proteinases in cultured human tumour cells. Biol. Chem. Hoppe-Seyler 1992; 373: 605
  • Schuster M. G., Enriquez P. M., Curran P., Cooperman B. S., Rubin H. Regulation of neutrophil superoxide by anti-chymotrypsin-chymotrypsin complexes. J. Biol. Chem. 1992; 267: 5056
  • Evans C. H. The role of proteinases in cartilage destruction. Agents Actions Suppl. 1991; 32: 135
  • Katunuma N. New biological functions of intracellular proteases and their endogenous inhibitors as bioreactants. Adv. Enzyme Regul. 1990; 30: 377
  • Laslop A., Fischer-Colbrie R., Kirschke H., Hogue-Angeletti R., Winkler H. Chromogranin A-processing proteinases in purified chromaffin granules: contaminants or endogenous enzymes. Biochim. Biophys. Acta 1990; 1033: 65
  • Stracke M. L., Liotta L. A. Multi-step cascade of tumor cell metastasis. In Vivo 1992; 6: 309
  • Zhang J. Y., Schultz R. M. Fibroblasts transformed by different ras oncogenes show dissimilar patterns of protease gene expression and regulation. Cancer Res. 1992; 52: 6682
  • Trabandt A., Gay R. E., Fassbender H. G., Gay S. Cathepsin B in synovial cells at the site of joint destruction in rheumatoid arthritis. Arth. Rheum. 1991; 34: 1444
  • Dalbey R. E., von Heinje G. Signal peptidases in prokaryotes and eukaryotes — a new protease family. Trends Biol. Sci. 1992; 17: 474
  • Rechsteiner M., Hoffman L., Dubiel W. The multicatalytic and 26 S proteases. J. Biol. Chem. 1993; 268: 6065
  • Rawlings N. D., Barrett A. J. Evolutionary families of peptides. Biochem. J. 1993; 290: 205
  • Kwaan H. C. The biologic role of components of the plasminogen-plasmin system. Prog. Cardiovasc. Dis. 1992; 34: 309
  • Kido H., Fukutomi A., Katunuma N. A novel membrane-bound serine esterase in human T4(+)-lymphocytes is a binding protein of envelope glycoprotein gpl20 of HIV-1. Biomed. Biochim. Acta 1991; 50: 781
  • Trapani J. A., Smyth M. J. Killing of cytotoxic T cells and natural killer cells: multiple granule serine proteases as initiators of DNA fragmentation (review). Immun. Cell Biol. 1993; 71: 201
  • Burkhardt J. K., Hester S., Lapham C. K., Argon Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol. 1990; 111: 2327
  • Salvesen G., Enghild J. J. Zymogen activation specificity and genomic structures of human neutrophil elastase and cathepsin G reveal a new branch of the chymotrypsinogen superfamily of serine proteinases. Biomed. Biochim. Acta 1991; 50: 665
  • Powers J. C., Odake S., Oleksyszyn J., Hori H., Ueda T., Boduszek B., Kam C. Proteases — structures, mechanism and inhibitors. Agents Act. — Suppl. 1993; 42: 3
  • Dunn B. M. Determination of protease mechanism. Proteolytic Enzymes: A practical approach, R. J. Beynon, J. S. Bond. IRL Press. 1989; 57–81
  • Lolis E., Petsko G. A. Transition-state analogues in protein crystallography: Probes of the structural source of enzyme catalysis. Ann. Rev. Biochem. 1990; 59: 597
  • Chen L., Mao S. J., Larsen W. J. Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-alpha-trypsin inhibitor family. J. Biol. Chem. 1992; 267: 12380
  • Bloomquist B. T., Mains R. E. The eukaryotic prohormone-processing endo-proteases. Cell. Phys. Biochem. 1993; 3: 197
  • Halban P. A., Irminger J.-I. Sorting and processing of secretory proteins. Biochem. J. 1994; 299: 1
  • Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J. Biol. Chem. 1992; 267: 23435
  • Qian F., Chan S. J., Gong Q. M., Bajkowski A. S., Steiner D. F., Frankfater A. The expression of cathepsin B and other lysosomal proteinases in normal tissues and in tumors. Biomed. Biochim. Acta 1991; 50: 531
  • Nishimura Y., Kawabata T., Yano S., Kato K. Inhibition of intracellular sorting and processing of lysosomal cathepsins H and L at reduced temperature in primary cultures of rat hepatocytes. Arch. Biochem. Biophys. 1990; 283: 458
  • Furuhashi M., Nakahara A., Fukutomi H., Kominami E., Grube D., Uchiyama Y. Immunocytochemical localization of cathepsins B, H, and L in the rat gastroduodenal mucosa. Histochemistry 1991; 95: 231
  • Saito A., Sinohara H. Rabbit plasma α-1-antiproteinase s-1 — cloning, sequencing, expression and proteinase inhibitory properties of recombinant protein. J. Biochem. 1993; 113: 456
  • Lah T. T., Babnik J., Schiffmann E., Turk V., Skaleric U. Cysteine proteinases and inhibitors in inflammation: their role in periodontal disease. Journal of Periodontology 1993; 64: 485
  • Goll D. E., Thompson V. F., Taylor R. G., Christiansen J. A. Role of the calpain system in muscle growth. Biochimie 1992; 74: 225
  • Suzuki K., Saido T. C., Hirai S. Modulation of cellular signals by calpain. Ann. N.Y. Acad. Sci. 1992; 674: 218
  • Melloni E., Salamino F., Sparatore B. The calpain-calpastatin system in mammalian cells: properties and possible functions. Biochimie 1992; 74: 217
  • Saido T., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994; 8: 814
  • Taylor R. G., Christiansen J. A., Goll D. E. Immunolocalization of the calpains and calpastatin in human and bovine platelets. Biomed. Biochim. Acta 1991; 50: 491
  • Shimizu K., Hamamoto T., Hamakubo T., Lee W. J., Suzuki K., Nakagawa Y., Murachi T., Yamamuro T. Immunohistochemical and biochemical demonstration of calcium-dependent cysteine proteinase (calpain) in calcifying cartilage of rats. J. Orthopaed. Res. 1991; 9: 26
  • Sorimachi H., Suzuki K. Sequence comparison among muscle-specific calpain, p94, and calpain subunits. Biochim. Biophys. Acta 1992; 1160: 55
  • Litersky J. M., Johnson G. V. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J. Biol. Chem. 1992; 267: 1563
  • Friedrich P., Aszodi A. MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture. FEBS Lett. 1991; 295: 5
  • Johnson G. V., Foley V. G. Calpainmediated proteolysis of microtubule-associated protein 2 (MAP-2) is inhibited by phosphorylation by cAMP-dependent protein kinase, but not by Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. Res. 1993; 34: 642
  • Hirai S., Kawasaki H., Yaniv M., Suzuki K. Degradation of transcription factors, c-jun and c-fos, by calpain. FEBS Lett. 1991; 287: 57
  • Edwards D. R., Rocheleau H., Sharma R. R., Wills A. J., Cowie A., Hassell J. A., Heath J. K. Involvement of AP1 and PEA3 binding sites in the regulation of murine tissue inhibitor of metalloproteinases-1 (TIMP-1) transcription. Biochim. Biophys. Acta 1992; 1171: 41
  • Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J., et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768
  • Bode W., Engh R., Musil D., Laber B., Stubbs M., Huber R., Turk V. Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction. Biol. Chem. Hoppe-Seyler 1990; 371(Suppl)111
  • Hasnain S., Huber C. P., Muir A., Rowan A. D., Mort J. S. Investigation of structure function relationships in cathepsin B. Biol. Chem. Hoppe-Seyler 1992; 373: 413
  • Barrett A. J. Cellular proteolysis. An overview. Ann. New York Acad. Sci. 1992; 674: 1
  • Girard M. T., Matsubara M., Kublin C., Tessier M. J., Cintron C., Fini M. E. Stromal fibroblasts synthesize collagenase and stromelysin during long-term tissue remodeling. J. Cell Sci. 1993; 104: 1001
  • Fini M. E., Girard M. T. Expression of collagenolytic/gelatinolytic metalloproteinases by normal cornea. Invest. Ophthalmol. Vis. Sci. 1990; 31: 1779
  • Stetler-Stevenson W. G., Liotta L. A., Kleiner D. E. Extracellular matrix-6. Role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 1993; 7: 1434
  • Monsky W. L., Kelly T., Lin C. Y., Yeh Y., Stetler-Stevenson W. G., Mueller S. C., Chen W. T. Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 1993; 53: 3159
  • Lovejoy B., Cleasby A., Hassell A. M., Inogley K., Luther M. A., Weigl D., McGeehan G., McElroy A. B., Drewry D., Lambert M. H., Jordan S. R. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 1994; 263: 375
  • Gooley P. R., O'Connell J. F., Marcy A. I., Cuca G. C., Salowe S. P., Bush B. L., Hermes J. D., Esser C. K., Hagmann W. K., Springer J. P., Johnson B. A. The NMR structure of the inhibited catalytic domain of human stromelysin-1. Nature Str. Biol. 1994; 1: 111
  • Salowe S. P., Marcy A. I., Cuca G. C., Smith C. K., Kopka I. E., Hagmann W. K., Hermes J. D. Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme. Biochemistry 1992; 31: 5578
  • Kay J., Dunn B. M. Substrate specificity and inhibitors of aspartic proteinases (review). Scand. J. Clin. Lab. Invest. Supp. 1992; 210: 23
  • Yonezawa S., Maejima Y., Hagiwara N., Aratani T., Shoji R., Kageyama T., Tsukada S., Miki K., Ichinose M. Changes with development in the expression of cathepsin-E in the fetal rat stomach. Dev. Growth Differ. 1993; 35: 349
  • Yonezawa S., Fujii K., Maejima Y., Tamoto K., Mori Y., Muto N. Further studies on rat cathepsin E: subcellular localization and existence of the active subunit form. Arch. Biochem. Biophys. 1988; 267: 176
  • Saku T., Sakai H., Tsuda N., Okabe H., Kato Y., Yamamoto K. Cathepsins D and E in normal, metaplastic, dysplastic, and carcinomatous gastric tissue: an immunohistochemical study. Gut 1990; 31: 1250
  • Rodman J. S., Levy M. A., Diment S., Stahl P. D. Immunolocalization of endosomal cathepsin D in rabbit alveolar macrophages. J. Leukocyte Biol. 1990; 48: 116
  • Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Ann. Rev. Biochem. 1992; 61: 307
  • Szecsi P. B. The aspartic proteases. Scand. J. Clin. Lab. Invest. Suppl. 1992; 210: 5
  • Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. G. Molecular and crystal structure of monoclinic porcine pepsin refined at 1.8 A resolution. J. Mol. Biol. 1990; 214: 143
  • Lin X. L., Fusek M., Chen Z., Koelsch G., Han H. P., Hartsuck J. A., Tang J. Studies on pepsin mutagenesis and recombinant Rhizopuspepsinogen. Adv. Exp. Med. Biol. 1992; 306: 1
  • Rhaissi H., Bechet D., Ferrara M. Multiple leader sequences for mouse cathepsin-B messenger. Biochimie 1993; 75: 899
  • Moshier J. A., Cornell T., Majumdar A. P. N. Expression of protease genes in the gastric mucosa during aging. Exp. Gerontol. 1993; 28: 249
  • Hurwitz A., Dushnik M., Solomon H., Ben-Chetrit A., Finci-Yeheskel Z., Milwidsky A., Mayer M., Adashi E. Y., Yagel S. Cytokine-mediated regulation of rat ovarian function: interleukin-1 stimulates the accumulation of a 92-kilodalton gelatinase. Endocrinology 1993; 132: 2709
  • Stricklin G. P., Li L. Y., Jancic V., Wenczak B. A., Nanney L. B. Localization of messenger RNAs representing collagenase and TIMP in sections of healing human burn wounds. Am. J. Pathol. 1993; 143: 1657
  • Gerritsen M. E., Bloor C. M. Endothelial cell gene expression in response to injury. FASEB J. 1993; 7: 523
  • James T. W., Wagner R., White L. A., Zwolak R. M., Brinckerhoff C. E. Induction of collagenase and stromelysin gene expression by mechanical injury in a vascular smooth muscle-derived cell line. J. Cell. Physiol. 1993; 157: 426
  • Agarwal C., Hembree J. R., Rorke E. A., Eckert R. L. Transforming growth factor β-1 regulation of metalloproteinase production in cultured human cervical epithelial cells. Cancer Res. 1994; 54: 943
  • Wolf C., Rouyer N., Lutz Y., Adida C., Loriot M., Bellocq J. P., Chambon P., Basset P. Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 1843
  • Emonard H., Christiane Y., Smet M., Grimaud J. A., Foidart J. M. Type IV and interstitial collagenolytic activities in normal and malignant trophoblast cells are specifically regulated by the extracellular matrix. Invasion & Metastasis 1990; 10: 170
  • Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 1988; 263: 6579
  • Mohtai M., Smith R. L., Schurman D. J., Tsuji Y., Torti F. M., Hutchinson N. I., Stetler-Stevenson W. G., Goldberg G. I. Expression of 92-kD type IV collagenase/gelatinase (gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin 1. J. Clin. Invest. 1993; 92: 179
  • Wolfe G. C., MacNaul K. L., Buechel F. F., McDonnell J., Hoerrner L. A., Lark M. W., Moore V. L., Hutchinson N. I. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin osteoarthritis patients and in 2 animal models of acute inflammatory arthritis. Arthritis Rheum. 1993; 36: 1540
  • Petanceska S., Devi L. Sequence analysis, tissue distribution, and expression of rat cathepsin S. J. Biol Chem. 1992; 267: 26038
  • Rochefort H. Biological and clinical significance of cathepsin D in breast cancer. Acta Oncol. 1992; 31: 125
  • Foucre D., Bouchet C., Hacene K., Pourreau-Schneider N., Gentile A., Martin P. M., Desplaces A., Oglobine J. Relationship between cathepsin D, urokinase, and plasminogen activator inhibitors in malignant vs benign breast tumours. Br. J. Cancer 1991; 64: 926
  • Chauhan S. S., Goldstein L. J., Gottesman M. M. Expression of cathepsin L in human tumors. Cancer Res. 1991; 51: 1478
  • Buck M. R., Karustis D. G., Day N. A., Honn K. V., Sloane B. F. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 1992; 282: 273
  • McDonnell S., Fingleton B. Role of matrix metalloproteinases in invasion and metastasis — biology, diagnosis and inhibitors. Cytotechnology 1993; 12: 367
  • Garcia M., Derocq D., Pujol P., Rochefort H. Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene 1990; 5: 1809
  • Sanchez L. M., Freije J. P., Merino A. M., Vizoso F., Foltmann B., Lopez-Otin C. Isolation and characterization of a pepsin C zymogen produced by human breast tissues. J. Biol. Chem. 1992; 267: 24725
  • Majmudar G., Nelson B. R., Jensen T. C., Voorhees J. J., Johnson T. M. Increased expression of stromelysin-3 in basal cell carcinomas. Mol. Carcinogen. 1994; 9: 17
  • Kawami Y., Yoshida K., Ohsaki A., Kuroi K., Nishiyama M., Toge T. Stromelysin-3 mRNA expression and malignancy. Comparison with clinicopathological features and type IV collagenase mRNA expression in breast tumors. Anticancer Res. 1993; 13: 2319
  • Fini M. E., Girard M. T. Expression of collagenolytic/gelatinolytic metalloproteinases by normal cornea. Invest. Ophthalmol. Vis. Sci. 1990; 31: 1779
  • published erratum appears in Invest. Ophthalmol. Vis. Sci. 1990; 31(11)2229
  • Cavailles V., Augereau P., Rochefort H. Cathepsin D gene is controlled by a mixed promoter, and estrogens stimulate only TATA-dependent transcription in breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 203
  • May F. E., Smith D. J., Westley B. R. The human cathepsin D-encoding gene is transcribed from an estrogen-regulated and a constitutive start point. Gene 1993; 134: 277
  • Samples J. R., Alexander J. P., Acott T. S. Regulation of the levels of human trabecular matrix metalloproteinases and inhibitor by interleukin-1 and dexamethasone. Invest. Ophthalmol. Vis. Sci. 1993; 34: 3386
  • Lyons J. G., Birkedalhansen B., Pierson M. C., Whitelock J. M., Birkedalhansen H. Interleukin-1-β growth factor-α epidermal growth factor induce expression of Mr95,000 type-IV collagenase gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. J. Biol. Chem. 1993; 268(19)143
  • Hamilton J. A., Piccoli D. S., Leizer T., Butler D. M., Croatto M., Royston A. K. Transforming growth factor beta stimulates urokinase-type plasminogen activator and DNA synthesis, but not prostaglandin E2 production, in human synovial fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 7180
  • Martel-Pelletier J., Zafarullah M., Kodama S., Pelletier J. P. In vitro effects of interleukin 1 on the synthesis of metalloproteases, TIMP, plasminogen activators and inhibitors in human articular cartilage. J. Rheumatol., Suppl. 1991; 27: 80
  • Mauviel A., Chen Y. Q., Dong W., Evans C. H., Uitto J. Transcriptional interactions of transforming growth-factor-beta with pro-inflation cytokines. Curr. Biol. 1993; 3: 822
  • Keski-Oja J., Koli K., Lohi J., Laiho M. Growth factors in the regulation of plasminogen-plasmin system in tumor cells. Semin. Thromb. Hemost. 1991; 17: 231
  • Vanbennekum A. M., Emeis J. J., Kooistra T., Hendriks H. F. J. Modulation of tissue-type plasminogen activator by retinoids in rat plasma and tissues. Am. J. Physiol. 1993; 264: R931
  • Thompson E. A., Nelles L., Collen D. Effect of retinoic acid on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in human endothelial cells. Eur. J. Biochem. 1991; 201: 627
  • Kooistra T., Opdenberg J. P., Toet K., Hendriks H. F., van den Hoogen R. M., Emeis J. J. Stimulation of tissue-type plasminogen activator synthesis by retinoids in cultured human endothelial cells and rat tissues in vivo. Thromb. Haemost. 1991; 65: 565
  • Wojta J., Zoellner H., Gallicchio M., Hamilton J. A., McGrath K. Gamma-interferon counteracts interleukin-1 alpha stimulated expression of urokinase-type plasminogen activator in human endothelial cells in vitro. Biochem. Biophys. Res. Commun. 1992; 188: 463
  • Ito A., Itoh Y., Sasaguri Y., Morimatsu M., Mori Y. Effects of interleukin-6 on the metabolism of connective tissue components in rheumatoid synovial fibroblasts. Arthritis Rheum. 1992; 35: 1197
  • Shi G. Y., Hau J. S., Wang S. J., Wu I. S., Chang B. I., Lin M. T., Chow Y. H., Chang W. C., Wing L. Y., Jen C. J., et al. Plasmin and the regulation of tissue-type plasminogen activator biosynthesis in human endothelial cells. J. Biol. Chem. 1992; 267: 19363
  • Hayakawa Y., Tazawa S., Ishikawa T., Niiya K., Sakuragawa N. Thrombin regulation of tissue-type plasminogen activator synthesis in cultured human fetal lung fibroblasts. Thromb. Res. 1993; 71: 457
  • Ciambrone G. J., McKeown-Longo P. J. Vitronectin regulates the synthesis and localization of urokinase-type plasminogen activator in HT-1080 cells. J. Biol. Chem. 1992; 267: 13617
  • Shapiro S. D., Kobayashi D. K., Pentland A. P., Welgus H. G. Induction of macrophage metalloproteinases by extracellular matrix. Evidence for enzyme- and substratespecific responses involving prostaglandin-dependent mechanisms. J. Biol. Chem. 1993; 268: 8170
  • Tremble P. M., Lane T. F., Sage E. H., Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metallo-proteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J. Cell Biol. 1993; 121: 1433
  • Frixen U. H., Nagamine Y. Stimulation of urokinase-type plasminogen activator expression by blockage of E-cadherin-dependent cell-cell adhesion. Cancer Res. 1993; 53: 3618
  • Scharffetter-Kochanek K., Wlaschek M., Briviba K., Sies H. Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett. 1993; 331: 304
  • McCarthy G. M., Mitchell P. G., Struve J. A., Cheung H. S. Basic calcium phosphate crystals cause coordinate induction and secretion of collagenase and stromelysin. J. Cell. Physiol. 1992; 153: 140
  • Takahashi S., Sato T., Ito A., Ojima Y., Hosono T., Nagase H., Mori Y. Involvement of protein kinase-C in the interleukin-1 α induced gene expression of matrix metalloproteinases and tissue inhibitor-1 of metalloproteinases (TIMP-1) in human cervical fibroblasts. Biochim. Biophys. Acta 1993; 1220: 57
  • Ohlsson M., Peng X.-R., Liu Y.-X., Jia X.-C., Hsueh A. J. W., Ny T. Hormone regulation of tissue-type plasminogen activator gene expression and plasminogen activator-mediated proteolysis. Semin. Thromb. Hemost. 1991; 17: 286
  • Saksela O., Rifkin D. B. Cell-associated plasminogen activation: regulation and physiological functions. Annu. Rev. Cell Biol. 1988; 4: 93
  • Delany A. M., Brinckerhoff C. E. Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. J. Cell. Biochem. 1992; 50: 400
  • Krane S. M. Some molecular mechanisms of glucocorticoid action. Br. J. Rheumatol. 1993; 32(Suppl. 2)3
  • Qian F., Frankfater A., Chan S. J., Steiner D. F. The structure of the mouse cathepsin B gene and its putative promoter. DNA Cell Biol. 1991; 10: 159
  • Redecker B., Heckendorf B., Grosch H. W., Mersmann G., Hasilik A. Molecular organization of the human cathepsin D gene. DNA Cell Biol. 1991; 10: 423
  • Ishidoh K., Suzuki K., Katunuma N., Kominami E. Gene structures of rat cathepsins H and L. Biomed. Biochim. Acta 1991; 50: 541
  • Rochefort H. Mechanism of the overexpression of the cathepsin D gene in breast cancer and consequences in the matastatic process. Comp. Ren. Seanc. Soc. Biol. Ses Fil. 1991; 185: 415
  • Sato H., Kita M., Seiki M. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J. Biol. Chem. 1993; 268(23)560
  • Murphy P. G., Hart D. A. Regulation of plasminogen activator and plasminogen activator inhibitor expression by cells of neural origin. Semin. Thromb. Hemost. 1991; 17: 268
  • Brinckerhoff C. E., Sirum-Connolly K. L., Karmilowicz M. J., Auble D. T. Expression of stromelysin and stromelysin-2 in rabbit and human fibroblasts. Matrix Suppl 1992; 1: 165
  • Lafyatis R., Kim S. J., Angel P., Roberts A. B., Sporn M. B., Karin M., Wilder R. L. Interleukin-1 stimulates and all-trans-retinoic acid inhibits collagenase gene expression through its 5′ activator protein-1-binding site. Mol. Endocrinol. 1990; 4: 973
  • Pan L., Chamberlain S. H., Auble D. T., Brinckerhoff C. E. Differential regulation of collagenase gene expression by retinoic acid receptors-alpha, beta and gamma. Nucleic Acids Res. 1992; 20: 3105
  • Gong Q., Chan S. J., Bajkowski A. S., Steiner D. F., Frankfater A. Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA. DNA Cell Biol. 1993; 12: 299
  • Chauhan S. S., Popescu N. C., Ray D., Fleischmann R., Gottesman M. M., Troen B. R. Cloning, genomic organization, and chromosomal localization of human cathepsin L. J. Biol. Chem. 1993; 268: 1039
  • Azuma T., Liu W. G., Vander Laan D. J., Bowcock A. M., Taggart R. T. Human gastric cathepsin E gene. Multiple transcripts result from alternative polyadenylation of the primary transcripts of a single gene locus at 1q31-q32. J. Biol. Chem. 1992; 267: 1609
  • Lee W. J., Ma H., Takano E., Yang H Q., Hatanaka M., Maki M. Molecular diversity in amino-terminal domains of human calpastatin by exon skipping. J. Biol. Chem. 1992; 267: 8437
  • Moll S., Schifferli J. A., Huarte J., Lemoine R., Vassalli J. D., Sappino A. P. LPS induces major changes in the extracellular proteolytic balance in the murine kidney. Kidney Int. 1994; 45: 500
  • Tsukada S., Ichinose M., Miki K., Tatematsu M., Yonezawa S., Matsushima M., Kakei N., Fukamachi H., Yasugi S., Kurokawa K., et al. Tissue-and cell-specific control of guinea pig cathepsin E gene expression. Biochem. Biophys. Res. Commun. 1992; 187: 1401
  • Bardsley R. G., Allcock S. M., Dawson J. M., Dumelow N. W., Higgins J. A., Lasslett Y. V., Lockley A. K., Parr T., Buttery P. J. Effect of beta-agonists on expression of calpain and calpastatin activity in skeletal muscle. Biochimie 1992; 74: 267
  • Chanoine J. P., Stein G. S., Braverman L. E., Shalhoub V., Lian J. B., Huber C. A., DeVito W. J. Acidic fibroblast growth factor modulates gene expression in the rat thyroid in vivo. J. Cell. Biochem. 1992; 50: 392
  • van den Brule F. A., Engel J., Stetler-Stevenson W. G., Liu F. T., Sobel M. E., Castronovo V. Genes involved in tumor invasion and metastasis are differentially modulated by estradiol and progestin in human breast-cancer cells. Int. J. Cancer 1992; 52: 653
  • Rechberger T., Woessner J. F., Jr. Collagenase, its inhibitors, and decorin in the lower uterine segment in pregnant women. Am. J. Obstet. Gynecol. 1993; 168: 1598
  • Salvesen G., Enghild J. J. Zymogen activation specificity and genomic structures of human neutrophil elastase and cathepsin G reveal a new branch of the chymotrypsinogen superfamily of serine proteinases. Biomed. Biochim. Acta 1991; 50: 665
  • Neurath H., Dixon G. H. Catalysis by chymotrypsinogen. Demonstration of an acylzymogen intermediate. Biochemistry 1974; 13: 1302
  • Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 5578
  • Park A. J., Matrisian L. M., Kells A. F., Pearson R., Yuan Z., Navre M. Mutational analysis of the transin (rat stromelysin) autoinhibitor region demonstrates a role for residues surrounding the “cysteine switch”. J. Biol. Chem. 1991; 266: 1584
  • Howard E. W., Bullen E. C., Banda M. J. Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2. J. Biol. Chem. 1991; 266(13)064
  • Chen L. C., Noelken M. E., Nagase H. Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase-3 (stromelysin). Biochemistry 1993; 32(10)289
  • Stack M. S., Moser T. L., Pizzo S. V. Binding of human plasminogen to basement-membrane (type IV) collagen. Biochem. J. 1992; 284: 103
  • Sharma S. K., Hopkins T. R. Recent developments in the activation process of bovine chymotrypsinogen A. Bioorg. Chem. 1981; 10: 357
  • Kirchheimer J. C., Binder B. R. Function of receptor-bound urokinase. Semin. Thromb. Hemost. 1991; 17: 246
  • Welgus H. G. Stromelysin: structure and function. Agents Actions Suppl. 1993; 35: 61
  • Crabbe T., Willenbrock F., Eaton D., Hynds P., Carne A. F., Murphy G., Docherty A. J. Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases. Biochemistry 1992; 31: 8500
  • Rowan A. D., Mason P., Mach L., Mort J. S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J. Biol. Chem. 1992; 267(15)993
  • Tschesche H., Knauper V., Kramer S., Michaelis J., Oberhoff R., Reinke H. Latent collagenase and gelatinase from human neutrophils and their activation. Matrix Suppl. 1992; 1: 245
  • Keski-Oja J., Lohi J., Tuuttila A., Tryggvason K., Vartio T. Proteolytic processing of the 72,000-Da type IV collagenase by urokinase plasminogen activator. Exp. Cell Res. 1992; 202: 471
  • Matsumoto K., Shams N. B., Hanninen L. A., Kenyon K. R. Proteolytic activation of corneal matrix metalloproteinase by Pseudomonas aeruginosa elastase. Curr. Eye Res. 1992; 11: 1105
  • Twining S. S., Kirschner S. E., Mahnke L. A., Frank D. W. Effect of Pseudomonas aeruginosa, elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest. Ophthalmol. Vis. Sci. 1993; 34: 2699
  • Mach L., Stuwe K., Hagen A., Ballaun C., Glossl J. Proteolytic processing and glycosylation of cathepsin B. The role of the primary structure of the latent precursor and of the carbohydrate moiety for cell-type-specific molecular forms of the enzyme. Biochem. J. 1992; 282: 577
  • Buttle D. J., Abrahamson M., Burnett D., Mort J. S., Barrett A. J., Dando P. M., Hill S. L. Human sputum cathepsin B degrades proteoglycan, is inhibited by alpha 2-macroglobulin and is modulated by neutrophil elastase cleavage of cathepsin B precursor and cystatin C. Biochem. J. 1991; 276: 325
  • Michaelis J., Vissers M. C., Winter-bourn C. C. Different effects of hypochlorous acid on human neutrophil metalloproteinases: activation of collagenase and inactivation of collagenase and gelatinase. Arch. Biochem. Biophys. 1992; 292: 555
  • Saari H., Sorsa T., Lindy O., Suomalainen K., Halinen S., Konttinen Y. T. Reactive oxygen species as regulators of human neutrophil and fibroblast interstitial col-lagenases. Int. J. Tissue React. 1992; 14: 113
  • Shaughnessy S. G., Whaley M., Lafrenie R. M., Orr F. W. Walker-256 tumor cell degradation of extracellular matrices involves a latent gelatinase activated by reactive oxygen species. Arch. Biochem. Biophys. 1993; 304: 314
  • Fisher S. J., Damsky C. H. Human cytotrophoblast invasion (review). Semin. Cell Biol. 1993; 4: 183
  • Goldberg G. I., Strongin A., Collier I. E., Genrich L. T., Marmer B. L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 1992; 267: 4583
  • Edelberg J. M., Weissler M., Pizzo S. V. Kinetic analysis of the effects of glycosaminoglycans and lipoproteins on urokinase-mediated plasminogen activation. Biochem. J. 1991; 276: 785
  • Crabbe T., Ioannou C., Docherty A. J. P. Human progelatinase-A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. Eur. J. Biochem. 1993; 218: 431
  • Athauda S. B., Takahashi T., Kageyama T., Takahashi K. Autocatalytic processing of procathepsin E to cathepsin E and their structural differences. Biochem. Biophys. Res. Commun. 1991; 175: 152
  • Conner G. E., Richo G. Isolation and characterization of a stable activation intermediate of the lysosomal aspartyl protease cathepsin D. Biochemistry 1992; 31: 1142
  • Richo G., Conner G E. Proteolytic activation of human procathepsin D. Adv. Exp. Med. Biol. 1991; 306: 289
  • Samarel A. M., Ferguson A. G., Decker R. S., Lesch M. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation. Am. J. Physiol. 1989; 257: C1069
  • Mach L., Mort J. S., GlossI J. Maturation of human procathepsin B. Proenzyne activation and proteolytic processing of the precursor of the mature proteinase. in vitro, are primarily unimolecular processes. J. Biol. Chem. 1994; 269: 13030
  • Murphy G., Ward R., Gavrilovic J., Atkinson S. Physiological mechanisms for metalloproteinase activation. Matrix Suppl. 1992; 1: 224
  • Strongin A. Y., Marmer B. L., Grant G. A., Goldberg G. I. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J. Biol. Chem. 1993; 268(14)033
  • Hoyer-Hansen G., Ronne E., Solberg H., Behrendt N., Ploug M., Lund L. R., Ellis V., Dano K. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J. Biol. Chem. 1992; 267(18)224
  • Geppert A. G., Binder B. R. Allosteric regulation of tPA-mediated plasminogen activation by a modifier mechanism: evidence for a binding site for plasminogen on the tPA A-chain. Arch. Biochem. Biophys. 1992; 297: 205
  • Moser T. L., Enghild J. J., Pizzo S. V., Stack M. S. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator. J. Biol. Chem. 1993; 268(18)917
  • Stack M. S., Moser T. L., Pizzo S. V. Binding of human plasminogen to basementmembrane (type IV) collagen. Biochem. J. 1992; 284: 103
  • Bendixen E., Borth W., Harpel P. C. Transglutaminases catalyze cross-linking of plasminogen to fibronectin and human endothelial cells. J. Biol. Chem. 1993; 268(21)962
  • Rijnboutt S., Stoorvogel W., Geuze H. J., Strous G. J. Identification of subcellular compartments involved in biosynthetic processing of cathepsin D. J. Biol. Chem. 1992; 267(15)665
  • Wang P. H., Do Y. S., Macaulay L., Shinagawa T., Anderson P. W., Baxter J. D., Hsueh W. A. Identification of renal cathepsin B as a human prorenin-processing enzyme. J. Biol. Chem. 1991; 266(12)633
  • Kuboki M., Ishii H., Horie S., Kazama M. Procalpain I in cytoplasm is translocated onto plasma and granule membranes during platelet stimulation with thrombin and then activated on the membranes. Biochem. Biophys. Res. Commun. 1992; 185: 1122
  • Edmunds T., Nagainis P. A., Sathe S. K., Thompson V. F., Goll D. E. Comparison of the autolyzed and unautolyzed forms of mu- and m-calpain from bovine skeletal muscle. Biochim. Biophys. Acta 1991; 1077: 197
  • Ishii H., Suzuki Y., Kuboki M., Mori kawa M., Inoue M., Kazama M. Activation of calpain I in thrombin-stimulated platelets is regulated by the initial elevation of the cytosolic Ca2+ concentration. Biochem. J. 1992; 284: 755
  • Cottin P., Poussard S., Desmazes J. P., Georgescauld D., Ducastaing A. Free calcium and calpain I activity. Biochim. Biophys. Acta 1991; 1079: 139
  • Michetti M., Viotti P. L., Melloni E., Pontremoli S. Mechanism of action of the calpain activator protein in rat skeletal muscle. Eur. J. Biochem. 1991; 202: 1177
  • Yamamoto M., Nakagaki T., Kisiel W. Tissue factor-dependent autoactivation of human blood coagulation factor VII. J. Biol. Chem. 1992; 267(19)089
  • Takahashi K., Kwaan H. C., Koh E., Tanabe M. Enzymatic properties of the phosphorylated urokinase-type plasminogen activator isolated from a human carcinomatous cell line. Biochem. Biophys. Res. Commun. 1992; 182: 1473
  • Wittwer A. J., Howard S. C., Carr L. S., Harakas N. J., Feder J., Parekj R. J., Rudd P. M., Dwek R. A., Rademacher T. W. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry 1989; 28: 7662
  • Masson D., Peters P. J., Geuze H. J., Borst J., Tschopp J. Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. Biochemistry 1990; 29(11)229
  • Gervasoni J. E., Conrad D. H., Hugli T. E., Schwartz L. B., Ruddy S. Degradation of human anaphylatoxin C3a by rat peritoneal mast cells: a role for the secretory granule enzyme chymase and heparin proteoglycan. J. Immunol. 1986; 136: 285
  • Dunn W. A., Jr. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J. Cell Biol. 1990; 110: 1935
  • Pryer N. K., Wuestehube L. J., Schekman R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 1992; 61: 471
  • Wiederanders B., Bromme D., Kirschke H., von Figura K., Schmidt B., Peters C. Phylogenetic conservation of cysteine proteinases. Cloning and expression of a cDNA coding for human cathepsin S. J. Biol. Chem. 1992; 267(13)708
  • Baranski T. J., Koelsch G., Hartsuck J. A., Kornfeld S. Mapping and molecular modeling of a recognition domain for lysosomal enzyme targeting. J. Biol. Chem. 1991; 266(23)365
  • Rijnboutt S., Kal A. J., Geuze H. J., Aerts H., Strous G. J. Mannose 6-phosphateindependent targeting of cathepsin D to lysosomes in HepG2 cells. J. Biol. Chem. 1991; 266(23)586
  • Conner G. E. The role of the cathepsin D propeptide in sorting to the lysosome. J. Biol. Chem. 1992; 267(21)738
  • Prence E. M., Dong J. M., Sahagian G. G. Modulation of the transport of a lysosomal enzyme by PDGF. J. Cell Biol. 1990; 110: 319
  • Erickson-Lawrence M., Zabludoff S. D., Wright W. W. Cyclic protein-2, a secretory product of rat Sertoli cells, is the proenzyme form of cathepsin L. Mol. Endocrin. 1991; 5: 1789
  • Tooze J., Hollinshead M., Hensel G., Kern H. F., Hoflack B. Regulated secretion of mature cathepsin B from rat exocrine pancreatic cells. Eur. J. Cell Biol. 1991; 56: 187
  • Hirano T., Saluja A., Ramarao P., Lerch M. M., Saluja M., Steer M. L. Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J. Clin. Invest. 1991; 87: 865
  • Baici A., Lang A. Cathepsin B secretion by rabbit articular chondrocytes: modulation by cycloheximide and glycosaminoglycans. Cell Tissue Res. 1990; 259: 567
  • Nemere I., Norman A. W. Redistribution of cathepsin B activity from the endosomal-lysosomal pathway in chick intestine within 3 min of calcium absorption. Mol. Cell. Endocrinol. 1991; 78: 7
  • Dean D. D., Schwartz Z., Muniz O. E., Gomez R., Swain L. D., Howell D. S., Boyan B. D. Matrix vesicles are enriched in metalloproteinases that degrade proteoglycans. Calcif. Tissue Int. 1992; 50: 342
  • Travis J. Structure, function, and control of neutrophil proteinases. Am. J. Med. 1988; 84(Suppl. 6A)37
  • Wojtecka-Lukasik E., Maslinski S. Fibronectin and fibrinogen degradation products stimulate PMN-leukocyte and mast cell degranulation. J. Physiol. Pharmacol. 1992; 43: 173
  • Podack E. R., Hengartner H., Lictenheld M. G. A central role of perforin in cytolysis. Annu. Rev. Immunol. 1991; 9: 129
  • Alter S. C., Metcalfe D. D., Bradford T. R., Schwartz L. B. Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem. J. 1987; 248: 821
  • Travis J., Bangalore N. Biochemical mechanisms for disrupting the proteinase-proteinase inhibitor balance in tissues (review). Agents Actions 1993; 19, Suppl., 42
  • Saku T., Sakai H., Shibata Y., Kato Y., Yamamoto K. An immunocytochemical study on distinct intracellular localization of cathepsin E and cathepsin D in human gastric cells and various rat cells. J. Biochem. 1991; 110: 956
  • Harrison R. K., Chang B., Niedzwiecki L., Stein R. L. Mechanistic studies on the human matrix metalloproteinase stromelysin. Biochemistry 1992; 31(10)757
  • Hasnain S., Hirama T., Tarn A., Mort J. S. Characterization of recombinant rat cathepsin B and nonglycosylated mutants expressed in yeast. New insights into the pH dependence of cathepsin B-catalyzed hydrolyses. J. Biol. Chem. 1992; 267: 4713
  • Khouri H. E., Plouffe C., Hasnain S., Hirama T., Storer A. C., Menard R. A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses. Biochem. J. 1991; 275: 751
  • Athauda S. B., Takahashi T., Inoue H., Ichinose M., Takahashi K. Proteolytic activity and cleavage specificity of cathepsin E at the physiological pH as examined towards the B chain of oxidized insulin. FEBS Lett. 1991; 292: 53
  • Koga H., Yamada H., Nishimura Y., Kato K., Imoto T. Multiple proteolytic action of rat liver cathepsin B: specificities and pH-dependencies of the endo-and exopeptidase activities. J. Biochem. 1991; 110: 179
  • Young P. R., Spevacek S. M. Substratum acidification and proteinase activation by murine-B16F10 melanoma cultures. Biochim. Biophys. Acta 1993; 1182: 69
  • Mann K. G., Lawson J. H. The role of the membrane in the expression of the vitamin K-dependent enzymes. Arch. Pathol. Lab. Med. 1992; 116: 1330
  • Housley T. J., Baumann A. P., Braun I. D., Davis G., Seperack P. K., Wilhelm S. M. Recombinant Chinese hamster ovary cell matrix metalloprotease-3 (MMP-3, stromelysin-1). Role of calcium in promatrix metalloprotease-3 (pro-MMP-3, prostromelysin-1) activation and thermostability of the low mass catalytic domain of MMP-3. J. Biol. Chem. 1993; 268: 4481
  • Abedodun F., Jordan F. Multinuclear magnetic resonance studies on the calcium(II) binding site in trypsin, chymotrypsin and sub-tilisin. Biochemistry 1989; 28: 7524
  • Yi Z., Lindberg I. Purification and characterization of the prohormone convertase PC1(PC3). J. Biol. Chem. 1993; 268: 5615
  • Mellgren R. L., Song K., Mericle M. T. m-Calpain requires DNA for activity on nuclear proteins at low calcium concentrations. J. Biol. Chem. 1993; 268: 653
  • Pontremoli S., Melloni E., Viotti P. L., Michetti M., Salamino F., Horecker B. L. Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains. Arch. Biochem. Biophys. 1991; 288: 646
  • Iizuka K., Kawaguchi H., Yasuda H., Kitabatake A. The role of calcium activated neutral protease on myocardial cell injury in hypoxia. Jpn. Heart J. 1992; 33: 707
  • Yoshida K., Yamasaki Y., Kawashima S. Calpain activity alters in rat myocardial subfractions after ischemia or reperfusion. Biochim. Biophys. Acta 1993; 1182: 215
  • Thomas D. J., Richards A. D., Jupp R. A., Ueno E., Yamamoto K., Samloff I. M., Dunn B. M., Kay J. Stabilisation of cathepsin E by ATP. FEBS Lett. 1989; 243: 145
  • Kageyama T., Ichinose M., Tsukada S., Miki K., Kurokawa K., Koiwai O., Tanji M., Yakabe E., Athauda S. B., Takahashi K. Gastric procathepsin E and progastricsin from guinea pig. Purification, molecular cloning of cDNAs, and characterization of enzymatic properties, with special reference to procathepsin E. J. Biol. Chem. 1992; 267(16)450
  • Mach L., Mort J. S., Glossl J. Noncovalent complexes between the lysosomal proteinase cathepsin B and its propeptide account for stable, extracellular, high molecular mass forms of the enzyme. J. Biol. Chem. 1994; 269: 13036
  • Orlowski M. The multicatalytic proteinase complex (proteasome) and intracellular protein degradation: diverse functions of an intracellular particle (editorial; comment) (review). J. Lab. Clin. Med. 1993; 121: 187
  • Driscoll J. The role of the proteasome in cellular protein degradation. Histology & Histopathology 1994; 9: 197
  • Rivett A. J., Palmer A., Knecht E. Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J. Histochem. Cytochem. 1992; 40: 1165
  • Shimbara N., Orino E., Sone S., Ogura T., Takashina M., Shono M., Tamura T., Yasuda H., Tanaka K., Ichihara A. Regulation of gene expression of proteasomes (multi-protease complexes) during growth and differentiation of human hematopoietic cells. J. Biol. Chem. 1992; 267(18)100
  • Palmer A., Mason G. G. F., Paramio J M., Knecht E., Rivett A. J. Changes in proteasome localization during the cell cycle. Eur. J. Cell. Biol. 1994; 64: 163
  • Savory P. J., Rivett A. J. Leupeptin-binding site(s) in the mammalian multicatalytic proteinase complex. Biochem. J. 1993; 289: 45
  • Nothwang H. G., Coux O., Bey F., Scherrer K. Prosomes and their multi-catalytic proteinase activity. Eur. J. Biochem. 1992; 207: 621
  • Djaballah H., Rowe A. J., Harding S. E., Rivett A. J. The multicatalytic proteinase complex (proteasome) —structure and conformational changes associated with changes in proteolytic activity. Biochem. J. 1993; 292: 857
  • Orlowski M., Cardozo C., Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 1993; 32: 1563
  • Pereira M. E., Nguyen T., Wagner B. J., Margolis J. W., Yu B., Wilk S. 3,4-Dichloroisocoumarin-induced activation of the degradation of beta-casein by the bovine pituitary multicatalytic proteinase complex. J. Biol. Chem. 1992; 267: 7949
  • Ahn J. Y., Hong S. O., Kwak K. B., Tanaka K., Ichihara A., Ha D. B., Chung C. H. Developmental regulation of proteolytic activities and subunit pattern of 20S proteasome in chick embryonic muscle. J. Biol. Chem. 1991; 266(15)746
  • Yang Y., Waters J. B., Fruh K., Peterson P. A. Proteasomes are regulated by interferon gamma: implications for antigen processing. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 4928
  • Brown M. G., Driscoll J., Monaco J. J. MHC-linked low-molecular mass polypeptide subunits define distinct subsets of proteasomes. Implications for divergent function among distinct proteasome subsets. J. Immunol. 1993; 151: 1193
  • Driscoll J., Brown M. G., Finley D., Monaco J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature (London) 1993; 365: 262
  • Tanaka K., Yoshimura T., Tamura T., Fujiwara T., Kumatori A., Ichihara A. Possible mechanism of nuclear translocation of proteasomes. FEBS Lett. 1990; 27: 41
  • Weitman D., Etlinger J. D. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex). J. Biol. Chem. 1992; 267: 6977
  • Ma C. P., Willy P. J., Slaughter C. A., Demartino G. N. PA28, an activator of the 20-S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J. Biol. Chem. 1993; 268(22)514
  • Pereira M. E., Yu B., Wilk S. Enzymatic changes of the bovine pituitary multicatalytic proteinase complex, induced by magnesium ions. Arch. Biochem. Biophys. 1992; 294: 1
  • Demena I. R., Mahillo E., Arribas J., Castano J. G. Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase. Biochem. J. 1993; 296: 93
  • Ludemann R., Lerea K. M., Etlinger J. D. Copurification of casein kinase II with 20 S proteasomes and phosphorylation of a 30-kDa proteasome subunit. J. Biol. Chem. 1993; 268(17)413
  • Tsubuki S., Saito Y., Kawashima S. Purification and characterization of an endogenous inhibitor specific to the Z-Leu-Leu-Leu-MCA Degrading activity in proteasome and its identification as heat-shock protein 90. FEBS Let. 1994; 344: 229
  • Driscoll J., Goldberg A. L. The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J. Biol. Chem. 1990; 265: 4789
  • Murakami Y., Matsufuji S., Kameji T., Hayashi S.-I., Igarashi K., Tamura T., Tanaka K., Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitin. Nature (London) 1992; 360: 597
  • Ugai S., Tamura T., Tanahashi N., Takai S., Komi N., Chung C. H., Tanaka K., Ichihara A. Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver. J. Biochem. 1993; 113: 754
  • Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 1992; 267(22)369
  • Kuehn L., Dahlmann B., Reinauer H. Evidence indicating that the multicatalytic proteinase of rabbit reticulocytes is not incorporated as a core enzyme into a 26 S proteinase complex. Arch. Biochem. Biophys. 1992; 295: 55
  • Lee D. H., Kim S. S., Kim K. I., Ahn J. Y., Shim K. S., Nishigai M., Ikai A., Tamura T., Tanaka K., Ichihara A., et al. Structure and properties of the 26S protease complex from chick skeletal muscle. Biochem. Mol. Biol. Int. 1993; 30: 121
  • Peters J. M., Harris J. R., Kleinschmidt J. A. infrastructure of the approximately 26S complex containing the approximately 20S cylinder particle (multicatalytic proteinase/proteasome). Eur. J. Cell Biol. 1991; 56: 422
  • Armon T., Ganoth D., Hershko A. Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J. Biol. Chem. 1990; 265(20)723
  • Dubiel W., Ferrell K., Pratt G., Rechsteiner M. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J. Biol. Chem. 1992; 267(22)699
  • Realini C., Rogers S. W., Rechsteiner M. KEKE motifs-Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Let. 1994; 348: 109
  • Driscoll J., Frydman J., Goldberg A. L. An ATP-stabilized inhibitor of the proteasome is a component of the 1500-kDa ubiquitin conjugate-degrading complex. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 4986
  • Guo G. G., Gu M. Z., Etlinger J. D. 240 kDa proteasome inhibitor (CF-2) is identical to δ-aminolevulinic acid dehydratase. J. Biol. Chem. 1994; 269: 12399
  • Akiyama K., Kagawa S., Tamura T., Shimbara N., Takashina M., Kristenden P., Hendil K. B., Tanaka K., Ichihara A. Replacement of proteasome subunits × and Y by LMP7 and LMP2 induced by interferon-gamma for acquirement of the functional diversity responsible for antigen processing. FEBS Let. 1994; 343: 85
  • Aki M., Shimbara N., Takashina M., Akiyama K., Kagawa S., Tamura T., Tanahashi N., Yoshimura T., Tanaka K., Ichihara A. Interferon-γ-induces different subunit organizations and functional diversity of proteasomes. J. Biochem. 1994; 115: 257
  • Gaczynska M., Rock K. L., Goldberg A. L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes [see comments]. Nature 1993; 365: 264
  • Bourin M.-C., Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem. J. 1993; 289: 313
  • Walker F. J., Fay P. J. Regulation of blood coagulation by the protein C system. FASEB J. 1992; 6: 2561
  • Sali A., Matsumoto R., McNeil H. P., Karplus M., Stevens R. L. Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan binding regions and protease-specific antigenic epitopes. J. Biol. Chem. 1993; 268: 9023
  • Stevens R. L., Kamada M. M., Serafin W. E. Structure and function of the family of proteoglycans that reside in the secretory granules of natural killer cells and other effector cells of the immune response. Curr. Top. Microbiol. Immun. 1988; 140: 93
  • Church M. K., el-Lati S., Okayama Y. Biological properties of human skin mast cells. Clin. Exp. Allergy Suppl. 1991; 3: 1
  • Schwartz L. B., Bradford T. R. Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. J. Biol. Chem. 1986; 261: 7372
  • Read R. J., James M. N. G. Introduction to the protein inhibitors: X-ray crystallography. Proteinase Inhibitors, A. J. Barrett, G. Salvesen. Elsevier, New York 1986; 314
  • Borth W. α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 1992; 6: 3345
  • Heath J K., Reynolds J. J., Meikle M. C. Osteopetrotic (grey-lethal) bone produces collagenase and TIMP in organ culture: regulation by vitamin A. Biochem. Biophys. Res. Commun. 1990; 168: 1171
  • Nykjaer A., Bengtssonolivecrona G., Lookene A., Moestrup S. K., Petersen C. M., Weber W., Beisiegel U., Gliemann J. The α2-macroglobulin receptor low density lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J. Biol. Chem. 1993; 268(15)048
  • Perlmutter D. H., Glover G. I., Rivetna M., Schasteen C. S., Fallon R. J. Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes. Proc. Natl. Acad. Sci. 1990; 87: 3753
  • Chen M., Conn K. J., Festoff B. W. A receptor for cathepsin G-α1-antitrypsin complexes on mouse spinal cord astrocytes. Neurology 1993; 43: 1223
  • Abrahamson M., Mason R. W., Hansson H., Buttle D. J., Grubb A., Ohlsson K. Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J. 1991; 273: 621
  • Lenarcic B., Kos J., Dolenc I., Lucovnik P., Krizaj I., Turk V. Cathepsin D inactivates cysteine proteinase inhibitors, cystatins. Biochem. Biophys. Res. Commun. 1988; 154: 765
  • Koj A., Magielska-Zero D., Kurdowska A., Bereta J. Proteinase inhibitors as acute phase reactants: regulation of synthesis and turnover. Adv. Exp. Med. Biol. 1988; 240: 171
  • Deleted in proofs
  • Gettins P., Patston P. A., Schapira M. The role of conformational change in serpin structure and function (review). Bioessays 1993; 15: 461
  • Travis J., Garner D., Bowen J. Human α-1-antichymotrypsin: purification and properties. Biochemistry 1978; 17: 5647
  • Huber R., Carrell R. W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 1988; 28: 8951
  • Mottonen J., Strand A., Symersky J., Sweet R. M., Danley D. E., Geoghegan K. F., Gerard R. D., Goldsmith E. J. Structural basis of latency in plasminogen activator inhibitor-1. Nature (London) 1992; 355: 270
  • Munch M., Heegaard C. W., Andrea-sen P. A. Interconversions between active, insert and substrate forms of denatured refolded type-1 plasminogen activator inhibitor. Biochim. Biophys. Acta 1993; 1202: 29
  • Matheson N. R., van Halbeek H., Travis J. Evidence for a tetrahedral intermediate complex during serpin-proteinase interactions. J. Biol. Chem. 1991; 266(13)489
  • Potempa J., Shieh B.-H., Travis J. Alpha-2-antiplasmin: a serpin with two separate but overlapping reactive sites. Science 1988; 241: 699
  • Gaussem P., Grailhe P., Anglescano E. Sodium dodecyl sulfate-induced dissociation of complexes between human tissue plasminogen activator and its specific inhibitor. J. Biol. Chem. 1993; 268(12)150
  • Schecter N. M., Jordan L. M., James A. M., Cooperman B. S., Wang Z. M., Rubin H. Reaction of human chymase with reactive site variants of od-anti-chymotrypsin. J. Biol. Chem. 1993; 268(23)626
  • Baumann U., Huber R., Bode W., Grosse D., Lesjak M., Laurell C. B. Crystal structure of cleaved human alpha 1-anti-chymotrypsin at 2.7 Å resolution and its comparison with other serpins. J. Mol. Biol. 1991; 218: 595
  • Mourey L., Samama J. P., Delarue M., Petitou M., Choay J., Moras D. Crystal structure of cleaved bovine antithrombin-III at 3.2-Angstrom resolution. J. Mol. Biol. 1993; 232: 223
  • Wei A. Z., Rubin H., Cooperman B. S., Christianson D. W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nature Structural Biology 1994; 1: 251
  • Bjork I., Nordling K., Olson S. T. Immunologic evidence for insertion of the reactive-bond loop of antithrombin into the A β-sheet of the inhibitor during trapping of target proteinases. Biochemistry 1993; 32: 6501
  • Hafeez W., Ciliberto G., Perlmutter D. H. Constitutive and modulated expression of the human alpha 1 antitrypsin gene. Different transcriptional initiation sites used in three different cell types. J. Clin. Invest. 1992; 89: 1214
  • Hardon E. M., Frain M., Paonessa G., Cortese R. Two distinct factors interact with the promoter regions of several liver-specific genes. EMBO J. 1988; 7: 1711
  • Perlino E., Cortese R., Ciliberto G. The human α1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J. 1987; 6: 2767
  • Castell J. V., Gomez-Lechon M. J., David M., Hirano T., Kishimoto T., Heinrich P. C. Recombinant human interleukin-6 (IL-6/BSF-2/HSF) regulates the synthesis of acute phase proteins in human hepatocytes. FEBS Lett. 1988; 232: 347
  • Perlmutter D. H., May L. T., Sehgal P. B. Interferon beta 2/interleukin 6 modulates synthesis of alpha 1-antitrypsin in human mononuclear phagocytes and in human hepatoma cells. J. Clin. Invest. 1989; 84: 138
  • Vassalli J. D., Huarte J., Bosco D., Sappino A. P., Sappino N., Velardi A., Wohlwend A., Erno H., Monard D., Belin D. Protease-nexin-1 as an androgen-dependent secretory product of the murine seminal vesicle. EMBO J. 1993; 12: 1871
  • Finlay T. H., Tamir S., Kadner S. S., Cruz M. R., Yavelow J., Levitz M. α(1)-Antitrypsin-independent and anchorage-independent growth of MCF-7 breast cancer cells. Endocrinology 1993; 133: 996
  • Kurdowska A., Travis J. Acute phase protein stimulation by alpha 1-antichymotrypsin-cathepsin G complexes. Evidence for the involvement of interleukin-6. J. Biol. Chem. 1990; 265(21)023
  • Barbey-Morel C., Perlmutter D. H. Effect of Pseudomonas elastase on human mononuclear phagocyte α1-antitrypsin expression. Pediatr. Res. 1991; 29: 133
  • Schwartz B. S., Bradshaw J. D. Regulation of plasminogen activator inhibitor mRNA levels in lipopolysaccharide-stimulated human monocytes. Correlation with production of the protein. J. Biol. Chem. 1992; 267: 7089
  • Zoellner H., Wojta J., Gallicchio M L, McGrath K., Hamilton J. A. Cytokine regulation of the synthesis of plasminogen activator inhibitor-2 by human vascular endothelial cells. Comparison with plasminogen activator inhibitor-1 synthesis. Thromb. Haemost. 1993; 69: 135
  • Bergman D., Kadner S. S., Cruz M. R., Esterman A. L., Tahery M. M., Young B. K., Finlay T. H. Synthesis of α1-antichymotrypsin and α-1-antitrypsin by human trophoblast. Pediatr. Res. 1993; 34: 312
  • Mackiewicz A., Laciak M., Gorny A., Baumann H. Leukemia inhibitory factor, interferon-γ and dexamethasone regulate N-glycosylation of α-1-protease inhibitor in human hepatoma cells. Eur. J. Cell Biol. 1993; 60: 331
  • Jensen P. H., Lorand L., Ebbesen P., Gliemann J. Type-2 plasminogen-activator inhibitor is a substrate for trophoblast transglutaminase and factor XIII(a)-transglutaminase-catalyzed cross-linking to cellular and extracellular structures. Eur. J. Biochem. 1993; 214: 141
  • Vercaigne-Marko D., Davril M., Laine A., Hayem A. Interaction of human α1-proteinase inhibitor with human leukocyte cathepsin G. Biol. Chem. Hoppe-Seyler 1985; 366: 655
  • Hook V. Y. H., Purviance R. T., Azaryan A. V., Hubbard G., Krieger T. J. Purification and characterization of α1-antichymotrypsin-like protease inhibitor that regulates prohormone thiol protease involved in enkephalin precursor processing. J. Biol. Chem. 1993; 268(20)570
  • Evans D. L., McGrogan M., Scott R. W., Carrell R. W. Protease specificity and heparin binding and activation of recombinant protease nexin I. J. Biol. Chem. 1991; 266(22)307
  • Bourin M. C., Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem. J. 1993; 289: 313
  • Gebbink R. K., Reynolds C. H., Tollefsen D. M., Mertens K., Pannekoek H. Specific glycosaminoglycans support the inhibition of thrombin by plasminogen activator inhibitor 1. Biochemistry 1993; 32: 1675
  • Faller B., Cadene M., Bieth J. G. Demonstration of a 2-step reaction mechanism for the inhibition of heparin-bound neutrophil elastase by α1-proteinase inhibitor. Biochemistry 1993; 32: 9230
  • Salier J. P. Inter-alpha-trypsin inhibitor: emergence of a family within the Kunitz-type protease inhibitor superfamily (review). Trends Biochem. Sci. 1990; 15: 435
  • Yoshida E., Sumi H., Tsushima H., Maruyama M., Mihara H. Distribution and localization of inter-alpha-trypsin inhibitor and its active component acid-stable proteinase inhibitor: comparative immunohis-tochemical study. Inflammation 1991; 15: 71
  • Ikeo K., Takahashi K., Gojobori T. Evolutionary origin of a Kunitz-type trypsin inhibitor domain inserted in the amyloid beta precursor protein of Alzheimer's disease. J. Mol. Evol. 1992; 34: 536
  • Gebhard W., Hochstrasser K., Fritz H., Enghild J. J., Pizzo S. V., Salvesen G. Structure of inter-alpha-inhibitor (inter-alpha-trypsin inhibitor) and pre-alpha-inhibitor: current state and proposition of a new terminology (review). Biol. Chem. Hoppe-Seyler 1990; 371(Suppl.)13
  • Diarra-Mehrpour M., Bourguignon J., Sesboue R., Mattei M. G., Passage E., Saiier J. P., Martin J. P. Human plasma inter-alpha-trypsin inhibitor is encoded by four genes on three chromosomes. Eur. J. Biochem. 1989; 179: 147
  • Vetr H., Gebhard W. Structure of the human alpha 1-microglobulin-bikunin gene. Biol. Chem. Hoppe-Seyler 1990; 371: 1185
  • Lindqvist A., Bratt T., Altieri M., Kastern W., Akerstrom B. Rat alpha 1-microglobulin: co-expression in liver with the light chain of inter-alpha-trypsin inhibitor. Biochim. Biophys. Acta 1992; 1130: 63
  • Bratt T., Olsson H., Sjoberg E. M., Jergil B., Akerstrom B. Cleavage of the alpha 1-microglobulin-bikunin precursor is localized to the Golgi apparatus of rat liver cells. Biochim. Biophys. Acta 1993; 1157: 147
  • Enghild J. J., Salvesen G., Thogersen I. B., Valnickova Z., Pizzo S. V., Hefta S. A. Presence of the protein-glycosaminogly-can protein covalent cross-link in the inter-α-inhibitor-related proteinase inhibitor heavy chain-2, bikunin. J. Biol. Chem. 1993; 268: 8711
  • Selloum L., Davril M., Mizon C., Balduyck M., Mizon J. The effect of the glycosaminoglycan chain removal on some properties of the human urinary trypsin inhibitor. Biol. Chem. Hoppe-Seyler 1987; 368: 47
  • Potempa J., Kwon K., Chawla R., Travis J. Inter-alpha-trypsin inhibitor. Inhibition spectrum of native and derived forms. J. Biol. Chem. 1989; 264(15)109
  • Pratt C. W., Pizzo S. V. In vivo metabolism of inter-alpha-trypsin inhibitor and its proteinase complexes: evidence for proteinase transfer to alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Arch. Biochem. Biophys. 1986; 248: 587
  • Pratt C. W., Roche P. A., Pizzo S. V. The role of inter-alpha-trypsin inhibitor and other proteinase inhibitors in the plasma clearance of neutrophil elastase and plasmin. Arch. Biochem. Biophys. 1987; 258: 591
  • Quon D., Wang Y., Catalano R., Scardina J. M., Murakami K., Cordell B. Formation of beta-amyloid protein deposits in brains of transgenic mice. Nature (London) 1991; 352: 239
  • Kido H., Fukutomi A., Schilling J., Wang Y., Cordell B., Katunuma N. Protease-specificity of Kunitz inhibitor domain of Alzheimer's disease amyloid protein precursor. Biochem. Biophys. Res. Commun. 1990; 167: 716
  • Andrews J. L., Melrose J., Ghosh P. A comparative study of the low-molecular mass serine proteinase inhibitors of human connective tissues. Biol. Chem. Hoppe-Seyler 1992; 373: 111
  • Boudier C., Bieth J. G. The proteinase: mucus proteinase inhibitor binding stoichiometry. J. Biol. Chem. 1992; 267: 4370
  • Abbinantenissen J. M., Simpson L. G., Leikauf G. D. Neutrophil elastase increases secretory leukocyte protease inhibitor transcript levels in airway epithelial cells. Am. J. Physiol. 1993; 265: L286
  • Ying Q.-K., Simon S. R. Kinetics of the inhibition of human leukocyte elastase by elafin, a 6-kilodalton elastase-specific inhibitor from human skin. Biochemistry 1993; 32: 1866
  • Sallenave J. M., Silva A. Characterization and gene sequence of the precursor of elafin, an elastase-specific inhibitor in bronchial secretions. Am. J. Respir. Cell Mol. Biol. 1993; 8: 439
  • Sallenave J. M., Marsden M. D., Ryle A. P. Isolation of elafin and elastase-specific inhibitor (ESI) from bronchial secretions. Evidence of sequence homology and immunological cross-reactivity. Biol. Chem. Hoppe-Seyler 1992; 373: 27
  • Molhuizen H. O. F., Alkemade H. A. C., Zeeuwen P. L. J. M., Dejongh G. J., Wieringa B., Schalkwijk J. SKALP/elafin — an elastase inhibitor from cultured human keratinocytes — purification, cDNA sequence, and evidence for transglutaminase cross-linking. J. Biol. Chem. 1993; 268(12)028
  • Turk V., Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991; 285: 213
  • Freije J. P., Balbin M., Abrahamson M., Velasco G., Dalboge H., Grubb A., Lopez-Otin C. Human cystatin D. cDNA cloning, characterization of the Escherichia coli, expressed inhibitor, and identification of the native protein in saliva. J. Biol. Chem. 1993; 268(15)737
  • Baricos W. H., Cortez S. L., Le Q. C., Zhou Y. W., Dicarlo R. M., O'Connor S. E., Shah S. V. Glomerular basement membrane degradation by endogenous cysteine proteinases in isolated rat glomeruli. Kidney Int. 1990; 38: 395
  • Korant B., Towatari T., Kelley M., Brzin J., Lenarcic B., Turk V. Interactions between a viral protease and cystatins. Biol. Chem. Hoppe-Seyler 1988; 369: 281
  • Bradford H. N., Jameson B. A., Adam A. A., Wassell R. P., Colman R. W. Contiguous binding and inhibitory sites on kininogens required for the inhibition of platelet calpain. J. Biol. Chem. 1993; 268(26)546
  • Kawasaki H., Emori Y., Suzuki K. Calpastatin has two distinct sites for interaction with calpain — effect of calpastatin fragments on the binding of calpain to membranes. Arch. Biochem. Biophys. 1993; 305: 467
  • Nishimura T., Goll D. E. Binding of calpain fragments to calpastatin. J. Biol. Chem. 1991; 266(11)842
  • Adachi Y., Ishida-Takahashi A., Taka-hashi C., Takano E., Murachi T., Hatanaka M. Phosphorylation and subcellular distribution of calpastatin in human hematopoietic system cells. J. Biol. Chem. 1991; 266: 3968
  • Pontremoli S., Viotti P. L., Michetti M., Salamino F., Sparatore B., Melloni E. Modulation of inhibitory efficiency of rat skeletal muscle calpastatin by phosphorylation. Biochem. Biophys. Res. Commun. 1992; 187: 751
  • Murphy G. The regulation of connective tissue metalloproteinases by natural inhibitors. Agents Actions Suppl. 1993; 35: 69
  • Baragi V. M., Fliszar C. J., Conroy M. C., Ye Q.-Z., Shipley J. M., Welgus H. G. Contribution of the C-terminal domain of metalloproteinases to binding by tissue inhibitor of metalloproteinases. J. Biol. Chem. 1994; 269(12)692
  • Kleiner D. E., Jr., Tuuttila A., Tryggvason K., Stetler-Stevenson W. G. Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochemistry 1993; 32: 1583
  • Willenbrock F., Crabbe T., Slocombe P. M., Sutton C. W., Docherty A. J., Cockett M. I., O'Shea M., Brocklehurst K., Phillips I. R., Murphy G. The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry 1993; 32: 4330
  • Banda M. J., Howard E. W., Herron G. S., Apodaca G. Secreted inhibitors of metalloproteinases (IMPs) that are distinct from TIMP. Matrix Suppl. 1992; 1: 294
  • Heath J. K., Reynolds J. J., Meikle M. C. Osteopetrotic (grey-lethal) bone produces collagenase and TIMP in organ culture: regulation by vitamin A. Biochem. Biophys. Res. Commun. 1990; 168: 1171
  • Sato T., Ito A., Mori Y. Interleukin 6 enhances the production of tissue inhibitor of metalloproteinases (TIMP) but not that of matrix metalloproteinases by human fibroblasts. Biochem. Biophys. Res. Commun. 1990; 170: 824
  • Shapiro S. D., Kobayashi D. K., Welgus H. G. Identification of TIMP-2 in human alveolar macrophages. Regulation of biosynthesis is opposite to that of metalloproteinases and TIMP-1. J. Biol. Chem. 1992; 267(13)890
  • Stetler-Stevenson W. G., Brown P. D., Onisto M., Levy A. T., Liotta L. A. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J. Biol. Chem. 1990; 265(13)933
  • Jacobsen L., Sottrup-Jensen L. Localization of lysyl- -glutamyl cross-links in α2-macroglobulin-plasmin complex. Biochemistry 1993; 32: 120
  • Fusek M., Mares M., Vagner J., Voburka Z., Baudys M. Inhibition of aspartic proteinases by propart peptides of human procathepsin D and chicken pepsinogen. FEBS Lett. 1991; 5: 160
  • Harboe M., Andersen P. M., Foltmann B., Kay J., Kassell B. The activation of bovine pepsinogen. Sequence of the peptides released, identification of a pepsin inhibitor. J. Biol. Chem. 1974; 249: 4487
  • Thomas D. J., Richards A. D., Kay J. Inhibition of aspartic proteinases by alpha 2-macroglobulin. Biochem. J. 1989; 259: 905
  • Marshall C. J. Evolutionary relationships among the serpins. Philos. Trans. R. Soc. London Ser. B 1993; 342: 101
  • Detain E., Pochon F., Barray M., Van Leuven F. Ultrastructure of alpha 2-macroglobulins. Electron Microsc. Rev. 1992; 5: 231
  • Sottrup-Jensen L., Birkedal-Hansen H. Localization of cleavage sites for human fibroblast collagenase in the bait region of five mammalian alpha-macroglobulins. Matrix Suppl. 1992; 1: 263
  • Marshall L. B., Figler N. L., Gonias S. L. Identification of α2-macroglobulin conformational intermediates by electron microscopy and image analysis. Comparison of α2-macroglobulin-thrombin and α2-macroglobulin reacted with cis-dichlorodiammineplatinum(II) and trypsin. J. Biol. Chem. 1992; 267: 6347
  • Mason R. W. Interaction of lysosomal cysteine proteinases with alpha 2-macroglobulin: conclusive evidence for the endopepti-dase activities of cathepsins B and H. Arch. Biochem. Biophys. 1989; 273: 367
  • LaMarre J., WoJlenberg G. K., Gonias S. L., Hayes M. A. Cytokine binding and clearance properties of proteinase-activated α2-macroglobulins. Lab. Invest. 1991; 65: 3
  • Rubenstein D. S., Thogersen I. B., Pizzo S. V., Enghild J. J. Identification of monomelic α-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals, and purification and characterization of a monomelic α-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbiana. Biochem. J. 1993; 290: 85
  • Gaddy-Kurten D., Richards J. S. Regulation of α2-macroglobulin by luteinizing hormone and prolactin during cell differentiation in the rat ovary. Mol. Endocrinol. 1991; 5: 1280
  • Twining S. S., Fukuchi T., Yue B. Y. J. T., Wilson P. M., Zhou X., Loushin G. α2-Macroglobulin is present in and synthesized by the cornea. Invest. Ophthalmol. Vis. Sci., in press
  • Matthijs G., Devriendt K., Cassiman J. J., Van den Berghe H., Marynen P. Structure of the human alpha-2 macroglobulin gene and its promoter. Biochem. Biophys. Res. Commun. 1992; 184: 596
  • Krause E., Wegenka U., Moller C., Horn F., Heinrich P. C. Gene expression of the high molecular weight proteinase inhibitor α2-macroglobulin. Biol. Chem. Hoppe-Seyler 1992; 373: 509
  • Ganter U., Strauss S., Jonas U., Weide-mann A., Beyreuther K., Volk B., Berger M., Bauer J. α2-Macroglobulin synthesis in interleukin-6-stimulated human neuronal (SH-SY5Y neuroblastoma) cells. Potential significance for the processing of Alzheimer β-amyloid precursor protein. FEBS Lett. 1991; 282: 127
  • Kittas C., Aroni K., Matani A., Papadimitriou C. S. Immunocytochemical demonstration of a1-antitrypsin and a1-antichymotrypsin in human gastrointestinal tract. Hepato-Gastroenterology 1982; 29: 275
  • Steffens G. J., Heinzel-Wieland R., Saunders D., Wolf B., Rudolphus A., Stolk J., Kramps J. A., Dijkman J. A. Oxidation resistant muteins of antileukoproteinase as potential therapeutic agents. Agents Actions Suppl. 1993; 42: 111
  • Strandberg L., Lawrence D. A., Johanson L. B.-A., Ny T. The oxidative inactivation of plasminogen activator inhibitor type 1 results from a conformational change in the molecule and does not require the involvement of the P1 methionine. J. Biol. Chem. 1991; 266(13)852
  • Beatty K., Bieth J., Travis J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J. Biol. Chem. 1980; 255: 3931
  • Winyard P. G., Zhang Z., Chidwick K., Blake D. R., Carrell R. W., Murphy G. Proteolytic inactivation of human α1-antitrypsin by human stromelysin. FEBS Lett. 1991; 279: 91
  • Desrochers P. E., Mookhtiar K., Van Wart H. E., Hasty K. A., Weiss S. J. Proteolytic inactivation of α1-proteinase inhibitor and α1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem. 1992; 267: 5005
  • Mast A. E., Enghild J. J., Nagase H., Suzuki K., Pizzo S. V., Salvesen G. Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J. Biol. Chem. 1991; 266(15)810
  • Lenarcic B., Krasovec M., Ritonja A., Olafsson I., Turk V. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett. 1991; 280: 211
  • Sponer M., Nick H. P., Schnebli H. P. Different susceptibility of elastase inhibitors to inactivation by proteinases from Staphylococcus aureus and Pseudomonas aeruginosa. Biol. Chem. Hoppe-Seyler 1991; 372: 963
  • Morihara K., Sanai Y., Tsuzuki H., Jyoyama H., Hirose K., Homma J. Y., Kato I. Effects of proteases on the structure and activity of Pseudomonas aeruginosa, exotoxin A. Infect. Immun. 1981; 34: 435
  • Maeda H., Molla A. Pathogenic potentials of bacterial proteases. Clin. Chim. Acta 1989; 185: 357
  • Blank C. A., Brantly M. Clinical features and molecular characteristics of allin: conclusive evidence for the endopeptidase activities of cathepsins B and H. Arch. Biochem. Biophys. 1989; 273: 367
  • LaMarre J., WoJlenberg G. K., Gonias S. L., Hayes M. A. Cytokine binding and clearance properties of proteinase-activated α2-macroglobulins. Lab. Invest. 1991; 65: 3
  • Rubenstein D. S., Thogersen I. B., Pizzo S. V., Enghild J. J. Identification of monomelic α-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals, and purification and characterization of a monomelic α-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbiana. Biochem. J. 1993; 290: 85
  • Gaddy-Kurten D., Richards J. S. Regulation of α2-macroglobulin by luteinizing hormone and prolactin during cell differentiation in the rat ovary. Mol. Endocrinol. 1991; 5: 1280
  • Twining S. S., Fukuchi T., Yue B. Y. J. T., Wilson P. M., Zhou X., Loushin G. α2-Macrog]obulin is present in and synthesized by the cornea. Invest. Ophthalmol. Vis. Sci., in press
  • Matthijs G., Devriendt K., Cassiman J. J., Van den Berghe H., Marynen P. Structure of the human alpha-2 macroglobulin gene and its promoter. Biochem. Biophys. Res. Commun. 1992; 184: 596
  • Krause E., Wegenka U., Moller C., Horn F., Heinrich P. C. Gene expression of the high molecular weight proteinase inhibitor α2-macroglobulin. Biol. Chem. Hoppe-Seyler 1992; 373: 509
  • Ganter U., Strauss S., Jonas U., Weidemann A., Beyreuther K., Volk B., Berger M., Bauer J. α2-Macroglobulin synthesis in interleukin-6-stimulated human neuronal (SH-SY5Y neuroblastoma) cells. Potential significance for the processing of Alzheimer β-amyloid precursor protein. FEBS Lett. 1991; 282: 127
  • Kittas C., Aroni K., Matani A., Papadimitriou C. S. Immunocytochemical demonstration of a1-antitrypsin and a1-anti-chymotrypsin in human gastrointestinal tract. Hepato-Gastroenterology 1982; 29: 275
  • Steffens G. J., Heinzel-Wieland R., Saunders D., Wolf B., Rudolphus A., Stolk J., Kramps J. A., Dijkman J. A. Oxidation resistant muteins of antileukoproteinase as potential therapeutic agents. Agents Actions Suppl. 1993; 42: 111
  • Strandberg L., Lawrence D. A., Johanson L. B.-A., Ny T. The oxidative inactivation of plasminogen activator inhibitor type 1 results from a conformational change in the molecule and does not require the involvement of the P1 methionine. J. Biol. Chem. 1991; 266(13)852
  • Beatty K., Bieth J., Travis J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J. Biol. Chem. 1980; 255: 3931
  • Winyard P. G., Zhang Z., Chidwick K., Blake D. R., Carrell R. W., Murphy G. Proteolytic inactivation of human α1-antitrypsin by human stromelysin. FEBS Lett. 1991; 279: 91
  • Desrochers P. E., Mookhtiar K., Van Wart H. E., Hasty K. A., Weiss S. J. Proteolytic inactivation of α1-proteinase inhibitor and α1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem. 1992; 267: 5005
  • Mast A. E., Enghild J. J., Nagase H., Suzuki K., Pizzo S. V., Salvesen G. Kinetics and physiologic relevance of the inactivation of alpha 1 -proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J. Biol. Chem. 1991; 266(15)810
  • Lenarcic B., Krasovec M., Ritonja A., Olafsson I., Turk V. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett. 1991; 280: 211
  • Sponer M., Nick H. P., Schnebli H. P. Different susceptibility of elastase inhibitors to inactivation by proteinases from Staphylococcus aureus and Pseudomonas aeruginosa. Biol. Chem. Hoppe-Seyler 1991; 372: 963
  • Morihara K., Sanai Y., Tsuzuki H., Jyoyama H., Hirose K., Homma J. Y., Kato I. Effects of proteases on the structure and activity of Pseudomonas aeruginosa, exotoxin A. Infect. Immun. 1981; 34: 435
  • Maeda H., Molla A. Pathogenic potentials of bacterial proteases. Clin. Chim. Acta 1989; 185: 357
  • Blank C. A., Brantly M. Clinical features and molecular characteristics of α1-antitrypsin deficiency. Ann. Allerg. 1994; 72: 105
  • Poller W., Faber J. P., Weidinger S., Tief K., Scholz S., Fischer M., Olek K., Kirchgesser M., Heidtmann H. H. A leucine-to-proline substitution causes a defective α1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics 1993; 17: 740
  • Birrer P. Consequences of unbalanced protease in the lung: protease involvement in destruction and local defense mechanisms of the lung. Agents Act. — Suppl. 1993; 40: 3
  • Kalaria R. N., Golde T., Kroon S. N., Perry G. Serine protease inhibitor anti-thrombin-III and its messenger RNA in the pathogenesis of Alzheimers disease. Am. J. Pathol. 1993; 143: 886
  • Ishiguro K., Shoji M., Yamaguchi H., Matsubara E., Ikeda M., Kawarabayashi T., Harigaya Y., Okamoto K., Hirai S. Differential expression of α1-antichymotrypsin in the aged human brain. Virchows Arch. B 1993; 64: 221
  • Larvin M., Mayer A. D., McMahon M. M., Muller-Esterl W., Fritz H. Intra-peritoneal aprotinin therapy for acute pancreatitis. Biol. Chem. Hoppe-Seyler 1988; 369: 145
  • Tervo T., van Setten G. B., Tervo K., Tarkkanen A. Experience with plasmin inhibitors. Acta Ophthalmol., Suppl. 1992; 47
  • Bailey C. R., Kelleher A. A., Wielogorski A. K. Randomized placebocontrolled double-blind study of three aprotinin regimens in primary cardiac surgery. British Journal of Surgery 1994; 81: 969
  • Mulligan M. S., Desrochers P. E., Chinnaiyan A. M., Gibbs D. F., Varani J., Johnson K. J., Weiss S. J. In vivo suppression of immune complex-induced alveolitis by secretory leukoproteinase inhibitor and tissue inhibitor of metallo-proteinases-2. Proc. Natl. Acad. Sci. 1993; 90: 11523
  • Schultz R. M., Silberman S., Persky B., Bajkowski A. S., Carmichael D. F. Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F-10 melanoma cells. Cancer Res. 1988; 48: 5539
  • Stack M. S., Pizzo M. S. Effect of desialylation on the biological properties of human plasminogen. Biochem. J. 1992; 284: 81
  • Knauper V., Osthues A., DeClerck Y. A., Langley K. E., Blaser J., Tschesche H. Fragmentation of human polymorphonuclear-leucocyte collagenase. Biochem. J. 1993; 291: 847
  • Sorimachi H., Toyama-Sorimachi N., Saido T. C., Kawasaki H., Sugita H., Miyasaka M., Arahata K., Ishiura S., Suzuki K. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J. Biol. Chem. 1993; 268(10)593
  • Demunk G. A. W., Parkinson J. F., Groeneveld E., Bang N. U., Rijken D. C. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem. J. 1993; 290: 655
  • Williams S. E., Ashcom J. D., Argraves W. S., Strickland D. K. A novel mechanism for controlling the activity of α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J. Biol. Chem. 1992; 267: 9035
  • Wolf B. B., Lopes M. B., VandenBerg S. R., Gonias S. L. Characterization and immunohistochemical localization of alpha 2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am. J. Pathol. 1992; 141: 37
  • Van Leuven F., Marynen P., Cassiman J. J., Van den Berghe H. Mapping of structure-function relationships in proteins with a panel of monoclonal antibodies. A study on human alpha 2-macroglobulin. J. Immunol. Methods 1988; 111: 39
  • Figler N. L., Strickland D. K., Allietta M., Gonias S. L. Immunoelectron microscopy studies with a monoclonal antibody directed against a receptor recognition site epitope in human alpha 2-macroglobulin. J. Struct. Biol. 1991; 106: 237
  • Moestrup S. K., Gliemann J. Analysis of ligand recognition by the purified alpha 2-macroglobulin receptor (low density lipoprotein receptor-related protein). Evidence that high affinity of alpha 2-macro-globulin-proteinase complex is achieved by binding to adjacent receptors. J. Biol. Chem. 1991; 266(14)011
  • Gafvels M. E., Coukos G., Sayegh R., Coutifaris C., Strickland D. K., Strauss J. F. Regulated expression of the trophoblast α-2-macroglobulin receptor/low density lipoprotein receptor-related protein. J. Biol. Chem. 1994; 267(21)230
  • Nykjaer A., Petersen C. M., Moller B., Jensen P. H., Moestrup S. K., Holtet T. L., Etzerodt M., Thogersen H. C., Munch M., Andreasen P. A., et al. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase. plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem. 1992; 267: 14543
  • LaMarre J., Wolf B. B., Kittler E. L. W., Quesenberry P. J., Gonias S. L. Regulation of macrophage α2-macroglobulin receptor low density lipoprotein receptor related protein by lipopolysaccharide and interferon-gamma. J. Clin. Invest. 1993; 91: 1219
  • Meyer K. C., Zimmerman J. Neutrophil mediators, Pseudomonas, and pulmonary dysfunction in cystic fibrosis. J. Lab. Clin. Med. 1993; 121: 654
  • Twining S. S., Davis S. D., Hyndiuk R. A. Relationship between proteases and descemetocele formation in experimental Pseudomonas, keratitis. Curr. Eye Res. 1986; 5: 503
  • Steuhl K. P., Doring G., Thiel H. J. The significance of bacterial and host factors in corneal infections caused by Pseudomonas aeruginosa. Fortschr. Ophthalmol. 1989; 86: 283
  • Levine J. J., Sherry D. D., Strickland D. K., Ilowite N. T. Intraarticular α2-macroglobulin complexes and proteolytic activity in children with juvenile rheumatoid arthritis. Pediatr. Res. 1993; 34: 204
  • Pakdel F., Le Goff P., Katzen-ellenbogen B. S. An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J. Steroid Biochem. Mol. Biol. 1993; 46: 663
  • Terlecky S. R., Dice J. F. Polypeptide import and degradation by isolated lysosomes. J. Biol. Chem. 1993; 268(23)490
  • Stadtman E. R. Protein oxidation and aging. Science 1992; 257: 1220
  • Opdenakker G., Rudd P. M., Ponting C. P., Dwek R. A. Concepts and principles of glycobiology. FASEB J. 1993; 7: 1330
  • Johnson G. V., Greenwood J. A., Costello A. C., Troncoso J. C. The regulatory role of calmodulin in the proteolysis of individual neurofilament proteins by calpain. Neurochem. Res. 1991; 16: 869
  • Netzel-Arnett S., Sang Q. X., Moore W. G., Navre M., Birkedal-Hansen H., Van Wart H. E. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 1993; 32: 6427
  • Leduc R., Molloy S. S., Thorne B. A., Thomas G. Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J. Biol. Chem. 1992; 267(14)304
  • Smith L. K., Bradshaw M., Croall D. E., Garner C. W. The insulin receptor substrate (IRS-1) is a PEST protein that is susceptible to calpain degradation in vitro. Biochem. Biophys. Res. Commun. 1993; 196: 767
  • Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 1992; 61: 761
  • Dice J. F. Selective degradation of cytosolic proteins by lysosomes (review). Ann. N.Y. Acad. Sci. 1992; 674: 58
  • Elvira M., Diez J. A., Wang K. K., Villalobo A. Phosphorylation of connexin-32 by protein kinase C prevents its proteolysis by mu-calpain and m-calpain. J. Biol. Chem. 1993; 268(14)294
  • Zolotarjova N., Ho C., Mellgren R. L., Askari A., Huang W. H. Different sensitivities of native and oxidized forms of Na+/K+-ATPase to intracellular proteinases. Biochimica et Biophysica Acta — Biomem-branes 1994; 1192: 125
  • Pacifici R. E., Kono Y., Davies K. J. A. Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex proteasome. J. Biol. Chem. 1993; 268(15)405
  • Giulivi C., Davies K. J. A. Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19-S) proteasome. J. Biol. Chem. 1993; 268: 8752
  • Chau V., Bachmair A., Marriott D., Ecker D. J., Gonda D. K., Varshavsky A. A multiubiquitin chain is confined to a specific lysine in a targeted short-lived protein. Science 1989; 243: 1576
  • Vannocker S., Vierstra R. D. Multiubiquitin chains linked through lysine-48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J. Biol. Chem. 1993; 268: 24766
  • Morris R., Winyard P. G., Blake D. R., Morris C. J. Thrombin in inflammation and healing, Relevance to rheumatoid arthritis. Ann. Rheum. Dis. 1994; 53: 72
  • Kikuchi H., Tanaka S., Matsuo O. Plasminogen activator in synovial fluid from patients with rheumatoid arthritis. J. Rheumatol. 1987; 14: 439
  • Duffy M. J. Urokinanase-type plasminogen activator and malignancy. Fibrinolysis 1993; 7: 295
  • Sloane B. F., Moin K., Krepela E., Rozhim J. Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Can. Metast. Rev. 1990; 9: 333
  • Blasi F. Molecular mechanisms of protease-mediated tumor invasiveness. J. Surg. Oncol. 1993; S321
  • Reinartz J., Naher H., Mai H., Kramer M. D. Plasmogen activation in lesional skin of pemphigus-vulgaris type neumann. Arch. Dermatol. Res. 1993; 284: 432
  • Kramer M. D., Reinartz J. The autoimmune blistering skin disease bullous pemphigoid. The presence of plasmin/α2-antiplasmin complexes in skin blister fluid indicates plasmin generation in lesional skin. J. Clin. Invest. 1993; 92: 978
  • Tooyama I., Kawamata T., Akiyama H., Moestrup S. K., Gliemann J., McGeer P. L. Immunohistochemical study of α2-macroglobulin receptor in Alzheimer and control postmortem human brain. Mol. Chem. Neuropathol. 1993; 18: 153
  • Miyazaki K., Hasegawa M., Funahashi K., Umeda M. A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature (London) 1993; 362: 839
  • Hamilton J. A., Hart P. H., Leizer T., Vitti G. F., Campbell I. K. Regulation of plasminogen activator activity in arthritic joints. J. Rheumatol. 1991; 18(Suppl.)106
  • Niedbala M. J., Stein-Picarella M. Role of protein kinase C in tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator. Blood 1993; 81: 2608
  • Immonen I., Siren V., Stephens R. W., Liesto K., Vaheri A. Retinoids increase urokinase-type plasminogen activator production by human retinal pigment epithelial cells in culture. Invest. Ophthalmol. Vis. Sci. 1993; 34: 2062
  • Wojta J., Gallicchio M., Zoellner H., Filonzi E. L., Hamilton J. A., McGrath K. Interleukin-4 stimulates expression of urokinase-type-plasminogen activator in cultured human foreskin microvascular endothelial cells. Blood 1993; 81: 3285
  • Gerwin B. I., Keski-Oja J., Seddon M., Lechner J. F., Harris C. C. TGF-beta 1 modulation of urokinase and PAI-1 expression in human bronchial epithelial cells. Am. J. Physiol. 1990; 259: L262
  • Thompson J. N., Nelles L., Collen D. Effect of retinoic acid on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in human endothelial cells. Eur. J. Biochem. 1991; 201: 627
  • Baici A., Lang A. Effect of interleukin-1 beta on the production of cathepsin B by rabbit articular chondrocytes. FEBSLett. 1990; 277: 93
  • Nilsen-Hamilton M., Jang Y. J., Delgado M., Shim J. K., Bruns K., Chiang C. P., Fang Y., Parfett C. L., Denhardt D. T., Hamilton R. T. Regulation of the expression of mitogen-regulated protein (MRP; proliferin) and cathepsin L in cultured cells and in the murine placenta. Mol. Cell. Endocrinol 1991; 77: 115
  • Troen B. R., Chauhan S. S., Ray D., Gottesman M. M. Downstream sequences mediate induction of the mouse cathepsin L promoter by phorbol esters. Cell Growth Differ. 1991; 2: 23
  • Scott D. K., Brakenhoff K. D., Clohisy J. C., Quinn C. O., Partridge N. C. Parathyroid hormone induces transcription of collagenase in rat osteoblastic cells by a mechanism using cyclic adenosine 3′,5′-monophosphate and requiring protein synthesis. Mol. Endocrinol 1992; 6: 2153
  • Gronowicz G., Hadjimichael J., Richards D., Cerami A., Rossomando E. F. Correlation between tumor necrosis factor-alpha (TNF-alpha)-induced cytoskeletal changes and human collagenase gene induction. J. Periodont. Res. 1992; 27: 562
  • Hiraoka K., Sasaguri Y., Komiya S., Inoue A., Morimatsu M. Cell proliferation-related production of matrix metallo-proteinases 1 (tissue collagenase) and 3 (stromelysin) by cultured human rheumatoid synovial fibroblasts. Biochem. Int. 1992; 27: 1083
  • Saarialho-Kere U. K., Welgus H. G., Parks W. C. Distinct mechanisms regulate interstitial collagenase and 92-kDa gelatinase expression in human monocytic-like cells exposed to bacterial endotoxin. J. Biol. Chem. 1993; 268(17)354
  • Bazan H. E., Tao Y., Bazan N. G. Platelet-activating factor induces collagenase expression in corneal epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 8678
  • Kolkenbrock H., Heckerkia A., Orgel D., Buchlow G., Sorensen H., Hauer W., Ulbrich N. A trypsin sensitive stromelysin isolated from rheumatoid synovial fluid is an activator for matrix metalloproteinases. Eur. J. Clin. Chem. Clin. Biochem. 1993; 31: 625
  • Montgomery A. M., Sabzevari H., Reisfetd R. A. Production and regulation of gelatinase B by human T-cells. Biochim. Biophys. Acta 1993; 1176: 265
  • Wahl S. M., Allen J. B., Weeks B. S., Wong H. L., Klotman P. E. Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 4577
  • Lacraz S., Nicod L., Galve-de Roche-monteix B., Baumberger C., Dayer J. M., Welgus H. G. Suppression of metalloproteinase biosynthesis in human alveolar macrophages by interleukin-4. J. Clin. Invest. 1992; 90: 382
  • Windsor L. J., Grenett H., Birkedal-Hansen B., Bodden M. K., Engler J. A., Birkedal-Hansen H. Cell type-specific regulation of SL-1 and SL-2 genes. Induction of the SL-2 gene but not the SL-1 gene by human keratinocytes in response to cytokines andphorbolesters. J. Biol. Chem. 1993; 268(17)341
  • Fletcher S., Thomas T., Schreiber G., Heinrich P. C., Yeoh G. C. The development of rat alpha 2-macroglobulin. Studies in vivo and in cultured fetal rat hepatocytes. Eur. J. Biochem. 1988; 171: 703
  • Gebicke-Haerter P. J., Bauer J., Brenner A., Gerok W. Alpha 2-macroglobulin synthesis in an astrocyte subpopulation. Journal of Neurochemistry 1987; 49: 1139
  • Cooperman B. S., Stavridi E., Nickbarg E., Rescorla E., Schechter N. M., Rubin H. Antichymotrypsin interaction with chymotrypsin. Partitioning of the complex. J. Biol. Chem. 1993; 268(23)616
  • Laug W. E., Aebersold R., Jong A., Rideout W., Bergman B. L., Baker J. Isolation of multiple types of plasminogen activator inhibitors from vascular smooth muscle cells. Thromb. Haem. 1989; 62: 517
  • Shieh B. H., Potempa J., Travis J. The use of alpha 2-antiplasmin as a model for the demonstration of complex reversibility in serpins. J. Biol. Chem. 1989; 264(13)420
  • Lawson J. H., Butenas S., Ribarik N., Mann K. G. Complex-dependent inhibition of factor VIIa by antithrombin III and heparin. J. Biol. Chem. 1993; 268: 767
  • Tollefsen D. M. The interaction of gly-cosaminoglycans with heparin cofactor II: structure and activity of a high-affinity dermatan sulfate hexasaccharide. Adv. Exp. Med. Biol. 1992; 313: 167
  • Knupp C. L. The interaction of thrombin with platelet protease nexin. Throm. Res. 1989; 56: 77

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.