1,689
Views
322
CrossRef citations to date
0
Altmetric
Research Article

Enzymatic Degradation of GlycosaminogIycans

, , &
Pages 387-444 | Published online: 26 Sep 2008

References

  • Allen J. D. Subsite mapping of enzymes: application to polysaccharide depolymerases. Meth. Enymol. 1980; 64: 248–77
  • Ampofo S. A., Wang H. M., Linhardt R. J. Disaccharide compositional analysis of heparin and heparan sulfate using capillary zone electrophoresis. Anal. Biochem. 1991; 199: 249–55
  • Amott S., Guss J. M., Hukins D. W. L. Conformation of keratan sulphate. J. Mol. Biol. 1974; 88: 175–84
  • Ascencio F., Fransson L.-A., Wadstrom T. Affinity of the gastric pathogen Helicobacter pylorifor the N-sulphated glycosaminoglycan heparan sulphate. J. Med. Microbiol. 1993; 38: 240–44
  • Atha D. H., Lormeau J.-C., Petitou M., Rosenberg R. D., Choay J. Contribuiton of monosaccharide residues in heparin binding to antithrombin III. Biochemistry 1985; 24: 6723–29
  • Atkins E. D. T., Nieduszynski I. A. Heparin: crystalline structures of the sodium and calcium salts. Heparin — Chemistry and Clinical Usage., V. V. Kakkar, D. P. Thomas. Academic Press, London 1976; 21–35
  • Bailey J. E., Ollis D. F. Biochemical Engineering Fundamentals. McGraw-Hill, New York 1986
  • Balduini C., De Luca G., Castellani A. A. Biosynthesis of skeletal and corneal keratan sulphate. Keratan Sulphate — Chemistry, Biology, Clinical Pathology., H. Greiling, J. E. Scott. The Biochemical Society, London 1989; 53–65
  • Bame K. J. Release of heparan sulfate glycosami-noglycans from proteoglycans in Chinese hamster ovary cells does not require proteolysis of the core protein. J. Biol. Chem. 1993; 268: 19956–64
  • Baugh R. F., Deemar K. A., Zimmerman J. J. Heparinase in the activated clotting time assay: monitoring heparin-independent alterations in coagulation function. Anesth. Analg. 1992; 74: 201–05
  • Bellamy R. W., Horikoshi K. Heparinase produced by a microorganism belonging to the genus Bacillus. United States Patent 1992; 5: 145, 778
  • Bellamy W. R. A novel Bacillussp. capable of degrading sulfated glycosaminoglycans. Superbugs, Microorganisms in Extreme Environments., K. Horikoshi, W. D. Grant. Japan Scientific Societies Press, Tokyo 1990; 143–57
  • Belshaw N. J., Williamson G. Specificity in the binding domain of glucoamylase 1. Eur. J. Biochem. 1993; 211: 717–24
  • Bitter T., Muir H. M. A modified uronic acid carbazole reaction. Anal Biochem 1962; 4: 330–34
  • Böhmer L. H., Pitout M. J., Steyn P. L., Visser L. Purification and characterization of a novel heparinase. J. Biol. Chem. 1990; 265: 13609–17
  • Bourin M.-C., Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem. J. 1993; 289: 313–30
  • Bourin M.-C., Lundgren-Åkerlund E., Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J. Biol. Chem. 1990; 265: 15424–431
  • Cael J. J., Winter W. T., Amott S. Calcium chondroitin 4-sulfate: Molecular conformation and organization of polysaccharide chains in a proteoglycan. J. Mol. Biol. 1978; 125: 21–42
  • Cardin A. D., Demeter D. A., Weintraub H. J. R., Jackson R. L. Molecular design and modeling of protein-heparin interactions. Meth. Enzymol. 1991; 203: 556–583
  • Cardin A. D., Weintraub H. J. R. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21–32
  • Casu B. Structure of heparin and heparin fragments. Ann. N. Y. Acad. Sci. 1989; 556: 1–17
  • Casu B., Choay J., et al. Controversial glycosaminoglycan conformations. Nature 1986; 322: 215–16
  • Casu B., Petitou M., Provasoli M., Sinay P. Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. TZBS 1988; 13: 221–25
  • Celesia G. G. Alzheimer's desease: the proteoglycans hypothesis. Sem. Thromb. Hem. 1991; 17(suppl 2)158–60
  • Cerbelaud E. C., Conway L. J., Galliher P. M., Langer R. S., Cooney C. L. Sulfur regulation of heparinase and sulfatases in Flavobacterium heparinum. Appl. Env. Micr. 1986; 51: 640–46
  • Cheng F., Yoshida K., Heinegård D., Fransson L.-Å. A new method for sequence analysis of glycosaminoglycans from heavily substituted proteoglycans reveals non-random positioning of 4– and 6–0-sulphated N-acetylgalactosamine in aggrecan-derived chondroitin sulphate. Clycobidlogy. 1992; 2: 553–61
  • Cohen D. M., Linhardt R. J. Randomness in the heparin polymer: Computer simulations of alternative action patterns of heparin lyase. Biopolymers 1990; 30: 733–41
  • Cohen F. E. The parallel p helix of pectate lyase C: something to sneeze at. Science 1993; 260: 1444–45
  • Coltrini D., Rusnati M., et al. Biochemical bases of the interaction of human basic fibroblast growth factor with the glycosaminoglycans. Eur. J. Biochem. 1993; 214: 51–58
  • Comper W. D. Heparin (and related polysaccha-rides. Gordon & Breach, New York 1981
  • Conrad H. E. Structure of heparan sulfate and dermatan sulfate. Ann. N.Y. Acad. Sci. 1989; 556: 18–28
  • Creighton T. E. Proteins: Structures and Molecular Properties (2. ed.). W.H. Freeman and Co., New York 1993
  • D'Amore P. A. Modes of FGF release in vivo and in vitro. Cancer and Metastasis Reviews 1990; 9: 227–38
  • de Agostini A. L., Lau H. K., Leone C., Youssoufian H., Rosenberg R. D. Cell mutants defective in synthesizing a heparan sulfate proteoglycan with regions of defined monosaccharide sequence. Proc. Natl. Acad. Sci., USA 1990; 87: 9784–88
  • Desai U. R., Wang H., Linhardt R. J. Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry 1993a; 32: 8140–45
  • Desai U. R., Wang H., Linhardt R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinurn. Arch. Biochem. Biophys. 1993b; 306: 461–68
  • Dietrich C. P., Silva M. E., Michelacci Y. M. Sequential degradation of heparin in Flavobacterium heparinum. J. Biol. Chem. 1973; 248: 6408–15
  • Engelberg H. Heparin, non-heparin glycosaminogly-cans, and heparinoids: An overview of their application in atherosclerosis. Sem Thromb. Hem. 1991; 17(suppl 1)5–8
  • Enghild J. J., Salvesen G., Hefta S. A., Thagersen I. B., Rutherford S., Pizzo S. V. Chondroitin 4-sulfate covalently cross-links the chains of the human blood protein pre-a-inhibitor. J. Biol. Chem 1991; 266: 747–51
  • Eriksson A. E., Cousens L. S., Weaver L. H., Matthews B. W. Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci., USA 1991; 88: 3441–45
  • Ernst S., Venkataraman G., Winkler S., Godavarti R., Langer R., Cooney C. L., Sasisekharan R. Expression, purification, and characterization of heparinase I from F. heparinumin E. coli. Submitted to. Biochemical J. 1995
  • Evered D., Whelan J. Functions of the Proteoglycans. John Wiley & Sons, Chichester, NY 1986
  • Evered D., Whelan J. The Biology of Hyaluronan. John Wiley & Sons, Chichester, NY 1989
  • Fedarko N. S., Conrad H. E. A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cells. J. Cell. Biol. 1986; 102: 587–99
  • Ferro D. R., Provasoli A., et al. Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences. Curb. Res. 1990; 195: 157–67
  • Ferro D. R., Provasoli A., Ragazzi M., Meille S. V., Colombo A. On the solid-state conformation of glycosaminoglycans containing iduronic acid. International workshop on recent developments in industrial polysaccharides., V. Crescenzi. Gordon and Breach, New York 1989
  • Fersht A. Entyme Structure and Mechanism (2. ed.). W.H. Freeman and Co, New York 1985
  • Folkman J., Klagsbrun M. Angiogenic Factors. Science 1987; 235: 442–47
  • Fransson L.-Å. Mammalian Glycosaminoglycans. The Polysaccharides., G. O. Aspinall. Academic Press, Orlando, FL 1985
  • Fransson L.-Å., Cöster L. Interaction between dermatan sulphate chains. Biochim. Biophys. Acta 1979; 582: 132–44
  • Fransson L.-Å., Havsmark B., Sheehan J. K. Self-associatin of heparan sulfate. J. Biol. Chem. 1981; 256: 13039–43
  • Fransson L.-Å., Havsmark B., Silverberg I. A method for the sequence analysis of dermatan sulphate. Biochem. J. 1990; 269: 381–388
  • French A. D., Brady J. W. Computer modeling of carbohydrates. ACS Symposium Series 1990; 430: 1–19
  • Gabriel D. A., Carr M. E. Calcium destabilizes and causes conformational changes in hyaluronic acid. Am. J. Med. Sci. 1989; 298: 8–14
  • Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem. J. 1986; 236: 313–25
  • Gallagher J. T., Turnbull J. E., Lyon M. Hepm sulphate proteoglycans: molecular organisation of membrane-associated species and an approach to polysac-charide sequence analysis. Heparin and related polysaccharides., D. A. Lane, I. Björk, U. Lindahl. Plenum Press, New York 1992a
  • Gallagher J. T., Turnbull J. E., Lyon M. Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int. J. Biochem. 1992b; 24: 553–60
  • Gallagher J. T., Walker A. Molecular distinctions between heparan sulphate and heparin. Biochem. J. 1985; 230: 665–74
  • Gettins P., Home A. P. One- and two-dimensional 13 C-n.m.r characterization of two series of oli-gosaccharides derived from porcine intestinal mucosal heparin by degradation with heparinase. Carb. Res. 1992; 223: 81–98
  • Gitay-Goren H., Soker S., Vlodavsky I., Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J. Biol. Chem. 1992; 267: 6093–98
  • Godder K., Vlodavsky I., Eldor A., Weksler B. B., Haimonvitz-Friedman A., Fuks Z. Heparanase activity in cultured endothelial cells. J. Cell. Physiol. 1991; 148: 274–80
  • Gospodarowicz D., Cheng J. Heparin protects basic and acidic FGF from inactivation. J. Cell. Phys. 1986; 128: 475–84
  • Greiling H., Scott J. E. Keratan Sulphate —Chemistry, Biology, Clinical Pathology. The Biochemical Society, London 1989
  • Greiling H., Stuhlsatz W., Eberhard T., Eberhard A. Studies on the mechanism of hyaluronate lyase action. Conn. Tissue Res. 1975; 3: 135–39
  • Grootenhuis P. D. J., van Boeckel C. A. A. Constructing a molecular model of the interaction between antithrombin III and a potent heparin analogue. J. Am. Chem. Soc. 1991; 113: 2743–47
  • Grootenhuis P. D. J., van Boeckel C. A. A., Haasnoot C. A. G. Carbohydrates and drug discovery —the role of computer simulation. TIBTECH. 1994; 12: 9–14
  • Gu K., Edens R. E., Jandik K. A., Linhardt R. J. Monoclonal antibodies prepared against heparin lyase I and their reactivity toward heparin lyase I, II, and III. Int. J. Biochem. 1993a; 25: 331–36
  • Gu K., Liu J., Pervin A., Linhardt R. J. Comparison of the activity of two chondroitin AC lyases on dermatan sulfate. Curb. Res. 1993b; 244: 369–77
  • Guimond S., Maccarana M., Olwin B. B., Lindahl U., Rapraeger A. C. Activating and inhibitory heparin sequences for FGF-2 (Basic FGF). J. Biol. Chem. 1993; 268: 23906–14
  • Guo Y., Conrad H. E. The disaccharide composition of heparins and heparan sulfates. Anal. Biochem. 1989; 176: 96–104
  • Guss J. M., Hukins D. W. L., et al. Hyaluronic acid: molecular conformations and interactions in two sodium salts. J. Mol. Biol. 1975; 95: 359–84
  • Guthrie E. P., Shoemaker N. B., Salyers A. A. Cloning and expression in Escherichia coliof a gene coding for a chondroitin lyase from Bacreroides thetaiotaomicron. J. Bactacteriology 1985; 164: 510–15
  • Haasnoot C. A. G. The conformation of six-mem-bered rings described by puckering coordinates derived from endocyclic torsion angles. J. Am. Chem. Soc. 1992; 114: 882–87
  • Habuchi H., Suzuki S., et al. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem. J. 1992; 285: 805–13
  • Hamai A., Morikawa K., Hone K., Tokuyasu K. Purification and characterization of hyaluronidase from Streptococcus dysgalactiae. Agric. Biol. Chem. 1989; 53: 2163–68
  • Hardingham T. E., Fosang A. J. Proteoglycans: many forms and many functions. FASEB J 1992; 6: 861–70
  • Hart G. W. Glycosylation. Curr. Op. Cell. Biol 1992; 4: 1017–23
  • Hascall V. C., Midura R. J. Keratan sulphate proteoglycans: chemistry biosynthesis of linkage regions. Keratan Sulphate — Chemistry, Biology, Clinical Pathology., H. Greiling, J. E. Scott. The Biochemical Society, London 1989; 66–73
  • Hay E. D. Cell Biology of Extracellular Matrix (2nd ed.). Plenum Press, New York 1991
  • Heatley F., Scott J. E. A water molecule participates in the secondary structure of hyaluronan. Biochem. J. 1988; 254: 489–93
  • Highsmith S., Garvin J. H., Chipman D. M. Mechanism of action of bovine testicular hyaluronidase. J Biol Chem 1975; 250: 7473–80
  • Hinton J. C. D., Sidebotham D. R., Gill G. P., Solmond C. Mol. Microbiology 1989; 3: 1785
  • Hirsch J. Heparin. N. Eng. J. Med. 1991; 324: 1565–74
  • Hiyama K., Okada S. Amino Acid composition and physicochemical characterization of chondroitinase from Arthrobacter aurescens. J. Biochem. 1975a; 78: 1183–90
  • Hiyama K., Okada S. . Crystallization and some properties of chondroitinase from Arthrobacter aurescens. J. Biol. Chem. 1975b; 250: 1824–28
  • Hiyama K., Okada S. Action of Chondroitinases I. J Biochem 1976; 80: 1201–07
  • Hiyama K., Okada S. Action of Chondroitinases III. J Biochem 1977; 82: 429–36
  • Hopwood J. J. Enzymes that degrade heparin and heparan sulphate. Heparin. — Chemical and biological properties clinical applications., D. A. Lane, U. Lindahl. CRC Press, Boca Raton 1989
  • Hounsell E. F. Structural and conformational analysis of kentan sulphate oligosaccharides and related carbohydrate structures. Keratan Sulphate — Chemistry. Biology, Clinical Pathology., H. Greiling, J. E. Scott. The Biochemical Society, London 1989; 12–15
  • Hounsell E. F., Feeney J., Scudder P., Tang P. W., Feizi T. 1H-NMR studies at 500 MHz of a neutral disaccharide and sulphated di-, tetra-, hexa-, and larger oligosaccharides obtained by endo-β-galactosidase treatment of keratan sulphate. Eur. J. Biochem. 1986; 157: 375–84
  • Hunter G. K., Wong K. S., Kim J. J. Binding of calcium to glycosaminoglycans: an equilibrium dialysis study. Arch. Biochem. Biophys. 1988; 260: 161–67
  • Hwa V., Salyers A. A. Analysis of two chondroitin sulfate utilization mutants of Bacteroides thetaiotamicronthat differ in their abilities to compete with the wild type in the gastrointestinal tracts of germfree mice. Appl. Env. Micr. 1992; 58: 869–76
  • Ingber D. E. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: Role of extracellular matrix. J. Cell. Biol. 1989; 109: 317–30
  • Isaacs R. D. Borrelia burgdorferibind to epithelial cell proteoglycans. J. Clin. Invest. 1994; 93: 809–19
  • Ishai-Michaeli R., Eldor A., Vlodavsky I. Heparanase activity expressed by platelets, neutrophils and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regulation 1990; 1: 833–42
  • Isihara M., Fedarko N. S., Conrad H. E. Transport of heparan sulfate into the nuclei of hepatocytes. J. Biol. Chem. 1986; 261: 13575–80
  • Isihara M., Fedarko N. S., Conrad H. E. Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth. J. Biol. Chem. 1987; 262: 4708–16
  • Isihara M., Tyrrell D. J., Stauber G. B., Brown S., Cousens L. S., Stack R. J. Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J. Biol. Chem. 1993; 268: 4675–83
  • Itoh K., Sokol S. Y. Heparan sulfate proteoglycans are required for mesoderm formation in Xenopusembryos. Development 1994; 120: 2703–11
  • Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiological Reviews 1991; 71: 481–539
  • Jandik K. A., Gu K., Linhardt R. J. Action patterns of polysaccharide lyases on glycosaminoglycans. Glycobiology 1994; 4: 289–96
  • Jaye M., Schlessinger J., Dionne C. A. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim. Biophys. Acta 1992; 1135: 185–99
  • Jencks W. P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci., USA 1981; 78: 4046–50
  • Jouben J. J., Pitout M. J. A constitutive heparinase in a Flavobacteriumsp. Experientia 1985; 41: 1541
  • Juhasz P., Biemann K. Mass spectrometric molecular weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc. Natl. Acad. Sci., USA 1994; 91: 4333–37
  • Kan M., Wang F., Xu J., Crabb J. W., Hou J., McKeehan W. L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993; 259: 1918–21
  • Kemeney D. M., Dalton N., Lawrence A. J., Pearce F. L., Vernon C. A. The purification and characterization of hyaluronidase from the venom of the honey bee, Apis mellifera. Eur. J. Biochem. 1984; 139: 217–23
  • Kiefer M. C., Ishihara M., Swiedler S. J., Crawford K., Stephans J. C., Barr P. J. The molecular biology of heparan sulfate fibroblast growth factor receptors. Ann. N.Y. Acad. Sci. 1991; 556
  • Kirby A. J. Mechanism and stereoelectronic effects in the lysozyme reaction. CRC Cnt. Rev. Biochem. 1987; 22: 283–312
  • Kitamikado M., Lee Y.-Z. Chondroitinase-pro-ducing bacteria in natural habitats. Appl. Microbiol. 1975; 29: 414–21
  • Kjellbn L., Lindahl U. Proteoglycans: structures and interactions. Ann. Rev. Biochem. 1991; 60: 443–75
  • Klagsbrun M., Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell 1991; 67: 229–31
  • Kojima T., Leone C. W., Marchildon G. A., Marcum J. A., Rosenberg R. D. Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells. J. Biol. Chem. 1992; 267: 4859–69
  • Kresse H. Degradation of keratan sulphate proteoglycans. Keratan Sulphate — Chemistry, Biology, Clinical Puthology., H. Greiling, J. E. Scott. The Biochemical Society, London 1989; 111–121
  • Kresse H., Glossl J. Glycosaminoglycan degradation. Adv. Enzym. 1987; 60: 217–312
  • Kvam B. J., Atzori M., Toffanin R., Paoletti S., Biviano F. 1H and 13C NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen-bond patterns and conformational behaviour. Carb. Res. 1992; 230: 1–13
  • Lane D. A., Lindahl U. Heparin — chemical and biological properties clinical applications. CRC Press, Boca Raton 1989
  • Langer R., Linhardt R. J., et al. An enzymatic system for removing heparin in extracorporeal therapy. Science 1982; 217: 261–63
  • Laskov R., Michaeli R. I., Sharir H., Yefenof E., Vlodavsky I. Production of heparanase by normal and neoplastic murine B-lymphocytes. Inr. J. Cancer 1991; 47: 92–98
  • Lee M. K., Lander A. D. Analysis of affinity and structural selectivity in the binding of proteins to gly-cosaminoglycans: development of a sensitive electro-phoretic approach. Proc. Natl. Acad. Sci., USA 1991; 88: 2768–72
  • Lindahl U. Biosynthesis of heparin and related polysac-charides. Heparin — Chemical and biological properties clinical applications. 1989; 159–91
  • D. A. Lane, U. Lindahl. CRC Press, Boca Raton
  • Lindahl U., Kusche M., Lidholt K., Oscarrson L.-G. Biosynthesis of heparin and heparan sulfate. Ann. N. Y. Acad. Sci. 1989; 556: 36–50
  • Lindahl U., Lidholt K., Spillmann D., Kjellén L. More to “heparin” than anticoagulation. Thrombosis Research 1994; 75: 1–32
  • Lindahl U., Thinberg L., Bäckstrom G., Riesenfeld J., Nordling K., Björk I. Extension and smctural variability of the antithrombin-binding sequence in heparin. J. Biol. Chem. 1984; 259: 12368–76
  • Lindblom A., Bengtsson-Olivecrona G., Fransson L.-Å. Domain structure of endothelial heparan sulphate. Biochem. J. 1991; 279: 821–29
  • Linhardt R. J. Analysis of glycosaminoglycans with polysaccharide lyases. Current Protocols in Molecular Biology, Chapter 17 suppl., A Varki, 1994
  • Linhardt R. J., Al-hakim A., et al. Structural features of dermatan sulfates and their relationship to anticoagulant and antithrombotic activities. Biochem. Pharm. 1991; 42: 1609–19
  • Linhardt R. J., Ampofo S. A., Fareed J., Hoppensteadt D., Mulliken J. B., Folkman J. Isolation and characterization of human heparin. Biochemistry 1992; 31: 12441–45
  • Linhardt R. J., Fitzgerald G. L., Cooney C. L., Langer R. Mode of action of heparin lyase on heparin. Biochim. Biophys. Acta. 1982; 702: 197–203
  • Linhardt R. J., Galliher P. M., Cooney C. L. Polysaccharide lyases. Appl. Biochem. Biotech. 1986; 12: 135–75
  • Linhardt R. J., Merchant Z. M., et al. Evidence of random structural features in the heparin polymer. Biochemistry 1985; 24: 7805–10
  • Linhardt R. J., Rice K. G., Kim Y. S., Engelken J. D., Weiler J. M. Homogeneous, structurally defined heparin-oligosaccharides with low anticoagulant activity inhibit the generation of the amplification pathway C3 convertase in vitro. J. Biol. Chem. 1988a; 263: 13090–96
  • Linhardt R. J., Rice K. G., Kim Y. S., Lohse D. L., Wang H. M., Loganathan D. Mapping and quantification of the major oligosaccharide components of heparin. Biochem. J. 1988b; 254: 781–87
  • Linhardt R. J., Turnbull J. E., Wang H. M., Loganathan D., Gallagher J. T. Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry. 1990; 29: 2611–17
  • Linhardt R. J., Wang H.-M., Loganathan D., Bae J.-H. Search for the heparin antithrombin III-binding precursor. J. Biol. Chem. 1992a; 267: 2380–87
  • Linhardt R. J., Wang H. M., Ampofo S. A. New methodologies in heparin structure analysis and the generation of LMW heparins. Heparin and related polysaccharides., D. A. Lane, I. Bjork, U. Lindahl. Plenum Press, New York 1992b
  • Linker A., Hovingh P. Heparinase and heparitinase from Flavobacteria. Meth. Enzymol. 1972; 28: 902–11
  • Linn S., Chan T., Lipeski L., Salyers A. A. Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotamicron. J Bacteriology 1983; 156: 859–66
  • Loganathan D., Wang H. M., Mallis L. M., Linhardt R. J. Structural variation in the antithrombin III binding site region and its occurence in heparin from different sources. Biochemistry 1990; 29: 4362–68
  • Lohse D. L., Linhardt R. J. Purification and characterization of heparin lyases from Flavobacterium heparinum. J. Biol. Chem. 1992; 267: 23347–55
  • Lortat-Jacob H., Grimaud J.-A. Binding of inter-feron-gammma to heparan sulfate is restricted to the heparin-like domains and involves carboxylic — but not N-sulfated— groups. Biochim. Biophys. Acta 1992; 1117: 126–30
  • Lyon M., Deakin J. A., Mizuno K., Nakamum T., Gallagher J. T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 1994; 269: 11216–23
  • Maccarana M., Casu B., Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J. Biol. Chem. 1993; 268: 23898–905
  • MacGregor E. A., MacGregor A. W. A model for the action of cereal alpha amylases on amylose. Carb. Res. 1985; 142: 223–36
  • Maimone M. M., Tollefsen D. M. Structure of a dermatan sulfate hexasaccharide that binds to heparin co-factor II with high affinity. J. Biol. Chem. 1990; 265: 18263–71
  • Marcum J. A., Rosenberg R. D. The biochemistry, cell biology, and patophysiology of anticoagulantly active heparin-like molecules of the vessel wall. Heparin — chemical and biological properties clinical applications., D. A. Lane, U. Lindahl. CRC Press, Boca Raton 1989a
  • Marcum J. A., Rosenberg R. D. Role of endothelial cell surface heparin-like polysaccharides. Ann. N.Y. Acad. Sci. 1989b; 556: 81–94
  • Mascarelli F. G. F., Courtois Y. aFGF binding to low and high affinity receptors induces both aFGF and aFGF receptors dimerization. Growth Factors 1993; 8: 211–33
  • Matheson N. K., McCleary B. V. Enzymes metabolizing polysaccharides and their application to the analysis of structure and function of glycans. the polysaccharides., G. O. Aspinall. Academic Press, Orlando 1985
  • Matzner Y., Vlodavsky I., Bar-Ner M., Ishai-Michaeli R., Tauber A. I. Subcellular localization of heparanase in human neutrophils. J. Leukoc. Biol. 1992; 51: 519–24
  • McLean M. W., Long W. F., Williamson F. B. Proc. 8th Int. Symp. Glycoconjugates. 1985; 73–74
  • Michelacci Y. M., Dietrich C. P. A comparative study between a chondroitinase B and a chondroitinase AC from Flavobacterium heparinum. Biochem. J. 1975; 151: 121–29
  • Michelacci Y. M., Dietrich C. P. Chondroitinase C from Flavobacterium heparinum. J. Biol. Chem. 1976; 254: 1154–58
  • Michelacci Y. M., Horton D. S. P. Q., Poblacion C. A. Isolation and characterization of an induced chondroitinase ABC from Flavobacterium heparinum. Biochim. Biophys. Acta 1987; 923: 291–301
  • Millane R. P., Mitra K., Amott S. Chondroitin 4-sulfate: comparison of the structures of the potassium and sodium salts. J. Mol. Biol. 1983; 169: 903–20
  • Mitra A. K., Amott S., Atkins E. D. T., Isaac D. H. Dermatan sulfate: molecular conformations and interactions in the condensed state. J. Mol. Biol. 1983; 169: 873–901
  • Moffat C. F., McLean M. W., Long W. F., Williamson F. B. Heparinase II from Flavobacterium heparinum —action on chemically modified heparins. Eur. J. Biochem. 1991a; 197: 449–59
  • Moffat C. F., McLean M. W., Long W. F., Williamson F. B. Heparinase II from Flavobacterium heparinum: HPLC analysis of the saccharides generated from chemically modified heparins. Eur. J. Biochem. 1991b; 202: 531–41
  • Morris E. R., Rees D. A., Welsh E. J. Conformation and dynamic interactions in hyaluronate solutions. J. Mol. Biol. 1980; 138: 383–400
  • Mourey L., Samama J.-P., Delarue M., Petitou M., Choay J., Moras D. Crystal structure of cleaved bovine antithrombin III at 3.2 Å resolution. J. Mol. Biol. 1993; 232: 223–41
  • Mulloy B., Forster M. J., Jones C., Davies D. B. N.m.r. and molecular-modeling studies of the solution conformation of heparin. Biochem J. 1993; 293: 849–58
  • Murata K., Yokoyama Y. Characterization of the products generated from oversulphated dermatan sulphate isomers with chondroitinase-B high-performance liquid chromatography. J. Chrom. 1987; 423: 51–61
  • Nader H. B., Dietrich C. P. Natural Occurence and possible biological role of heparin. Heparin —Chemical and biological properties clinical applications, D. A. Lane, U. Lindahl. CRC Press, Boca Raton 1989; 81–96
  • Nader H. B., Dietrich C. P., Buonassi V., Colburn P. Heparin sequence in the heparan sulfate chains of an endothelial cell proteoglycan. Proc. Narl. Acad. Sci., USA 1987; 84: 3565–69
  • Nader H. B., Porcionatto A., et al. Purification and substrate specificity of heparitinase I and heparitinase II from Flavobacterium heparinum. J. Biol. Chem. 1990; 265: 16807–13
  • Nakada H. I., Wolfe J. B. Studies on the enzyme chondroitinase: product structure and ion effects. Arch. Biochem. Biophys. 1961; 94: 244–51
  • Nakagawa H., Yamada T., et al. Isolation and characterization of an endo-β-galactosidase from a new swain of Escherichia freundii. J. Biol. Chem. 1980; 255: 5955–59
  • Nakajima M., Irimura T., Ferrante N. D., Nicolson G. L. Metastatic melanoma cell heparanase. J. Biol. Chem. 1984; 259: 2283–90
  • Nakajima M., Irimura T., Nicolson G. L. Tumor meastasis-associated heparanase activity in human melanoma cells. Cancer Lett. 1986; 31: 277–83
  • Nakajima M., Irimura T., Nicolson G. L. Heparanases and tumor metastasis. J Cell. Biochem. 1988; 36: 157–67
  • Nakamura T., Shibata Y., Fujimura S. Purification and properties of Bacteroides heparinolyticusheparinase. J. Clin. Microbiol. 1988; 26: 1070–71
  • Nakazawa K., Ito M., Yamagata T., Suzuki S. Substrate specificity of keratan sulphate-degrading enzymes from microorganisms. Keratan Sulphate —Chemistry, Biology, Clinical Pathology., H. Greiling, J. E. Scott. The Biochemical Society, London 1989; 99–110
  • Nelson R., Ceccconi O., Roberts W., Aruffo A., Linhardt R., Bevilacqua M. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 1993; 82: 3253–58
  • Nieduszynski I. A. Connective tissue polysaccha-rides. Polysaccharides — Topics in structure and morphology., E. D. T. Atkins. VCH, WeinheimGermany 1985
  • Nieduszynski I. A., Huckerby T. N., Dickenson J. M., Orown G. M., Gui-Hua T., Bayliss M. T. Structural aspects of skeletal keratan sulphates. Biochem. Soc. Trans. 1990; 18: 792–93
  • Norgard-Sumnicht K., Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J. Biol. Chem. 1995; 270: 12012–24
  • Norgard-Sumnicht K. E., Varki N. M., Varki A. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science 1993; 261: 480–83
  • Oeben Keller R., Stuhlsatz H. W., Greiling H. Constant and variable domains of different disaccharide structure in corneal keratan sulphate chains. Biochem. J. 1987; 248: 85–93
  • Ogamo A., Nagai A., Nagasawa K. Binding of heparin fractions and other polysulfated polysaccharides to plasma fibronectin: effects of molecular size and degree of sulfation of polysaccharides. Biochim. Biophys. Acta 1985; 841: 30–41
  • Oliviero U., Sorrentino G. P., et al. Effects of the treatment with matrix on elderly people with chronic articular degeneration. Drugs. Exp. Clin. Res. 1991; 17: 45–51
  • Oosta G. M., Favreau L. V., Beeler D. L., Rosenberg R. D. Purification and properties of human platelet heparitinase. J Biol Chem 1982; 257: 11249–55
  • Ornitz D. M., Herr A. B., Nilsson M., Westrnan J., Svahn C.-M., Waksman G. FGF binding and FGF receptor activation by synthetic heparin-derived di- and ti-saccharides. Science 1995; 268: 432–36
  • Ornitz D. M., Yayon A., Flanagan J. G., Svahn C. M., Levi E., Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 1992; 12: 240–47
  • Pantoliano M., Horlick R. A., et al. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 1994; 33: 10229–48
  • Parthasarathy N., Goldberg I. J., Sivaram P., Mulloy B., Flory D. M., Wagner W. D. Oligosaccha-ride sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J. Biol. Chem. 1994; 269: 22391–96
  • Pejler G., Bäckström G., et al. Structure and affinity for antithrombin of heparan sulfate chains derived from basement membrane proteoglycans. J. Biol. Chem. 1987a; 262: 5036–43
  • Pejler G., Danielsson Å., Björk I., Lindahl U., Nader H. B., Dietrich C. P. Structure and antithrombin-binding properties of heparin isolated from the clams Anomalocardia brasilianuand Tivela mactroides. J. Biol. Chem. 1987b; 262: 11413–21
  • Pickersgill R., Jenkins J., Hanis G., Nasser W., Robert-Baudouy J. The structure of Bacillus subtilispectate lyase in complex with calcium. Structural Biology 1994; 1: 717–23
  • Poole A. R. Proteoglycans in health and disease: structure and functions. Biochem. J. 1986; 236: 1–14
  • Prehm P. Synthesis of hyaluronate in differentiated teratocarcinoma cells. Biochem. J. 1983; 211: 191–98
  • Prehm P. Hyaluronate is synthesized at plasma membranes. Biochem. J. 1984; 220: 597–600
  • Preston J. F., Rice J. D. Kinetic analysis of pectate lyases by high-performance liquid chromatog-raphy. Carb. Res. 1991; 215: 137–45
  • Preston J. F., Rice J. D., Chow M. C., Brown B. J. Kinetic comparisons of trimer-generating pectate and alginate lyases by reversed-phase ion-pair liquid chromatography. Carb. Res. 1991; 215: 147–57
  • Preston J. F., Rice J. D., Ingram L. O., Keen N. T. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemiEC 16. J. Bact. 1992; 174: 2039–42
  • Prestrelski S. J., Fox G. M., Arakawa T. Binding of heparin to basic fibroblast growth factor induces a confor-mational change. Arch. Biochem Biophys. 1992; 293: 314–19
  • Ragazzi M., Ferro D. R., Perly B., Sinay P., Petitou M., Choay J. Conformation of the pentasaccharide corresponding to the binding site of heparin for antithrombin III. Carb. Res. 1990; 195: 169–85
  • Ragazzi M., Ferro D. R., Provasoli A. A force-field study of the conformational characteristics of the iduronate ring. J. Comp. Chem. 1986; 7: 105–112
  • Rapneger A. C. The coordinated regulation of heparan sulfate, syndecans and cell behavior. Curr, Op. Cell Biol. 1993; 5: 844–53
  • Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252: 1705–08
  • Rautela G. S., Abramson C. Crystallization and partial characterization of Staphylococcus aureufhyaluronate lyase. Arch. Biochem. Biophys. 1973; 158: 687–94
  • Rees D. A., Moms E. R., Stoddart J. F., Stevens E. S. Controversial glycosaminoglycan conformations. Nature 1985; 317: 480
  • Rees D. A., Moms E. R., Thorn D., Madden J. K. Shapes and interactions of carbohydrate chains. The Polysaccharides., G. O. Aspinall. Academic Press, New York 1982
  • Rice K. G., Linhardt R. J. Study of structurally defined oligosaccharide substrates of heparin and heparan monosulfate lyases. Carb. Res. 1989; 190: 219–33
  • Robyt J. F., French D. Multiple attack and polarity of action of procine pancreatic α-amylase. Arch. Biochem. Biophys. 1970; 138: 662–70
  • Roden L., Cambell P., et al. Enzymic pathways of hyaluronan catabolism. the Biology of Hyaluronan. Ciba Foundation, John Wiley & Sons, Chichester, NY 1989; 60–86
  • Rosenberg R. D. Platelet Heparitinase. Meth. Enzym. 1989; 169: 342–351
  • Rosengart T. K., Johnson W. V., Friesel T., Clark T., Maciag T. Heparin protects heparin-binding growth factor-I from proteolytic inactivation in vitro. Biochem. Biophys. Res. Comm. 1988; 152: 432–40
  • Saksela O., Moscatelli D., Sommer A., Rifkin D. B. Endorthelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell. Biol. 1988; 107: 743–51
  • Salyers A. A., Vercellotti J. R., West S. E. H., Wilkins T. D. Fermentation of mucin and plant polysaccharides by strains of bacteroides from the human colon. Appl. Environ. Microbiol. 1977; 33: 319–22
  • Sanderson P. N., Huckerby T. N., Nieduszynski I. A. Chondroitinase ABC digestion of dermatan sulphate. Biochem. J. 1989; 257: 347–54
  • Sandström J., Carlsson L., Marklund S. L., Edlund T. The heparin-binding domain of extracellular su-peroxide dismutase C and formation of variants with reduced heparin affinity. J. Biol. Chem. 1992; 267: 18205–09
  • Sasisekharan R. Cloning and biochemical characterization of heparinase from Flavobacterium heparinum. Ph.D thesis, Harvard University. 1991
  • Sasisekharan R., Bulmer M., Moremen K. W., Cooney C. L., Langer R. Cloning and expression of heparinase I gene from Flavobacterium heparinum. Proc. Natl. Acad. Sci., USA 1993; 90: 3660–64
  • Sasisekharan R., Godavarti R., Emst S., Venkataraman G., Cooney C. L., Langer R. Characterization and mapping of heparinase I binding to heparin: identification of a heparin binding sequence. J. Biol. Chem 1995a
  • Sasisekharan R., Leckband D., Godavarti R., Venkataraman G., Cooney C. L., Langer R. Heparinase I from Flavobacterium heparinum. The role of the cystrine residue in catalysis as probed by chemical modification and site-directed mutagenesis. Biochemistry 1995b; 34, In press
  • Sasisekharan R., Moses M. A., Nugent M. A., Cooney C. L., Langer R. Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci., USA 1994; 91: 1524–28
  • Sato N., Murata K., Kimura A. Subunit structure of chondroitinase ABC from Proteus vulgaris. Agric. Biol. Chem. 1986; 50: 1057–59
  • Savion N., Disatnik M. H., Nevo Z. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells. J. Cell. Physiol. 1987; 130: 77–84
  • Sawaguchi S., Yue B., Yeh P., Tso M. O. M. Effects of intracameral injection of chondroitinase ABC in vivo. Arch. Ophthalmol. 1992; 110: 110–17
  • Schreuder H. A., de Boer B., et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Structural Biology 1994; 1: 48–54
  • Scott J. E. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J 1992; 6: 2639–45
  • Scott J. E., Chen Y., Brass A. Secondary and tertiary structures involving chondroitin and chondroitin sulphates in solution investigated by rotary shadowing/ electron microscopy and computer simulation. Eur. J. Biochem. 1992; 209: 675–80
  • Scott J. E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution investigated by rotary shadowing/electron microscopy and computer simulation. Biochem. J. 1991; 274: 699–705
  • Scott J. E., Heatley F., Jones M. N., Wilkinson A., Olavesen A. H. Secondary structure of chondroitin sulphate in dimethyl sulphoxide. Eur. J. Biochem. 1983; 130: 491–95
  • Scudder P., Tang P. W., Hounsell E. F., Lawson A. M., Mehmet H., Feizi T. Isolation and characterization of sulphated oligosaccharides released from bovine corneal keratan sulphate by the action of endo-β-galactosidase. Eur. J. Biochem. 1986; 157: 365–73
  • Sheehan J. K., Gardner K. H., Atkins E. D. T. Hyaluronic acid: a double-helical structure in the presence of potassium at low pH and found also with the cations ammonium, rubidium and caesium. J. Mol. Biol. 1977; 117: 113–35
  • Shieh M.-T., WuDunn D., Montgomeryu R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biology 1992; 116: 1273–81
  • Sierks M. R., Ford C., Reilly P. J., Svensson B. Functional roles and subsite locations of Leu 177, Trp 178 and Asn 182 of Aspergillus awamoriglucoamylase determined by site-directed mutagenesis. Protein Eng 1993; 6: 75–79
  • Silva M. E., Dietrich C. P., Nader H. B. On the structure of heparitin sulfates. Biochim. Biophys. Acta. 1976; 437: 129–41
  • Silverberg I., Havsmark B., Fransson L.-A. The substrate specificity of heparin sulphate lyase and hep-arin from Flavobacterium heparinum. Carb. Res. 1985; 137: 227–38
  • Sjøgren P., Pedersen T., Steinmetz H. Mucopolysaccharidoses and anaesthetic risks. Acta. Anaesthesiol. Scand. 1987; 31: 214–18
  • Sommer A., Rifkin D. B. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Phys. 1989; 138: 215–20
  • Spom M. B., Roberts A. B. Peptide Growth Factors and Their Receptors. Springer-Verlag, Berlin 1990
  • Springer B. A., Pantoliano M. W., et al. Identification and concerted function of two receptor binding sufaces on basic fibroblast growth factor required for mitogenesis. J. Biol. Chem. 1994; 269: 26879–84
  • Steyn P. L., Pot B., Segers P., Kersters K., Joubert J. J. Some novel aerobic heparin-degrading bacterial isolates. System. Appl. Microbiol. 1992; 15: 137–43
  • Stoddart J. F. Stereochemistry of carbohydrates. John Wiley and Sons, New York 1971
  • Stuhlsatz H. W., Hirtzel F., Keller R., Cosma S., Greiling H. Studies on the polydispersity and heterogeneity of proteokeratan sulfate from calf and porcine cornea. Hoppe-Seyler'sZ. Physiol Chem 1981; 362: 841–52
  • Stuhlsatz H. W., Keller R. Strucuture of keratan sulphate proteoglycans: core proteins, linkage regions, carbohydrate chains. Keratan Sulphate —Chemistry, Biology, Clinical Pathology., H. Greiling, J. E. Scott. The Biochemical Society, London 1989; 1–11
  • Takegawa K., Iwahara K., Iwahara S. Purification and properties of chondroitinase produced by a bacterium isolated from soil. J. Fenn. Bioeng. 1991; 72: 128–31
  • Tam Y.-C., Chan E. C. S. Purification and characterization of hyaluronidase from oral Peptostreptococcusspecies. Infect. Imm. 1985; 47: 508–13
  • Taylor R. L., Shively J. E., Conrad H. E., Cifonelli J. A. Uronic acid composition of heparins and heparan sulfates. Biochemistry 1973; 12: 3633–37
  • Tejidor L., Oman D., et al. Use of DADE hepzyme to eliminate heparin interference in coagulation testing. Thromb. Hemostasis 1993; 69: 866
  • Thompson L. D., Pantoliano M. W., Springer B. A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: Identification of the heparin binding domain. Biochemistry 1994; 33: 3831–40
  • Thornton D. J., Morris H. G., et al. Structural and immunological studies of keratan sulphates from mature bovine articular cartilage. Biochem. J. 1989; 260: 277–82
  • Thunberg L., Backstrom G., Wasteson Å., Robinson H. C., Ogren S., Lindahl U. Enzymatic depoly-merization of heparin-related polysaccharides. J. Biol. Chem. 1982; 257: 10278–82
  • Thurston C. F., Hardingham T. E., Muir H. The kinetics of degradation of chondroitin sulphates and hyaluronic acid by chondroitinase from Proteus vulgaris. Biochem. J. 1975; 145: 397–400
  • Tollefsen D. M. The interaction of glycosaminogly-cans with heparin cofactor 11: structure and activity of a high-affinity dermatan sulfate hexasaccharide. Heparin and related polysaccharides., D. A. Lane, I. Björk, U. Lindahl. Plenum Press, New York 1992
  • Torgerson E. M., Brewer L. C., Thoma J. A. Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate. Arch. Biochem. Biophys. 1979; 196: 13–22
  • Turnbull J. E., Fernig D. G., Ke Y., Wilkinson M. C., Gallagher J. T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J. Biol. Chem. 1992; 267: 10337–41
  • Turnbull J. E., Gallagher J. T. Distribution of iduronate 2-sulphate residues in heparan sulphate. Biochem. J. 1991a; 273: 553–59
  • Turnbull J. E., Gallagher J. T. Sequence analysis of heparan sulphate indicates defined location of N-sulphated glucosamine and iduronate 2-ulphate residues proximal to the protein-linkage region. Biochem. J. 1991b; 277: 297–303
  • Tyrrell D. J., Isihara M., et al. Strucutre and affinity of a heparin-derived hexaccharide with high affinity for basic fibroblast growth factor. J. Biol. Chem. 1993; 268: 4684–89
  • Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3: 97–130
  • Venkataraman G., Sasisekharan V., Cooney C. L., Langer R., Sasisekharan R. A stereochemical approach to pyranose ring flexibility: Its implications for the conformation of dermatan sulfate. Proc. Natl. Acad. Sci., USA 1994; 91: 6171–75
  • Vesterberg O. Studies on extracellular proteins from Sraphylococcus aureus. III. Investigations on the heterogeneity of hyaluronate lyase using the method of isoelec-tric focusing. Biochim. Biophys. Acta 1968; 168: 218–27
  • Vlodavsky I., Eldor A., et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 1992; 12: 112–27
  • Vlodavsky I., Fuks Z., et al. Extracellular matrixresident basic fibroblast growth factor: Implication for the control of angiogenesis. J. Cell. Biochem. 1991; 45: 167–76
  • Walenga J. W., Hoppensteadt D., Fareed J. Non-heparin glycosaminwlycan-derived drugs: A biochemical and pharmacologic perspective. Sem. Thromb. Hem. 1991; 17(suppl 1)137–42
  • Ward O. P., Moo-Young M. Enzymatic degradation of cell wall and related plant polysaccharides. CRC Critical Rev Biotechnology 1989; 8: 237–74
  • Wasteson Å., Glimelius B., Busch C., Westermark B., Heldin C.-H., Norling B. Effect of a platelet endoglycosidase on cell surface associated heparan sulphate of human cultured endothelial and glial cells. Thromb. Res. 1977; 11: 309–21
  • Wasteson Å., Westermark B. Demonstration of a platelet enzyme degrading heparan sulphate. FEBS Letters 1976; 64: 218
  • Winter W. T., Taylor M. G., Stevens E. S., Moms E. R., Rees D. A. Biochem. Biophys. Res. Comm. 1986; 137: 87–93
  • Yamada S., Yoshida K., et al. Structural studies on the bacterial lyase-resistant tetrasaccharides derived from the antithrombin III-binding site porcine intestinal hep-arin. J Biol Chem 1993; 268: 4780–87
  • Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 1968; 243: 1523–35
  • Yanagishita. Metabolism of plasma membrane-associated heparan sulphate proteoglycans. Heparin and related polysaccharides., D. A. Lane, I. Bjork, U. Lindahl. Plenum hess, New York 1989
  • Yang V. C., Linhardt R. J., Bernstein H., Cooney C. L., Langer R. Purification and characterization of heparinase from Flavobacterium heparinum. J. Biol. Chem. 1985; 260: 1849–57
  • Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–48
  • Yoder M. D., Keen N. T., Jumak F. New domain motif the structure of pectate lyase C, a secreted plant virulence factor. Science 1993a; 260: 1503–07
  • Yoder M. D., Lietzke S. E., Jumak F. Unusual structural features in the parallel b-helix in pectate lyases. Structure 1993b; 1: 241–51
  • Yost H. J. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature 1992; 357: 158–61
  • Zern M. A., Reid L. M. Extracellular Matrix. Marcel Dekker, New York 1993
  • Zhang J., Cousens L. S., Barr P. J., Sprang S. R. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin lβ. Proc. Natl. Acad. Sci., USA 1991; 88: 3446–50
  • Zhu X., Hsu B. T., Rees D. C. Structural studies of the binding of the anti-ulcer drug sucrose octasulfate to acidic fibroblast growth factor. Structure 1993; 1: 27–34
  • Zhu X., Komiya H., et al. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 1991; 251: 90–93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.