713
Views
152
CrossRef citations to date
0
Altmetric
Research Article

The Cellulosome: An Exocellular, Multiprotein Complex Specialized in Cellulose Degradation

&
Pages 201-236 | Published online: 26 Sep 2008

References

  • Aït N., Creuzet N., Forget P. Partial purification of cellulase from. Clostridium thermocellum. J. Gen. Microbiol. 1979; 113: 399–402
  • Ali B. R. S., Romaniec M. P. M., Hazlewood G. P., Freedman R. B. Characterization of the subunits in an apparently homogeneous subpopulation ofClostridium thermocellumcellulosomes. Enzyme Microb. Technol. 1995a; 17: 705–711
  • Ali B. R. S., Zhou L., Graves F., Freedman R. B., Black G. W., Gilbert H. J., Hazlewood G. P. Cellulases and hemicellulases of the anaerobic fungusPiromycesconstitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol. Lett. 1995b; 125: 15–22
  • Alzari P. M., Souchon H., Dominguez R. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from. Clostridium thermocellum. Structure. 1996; 4: 265–275
  • Antranikian G., Herzberg C, Mayer F., Gottschalk G. Changes in the cell envelope structure ofClostridiumsp. strain EMI during massive production of α-amylase and pullulanase. FEMS Microbiol. Lett. 1987; 41: 193–197
  • Bagnara-Tardif C., Gaudin C., Belaich A., Hoest P., Citard P., Belaich J.-P. Sequence analysis of a gene cluster encoding cellulases from. Clostridium celulolyticum. Gene. 1992; 119: 17–28
  • Bayer E. A., Kenig R., Lamed R. Adherence ofClostridium thermocellumto cellulose. J. Bacteriol. 1983; 156: 818–827
  • Bayer E. A., Setter E., Lamed R. Organization and distribution of the cellulosome in. Clostridium thermocellum. J. Bacteriol. 1985; 163: 552–559
  • Bayer E. A., Lamed R. infrastructure of the cell surface cellulosome ofClostridium thermocellumand its interaction with cellulose. J. Bacteriol. 1986; 167: 828–836
  • Bayer E. A., Morag E., Lamed R. The cellulosome — a treasure-trove for biotechnology. Trends Biotechnol. 1994; 12: 379–386
  • Beattie L., Bhat K. M., Wood T. M. The effect of cations on reassociation of the components of the cellulosome cellulase complex synthesized by the bacterium. Clostridium thermocellum. Appl. Microbiol. Biotechnol. 1994; 40: 740–744
  • Béguin P., Rocancourt M., Chebrou M.-C., Aubert J.-P. Mapping of mRNA encoding endoglucanase A from. Clostridium thermocellum. Mol. Gen. Genet. 1986; 202: 251–254
  • Béguin P., Aubert J.-P. La dégradation de la cellulose par les microorganismes. Ann. Inst. Pasteur/Actualités 1992; 3: 91–115
  • Béguin P., Millet J., Aubert J.-P. Cellulose degradation byClostridium thermocellumfrom manure to molecular biology. FEMS Microbiol. Lett. 1992; 100: 523–528
  • Béguin P., Aubert J.-P. The biological degradation of cellulose. FEMS Microbiol. Rev. 1994; 13: 25–58
  • Bhat K. M., Wood T. M. The cellulase of the anaerobic bacteriumClostridium thermocellum— isolation, dissociation, and reassociation of the cellulosome. Carbohydr. Res. 1992; 227: 293–300
  • Bhat S., Goodenough P. W., Bhat M. K. Isolation of four major subunits fromClostridium thermocellumcellulosome and their synergism in the hydrolysis of crystalline cellulose. Int. J. Biol. Macromol. 1994; 16: 335–342
  • Biely P. Microbial xylanolytic systems. Trends Biotechnol. 1985; 3: 286–290
  • Bolobova A. V., Zhukov A. V., Klyosov A. A. Lipids and fatty acids in cellulosomes of. Clostridium thermocellum. Appl. Microbiol. Biotechnol. 1994; 42: 128–133
  • Bülow L., Mosbach K. Multienzyme systems obtained by gene fusion. Trends Biotechnol. 1991; 9: 226–231
  • Bumazkin B. K., Velikodvorskaya G. A., Tuka K., Mogutov M. A., Strongin A. Y. Cloning ofClostridium thermocellumendoglucanase genes in. Escherichia coli. Biochem. Biophys. Res. Commun. 1990; 167: 1057–1064
  • Cavedon K., Leschine S. B., Canale-Parola E. Cellulase system of a free-living, mesophilic Clostridium (strain C7). J. Bacteriol. 1990a; 172: 4222–4230
  • Cavedon K., Leschine S. B., Canale-Parola E. Characterization of the extracellular cellulase from a mesophilic Clostridium (strain C7). J. Bacteriol. 1990b; 172: 4231–4237
  • Chanzy H., Henrissat B. Unidirectional degradation ofValoniacellulose microcrys-tals subjected to cellulase action. FEBS Lett. 1985; 184: 285–288
  • Chauvaux S., Béguin P., Aubert J.-P., Bhat K. M., Gow L. A., Wood T. M., Bairoch A. Calcium-binding affinity and calcium-enhanced activity ofClostridium thermocellumendaglucanase D. Biochem. J. 1990; 265: 261–265
  • Cornet P., Tronik D., Millet J., Aubert J.-P. Cloning and expression inEscherichia coli of Clostridium thermocellumgenes coding for amino acid synthesis and cellulose hydrolysis. FEMS Microbiol. Lett. 1983; 16: 137–141
  • Coughlan M. P. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 1985; 3: 39–109
  • Coughlan M. P., Hon-Nami K., Hon-Nami H., Ljungdahl L. G., Paulin J. J., Rigsby W. E. The cellulolytic enzyme complex ofClostridium thermocellumis very large. Biochem. Biophys. Res. Commun. 1985; 130: 904–909
  • Coughlan M. P., Hazlewood G. P. β-1, 4-d-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl Biochem. 1993; 17: 259–289
  • Doi R. H., Goldstein M., Hashida S., Park J. S., Takagi M. TheClostridium cellulovoranscellulosome. Crit. Rev. Micro-biol. 1994; 20: 87–93
  • Dominguez R., Souchon H., Spinelli S., Dauter Z., Wilson K. S., Chauvaux S., Béguin P., Alzari P. M. The structures of endoglucanase CelC and xylanase XynZ fromClostridium thermocellumreveal a common protein fold and similar active site in two distinct families of β-glycanases. Nature Struct. Biol. 1995; 2: 569–576
  • Ducros V., Czjzek M., Belaich A., Gaudin C, Fierobe H.-P., Belaich J.-P., Davies G. J., Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 1995; 3: 939–949
  • Eveleigh D. E. Cellulase: a perspective. Philos. Trans. R. Soc. London Ser. A 1987; 321: 435–47
  • Fägerstam L. G., Pettersson L. G. The 1, 4-β-glucan cellobiohydrolases ofTricho-derma reeseiQM9414. A new type of cellu-lolytic synergism. FEBS Lett. 1980; 119: 97–100
  • Fanutti C, Ponyi T., Black G. W., Hazlewood G. P., Gilbert H. J. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 1995; 270: 29314–29322
  • Faure E., Belaich A., Bagnara C., Gaudin C., Belaich J.-P. Sequence analysis of theClostridium cellulolyticum celCCAendoglucanase gene. Gene 1989; 84: 39–46
  • Felix C. R., Ljungdahl L. G. The cellulosome — the extracellular organelle of. Clostridium. Annu. Rev. Microbiol. 1993; 47: 791–819
  • Fierobe H.-P., Gaudin C, Belaich A., Loutfi M., Faure E., Bagnara C, Baty D., Belaich J.-P. Characterization of endoglucanase A from. Clostridium cellulolyticum. J. Bacteriol. 1991; 173: 7956–7962
  • Fierobe H.-P., Bagnara-Tardif C, Gaudin C, Guerlesquin F., Sauve P., Belaich A., Belaich J.-P. Purification and characterization of endoglucanase C fromClostridium cellulolyticumcatalytic comparison with endoglucanase. A. Eur. J. Biochem. 1993; 217: 557–565
  • Fontes C. M.G.A., Hazlewood G. P., Morag E., Hall J., Hirst B., Gilbert H. J. Evidence for a general role for non-catalytic thermostability domains in xylanases from thermophilic bacteria. Biochem. J. 1995; 307: 151–158
  • Foong F. C. F., Doi R. H. Characterization and comparison ofClostridium cellulovoransendoglucanases-xylanases EngB and EngD hyperexpressed in. Escherichia coli, J. Bacteriol. 1992; 174: 1403–1409
  • Forsberg C. W., Beveridge T. J., Hellstrom A. Cellulase and xylanase release fromBacteroides succinogenesand its importance in the rumen environment. Appl. Environ. Microbiol. 1981; 42: 886–896
  • Fujino T., Sukhumavasi J., Sasaki T., Ohmiya K., Shimizu S. Purification and properties of an endo-β-1, 4-glucanase from. Clostridium josui. J. Bacteriol. 1989; 171: 4076–4079
  • Fujino T., Bégum P., Aubert J.-P. Organization of aClostridium thermocellumgene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in the attachment of the cellulosome to the cell surface. J. Bacteriol. 1993a; 175: 1891–1899
  • Fujino T., Karita S., Ohmiya K. Nucleotide sequences of the celB gene encoding endo-l, 4-β-glucanase-2, ORF1 and ORF2 forming a putative cellulase gene cluster of. Clostridium josui. J. Ferm. Bioeng. 1993b; 76: 243–250
  • Gebler J., Gilkes N. R., Claeyssens M., Wilson D. B., Béguin P., Wakarchuk W. W., Kilburn D. G., Miller R. C., Warren R. A. J., Withers S. G. Stereoselective hydrolysis catalyzed by related β-1, 4-glucanases and β-1, 4-xylanases. J. Biol. Chem. 1992; 267: 12559–12561
  • Gerngross U. T., Romaniec M. P. M., Huskisson N. S., Demain A. L. Sequencing of aClostridium thermocellumgene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 1993; 8: 325–334
  • Gerwig G. J., De Waard P., Kamerling J. P., Vliegenthart F. G., Morgenstem E., Lamed R., Bayer E. A. Novel O-linked carbohydrate chains in the cellulase complex (cellulosome) ofClostridium thermocellum.3-0-Methyl-N-acetylglucosamine as a component of a glycoprotein. J. Biol. Chem. 1989; 264: 1027–1035
  • Gerwig G. J., Kamerling J. P., Vliegenthart J. F. G., Morag E., Lamed R., Bayer E. A. The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes ofClostridium thermocellumand. Bacteroides cellulosolvens. J. Biol. Chem. 1993; 268: 26956–26960
  • Gilbert H. J., Hazlewood G. P., Laurie J. I., Orpin C. G., Xue G. P. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 1992; 6: 2065–2072
  • Gilkes N. R., Warren R. A. J., Miller R. C., Jr, Kilburn D. G. Precise excision of the cellulose binding domains from twoCellulomonas fimicellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 1988; 263: 10401–10407
  • Goldstein M. A., Tagaki M., Hashida S., Shoseyov O., Doi R. H., Segel I. H. Characterization of the cellulose-binding domain of theClostridium cellulovoranscellulose-binding protein A. J. Bacteriol. 1993; 175: 5762–5768
  • Gow L. A., Wood T. M. Breakdown of crystalline cellulose by synergistic action between cellulase components fromClostridium thermocellumand. Trichoderma koningii. FEMS Microbiol. Lett. 1988; 50: 247–252
  • Gräbnitz F., Staudenbauer W. L. Characterization of two β-glucosidase genes from. Clostridium thermocellum. Biotechnol. Lett. 1988; 10: 73–78
  • Grépinet O., Chebrou M.-C, Bégum P. Purification ofClostridium thermocellumxylanase Z expressed inEscherichia coliand identification of the corresponding product in the culture medium of. C. thermocellum. J. Bacteriol. 1988a; 170: 4576–4581
  • Grépinet O., Chebrou M.-C, Béguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of. Clostridium thermocellum. J. Bacteriol. 1988b; 170: 4582–4588
  • Hall J., Hazlewood G. P., Barker P. J., Gilbert H. J. Conserved reiterated domains inClostridium thermocellumendoglucanases are not essential for activity. Gene 1988; 69: 29–38
  • Hamamoto T., Foong F., Shoseyov O., Doi R. H. Analysis of functional domains of endoglucanases fromClostridium cellulovoransby gene cloning, nucleotide sequencing and chimeric protein construction. Mol. Gen. Genet. 1992; 231: 472–479
  • Hazlewood G. P., Romaniec M. P. M., Davidson K., Grépinet O., Béguin P., Millet J., Raynaud O., Aubert J.-P. A catalogue ofClostridium thermocellumendo-glucanase, β-glucosidase and xylanase genes cloned in. Escherichia coli. FEMS Microbiol. Lett. 1988; 51: 231–236
  • Hazlewood G. P., Davidson K., Clarke J. H., Durrani A. J., Hall J., Gilbert H. J. Endoglucanase E, produced at high level inEscherichia coli as a lacZfusion protein, is part of theClostridium thermocellumcellulosome. Enzyme Microbiol. Technol. 1990; 12: 656–662
  • Hazlewood G. P., Gilbert H. J. The molecular architecture of xylanases fromPseudomonas fluorescenssubsp.cellulosa. Progress in Biotechnology, Vol. 7, Xylans and Xylanases, J. Visser, G. Beldman, M. A. Kusters-van Someren, A. G. J. Voragen. Elsevier, Amsterdam, 259–273
  • Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991; 280: 309–316
  • Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1993; 293: 781–788
  • Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 7090–7094
  • Hon-Nami K., Coughlan M. P., Hon-Nami H., Ljungdahl L. G. Separation and characterization of the complexes constituting the cellulolytic enzyme system of. Clostridium thermocellum. Arch. Microbiol. 1986; 145: 13–19
  • Hyde C.C., Ahmed S. A., Padlan E. A., Miles E. W., Davies D. R. Three-dimensional structure of the tryptophan synthase α2-β2multienzyme complex from. Salmonella typhimurium. J. Biol. Chem. 1988; 263: 17857–17871
  • Jauris S., Rücknagel K. P., Schwarz W. H., Kratzsch P., Bronnenmeier K., Stauden-Bauer W. L. Sequence analysis of theClostridium stercorarium celZgene encoding a thermoactive cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol. Gen. Genet. 1990; 223: 258–267
  • Jenkins J., Leggio L. L., Harris G., Pickersgill R. β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamate near the carboxy-terminal ends of fS-strands four and seven. FEBSLett. 1995; 362: 281–285
  • Johnson E. A., Reese E. T., Demain A. L. Inhibition ofClostridium thermocellumcellulase by end products of cellulolysis. J. Appl. Biochem. 1982a; 4: 64–71
  • Johnson E. A., Sakajoh M., Halliwell G., Madia A., Demain A. L. Saccharification of complex cellulosic substrates by the cellulase system from. Clostridium thermocellum. Appl. Environ. Microbiol. 1982b; 43: 1125–1132
  • Johnson E. A., Demain A. L. Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of. Clostridium thermocellum. Arch. Microbiol. 1984; 137: 135–138
  • Johnson E. A., Bouchot F., Demain A. L. Regulation of cellulase formation in. Clostridium thermocellum. J. Gen. Microbiol. 1985; 131: 2303–2308
  • Joliff G., Béguin P., Juy M., Millet J., Ryter A., Poljak R., Aubert J.-P. Isolation, crystallization and properties of a new cellulase ofClostridium thermocellumoverproduced in. Escherichia coli. Bio/Technology 1986; 4: 896–900
  • Juy M., Amit A. G., Alzari P. M., Poljak R. J., Claeyssens M., Béguin P., Aubert J.-P. Crystal structure of a thermostable bacterial cellulose-degrading enzyme. Nature (London) 1992; 357: 89–91
  • Kadam S. K., Demain A. L. Addition of cloned β-glucosidase enhances the degradation of crystalline cellulose by theClostridium thermocellumcellulase complex. Biochem. Biophys. Res. Commun. 1989; 161: 706–711
  • Katz L., Donadio S. Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 1993; 47: 875–912
  • Kellett L. F., Poole D. M., Ferreira L. M. A., Durrant A. J., Hazlewood G. P., Gilbert H. J. Xylanase B and an arabino-furanosidase fromPseudomonas fluorescenssubsp.cellulosacontain identical cellulose-binding domains and are coded by adjacent genes. Biochem. J. 1990; 272: 369–376
  • Kobayashi T., Romaniec M. P. M., Fauth U., Demain A. L. Subcellulosome preparation with high cellulase activity from. Clostridium thermocellum. Appl. Environ. Microbiol. 1990; 56: 3040–3046
  • Kobayashi T., Romaniec M. P. M., Fauth U., Barker P. J., Demain A. L. Cloning and expression inEscherichia coliofClostridium thermocellumDNA encoding subcellulosomal proteins. Enzyme Microb. Technol. 1992; 14: 447–453
  • Kohring S., Wiegel J., Mayer F. Sub-unit composition and glycosidic activities of the cellulase complex fromClostridium thermocellumJW20. Appl. Environ. Microbiol. 1990; 56: 3798–3804
  • Koshland D. E. J. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 1953; 28: 416–438
  • Kruus K., Lua A. C., Demain A. L., Wu J. H. D. The anchorage function of CipA (CelL), a scaffolding protein of theClostridium thermocellumcellulosome. Proc. Natl. Acad. Set U.S.A. 1995a; 92: 9254–9258
  • Kruus K., Wang W. K., Wu J. H. D. Exoglucanase activities of the recombinantClostridium thermocellumCelS, a major cellulosome component. J. Bacteriol. 1995b; 177: 1641–1644
  • Lamed R., Setter E., Bayer E. A. Characterization of a cellulose-binding, cellu-lase-containing complex in. Clostridium thermocellum. J. Bacteriol. 1983a; 156: 828–836
  • Lamed R., Setter E., Kenig R., Bayer E. A. The cellulosome: a discrete cell surface organelle ofClostridium thermocellumwhich exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 1983b; 13: 163–181
  • Lamed R., Kenig R., Setter E., Bayer E. A. Major characteristics of the cellulolytic system ofClostridium thermocellumcoincide with those of the purified cellulosome. Enzyme Microb. Technol. 1985; 7: 37–41
  • Lamed R., Naimark J., Morgenstern E., Bayer E. A. Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 1987; 169: 3792–3800
  • Lamed R., Bayer E. A. The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis. FEMS Symposium No. Biochemistry and Genetics of Cellulose Degradation, J.-P. Aubert, P. Béguin, J. Millet. Academic Press, New York 1988a; 43: 101–116
  • Lamed R., Bayer E. A. The cellulosome of. Clostridium thermocellum. Adv. Appl. Microbiol. 1988b; 33: 1–46
  • Lamed R., Kenig R., Morag E., Calzada J. F., De Micheo F., Bayer E. A. Efficient cellulose solubilization by a combined cellulosome β-glucosidase system. Appl. Biochem. Biotechnol. 1991a; 27: 173–183
  • Lamed R., Morag E., Mor-Yosef O., Bayer E. A. Cellulosome-like entities in. Bacteroides cellulosolvens. Curr. Microbiol. 1991b; 22: 27–33
  • Lamed R., Tormo J., Chirino A. J., Morag E., Bayer E. A. Crystallization and preliminary X-ray analysis of the major cellulose-binding domain of the cellulosome from. Clostridium thermocellum. J. Mol. Biol. 1994; 244: 236–237
  • Langsford M. L., Gilkes N. R., Singh B., Moser B., Miller R. C., Jr, Warren R. A. J., Kilburn D. G. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett. 1987; 225: 163–167
  • Lee Y. E., Lowe S. E., Zeikus J. G. Gene cloning, sequencing, and biochemical characterization of endoxylanase fromThermoanaerobium saccharolyticumB6A-RI. Appl. Environ. Microbiol. 1993; 59: 3134–3137
  • Leibovitz E., Béguin P. A new type of cohesin domain that specifically binds the dockerin domain of theClostridium thermocellumcellulosome-integrating protein CipA. J. Bacteriol. 1996; 178, in press.
  • Lemaire M., Béguin P. Nucleotide sequence of thecelGgene ofClostridium thermocellumand characterization of its product, endoglucanase CelG. J. Bacteriol. 1993; 175: 3353–3360
  • Lemaire M. La Bactérie CellulolytiqueClostridium thermocellum.Etude du Gène CelG et de son Produit, 1'Endoglucanase CelG. Etude de Protéines de la Surface Cellulaire. Ph.D. dissertation, Université Paris 7, France. 1995
  • Lemaire M., Ohayon H., Gounon P., Fujino T., Béguin P. OlpB, a new outer layer protein ofClostridium thermocellum, and binding of its S-layer-like domain to components of the cell envelope. J. Bacteriol. 1995; 177: 2451–2459
  • Lin C. Z., Urbance J. W., Stahl D. A. Acetivibrio cellulolyticus andBacteroides cellulosolvensare members of the greater clostridial assemblage. FEMS Microbiol. Lett. 1994; 124: 151–155
  • Lin L.-L., Thomson J. A. An analysis of the extracellular xylanases and cellulases ofButyrivibrio fibrisolvensH17c. FEMS Microbiol. Lett. 1991; 84: 197–204
  • Ljungdahl L. G., Pettersson B., Eriksson K.-E., Wiegel J. A yellow affinity substance involved in the cellulolytic system of. Clostridium thermocellum. Curr. Microbiol. 1983; 9: 195–200
  • Lupas A., Engelhardt H., Peters J., Santarius U., Volker S., Baumeister W. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 1994; 176: 1224–1233
  • Madarro A., Pena J. L., Lequerica J. L., Valles S., Gay R., Flors A. Partial purification and characterization of the cellulases fromClostridium cellulolyticumHI0. J. Chem. Technol. Biotechnol. 1991; 52: 393–406
  • Matano Y., Park J. S., Goldstein M. A., Doi R. H. Cellulose promotes extracellular assembly ofClostridium cellulovoranscellulosomes. J. Bacteriol. 1994; 176: 6952–6956
  • Matuschek M., Burchhardt G., Sahm K., Bahl H. Pullulanase ofThermo-anaerobacter thermosulfurigenesEMI (Clostridium thermosulfurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J. Bacteriol. 1994; 176: 3295–3302
  • Mayer F., Coughlan M. P., Mori Y., Ljungdahl L. G. Macromolecular organization of the cellulolytic enzyme complex ofClostridium thermocellumas revealed by electron microscopy. Appl. Environ. Microbiol. 1987; 53: 2785–2792
  • McBee R. H. The culture and physiology of a thermophilic cellulose-fermenting bacterium. J. Bacteriol. 1948; 56: 653–663
  • Millet J., Pétré D., Béguin P., Raynaud O., Aubert J.-P. Cloning often distinct DNA fragments ofClostridium thermocellumcoding for cellulases. FEMS Microbiol. Lett. 1985; 29: 145–149
  • Mishra S., Béguin P., Aubert J.-P. Transcription ofClostridium thermocellumendoglucanase genescelFand. celD. J. Bacteriol. 1991; 173: 80–85
  • Montenecourt B. S. Trichoderma reesei cellulases. Trends Biotechnol. 1983; 1: 156–161
  • Morag E., Bayer E. A., Lamed R. Relationship of cellulosomal and non-cellulosomal xylanases ofClostridium thermocellumto cellulose-degrading enzymes. J. Bacteriol. 1990; 172: 6098–6105
  • Morag E., Bayer E. A., Lamed R. Anomalous dissociative behaviour of the major glycosylated component of the cellulosome of. Clostridium thermocellum. Appl. Biochem. Biotechnol. 1991a; 30: 129–136
  • Morag E., Halevy I., Bayer E. A., Lamed R. Isolation and properties of a major cellobiohydrolase from the cellulosome of. Clostridium thermocellum. J. Bacteriol. 1991b; 173: 4155–4162
  • Morag E., Bayer E. A., Hazlewood G. P., Gilbert H. J., Lamed R. Cellulase Ss(CelS) is synonymous with the major cellobiohydrolase (subunit S8) from the cellulosome of. Clostridium thermocellum. Appl. Biochem. Biotechnol. 1993; 43: 147–150
  • Morag E., Lapidot A., Govorko D., Lamed R., Wilchek M., Bayer E. A., Shoham Y. Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of. Clostridium thermocellum. Appl. Environ. Microbiol. 1995; 61: 1980–1986
  • Mori Y. Comparison of the cellulolytic systems ofClostridium thermocellumYM4 and JW20. Biotechnol. Lett. 1992; 14: 131–136
  • Navas J., Béguin P. Site-directed mutagenesis of conserved residues inClostridium thermocellumendoglucanase CelC. Biochem. Biophys. Res. Commun. 1992; 189: 807–812
  • Ng T. K., Zeikus J. G. Purification and characterization of an endoglucanase (1, 4-(3-D-glucan glucanohydrolase) from. Clostridium thermocellum. Biochem. J. 1981; 199: 341–350
  • Ng T. K., Zeikus J. G. Differential metabolism of cellobiose and glucose byClostridium thermocellumand. Clostridium thermohydro sulfuricum. J. Bacteriol. 1982; 150: 1391–1399
  • Nochur S. V., Roberts M. F., Demain A. L. True cellulase production byClostridium thermocellumgrown on different carbon sources. Biotechnol. Lett. 1993; 15: 641–646
  • Nolte A. Ultrastrukturelle, enzymkinetische und Immunocytochemishe Untersuchungen der extrazellularen Cellulase vonClostridium thermocellum. JW20. Ph.D dissertation, Georg-August-Universität Göttingen, Germany, 1992
  • Nolte A., Mayer F. Localization and immunological characterization of the cellu-lolytic enzyme system in. Clostridium thermocellum. FEMS Microbiol. Lett. 1989; 61: 65–72
  • Olsen O., Thomsen K., Weber J., Duus J.Ø., Svendsen I., Wegener C, von Wettstein D. Transplanting two unique β-glucanase catalytic activities into one multienzyme, which forms glucose. Bio/Technology. 1996; 14: 71–76
  • Orpin C. G. Studies on the rumen flagellate. Neocallimastix frontalis. J. Gen. Microbiol. 1975; 94: 249–262
  • Ozaki K., Shikata S., Kawai S., Ito S., Okamoto K. Molecular cloning and nucleotide sequence of a gene for alkaline cellulase fromBacillussp. KSM-635. J. Gen. Microbiol. 1990; 136: 1327–1334
  • Penttilä M. E., André L., Lehtovaara P., Bailey M., Teeri T., Knowles J. K. C. Efficient secretion of two fungal cello-biohydrolases by. Saccharomyces cerevisiae. Gene 1988; 63: 103–112
  • Pètre J., Longin R., Millet J. Purification and properties of an endo-β-1, 4-glucanase from. Clostridium thermocellum. Biochimie 1981; 63: 629–639
  • Piruzian E. S., Mogutov M. A., Velikodvorskaya G. A., Akimenko V. K. Cloning and expression of structural genes ofClostridium thermocellumF7 cellulolytic complex endoglucanases in cells ofEscherichia coliK12. Dokl. Acad. Nauk SSR 1985; 281: 963–965
  • Pohlschröder M., Leschine S. B., Canale-Parola E. Multicomplex cellulase-xylanase system ofClostridium papyrosolvensC7. J. Bacteriol. 1994; 176: 70–76
  • Pohlschröder M., Canale-Parola E., Leschine S. B. Ultrastructural diversity of the cellulases complexes ofClostridium papyrosolvensC7. J. Bacteriol. 1995; 177: 6625–6629
  • Pourquié J., Warzywoda M., Chevron F., Théry M., Longchamp D., Vandecasteele J. P. Scale-up of cellulase production and utilization. FEMS Symposium No. 43. Biochemistry and Genetics of Cellulose Degradation, J.-P. Aubert, P. Béguin, J. Millet. Academic Press, New York 1988; 71–86
  • Puls J., Körner H.-U. Study on the effects of the components of the cellulase complex on various celluloses and lignocelluloses. 4th E.C. International Conference on Bio-mass for Energy and Industry, G. Grassi, D. Delmon, J.-F. Molle, H. Zibetta. Elsevier, London 1987; 694–698
  • Rainey F. A., Stackebrandt E. 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol. Lett. 1994; 113: 125–128
  • Reymond P., Durand R., Hebraud M., Fèvre M. Molecular cloning of genes from the rumen anaerobic fungusNeocallimastix frontalis— expression during hydrolase induction. FEMS Microbiol. Lett. 1991; 77: 107–112
  • Romaniec M. P. M., Clarke N. G., Hazlewood G. P. Molecular cloning ofClostridium thermocellumDNA and the expression of further novel endo-(3-l, 4-glucanase genes in. Escherichia coli. J. Gen. Microbiol. 1987; 133: 1297–1307
  • Sakka K., Furuse S., Shimada K. Cloning and expression inEscherichia coliof the thermophilicClostridiumsp. Fl genes related to cellulose hydrolysis. Agric. Biol. Chem. 1989; 53: 905–911
  • Salamitou S., Tokatlidis K., Béguin P., Aubert J. P. Involvement of separate domains of the cellulosomal protein S1 ofClostridium thermocellumin binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett. 1992; 304: 89–92
  • Salamitou S., Raynaud O., Lemaire M., Coughlan M., Béguin P., Aubert J.-P. Recognition specificity of the duplicated segments present inClostridium thermocellumendo-glucanase CelD and in the cellulosome-inte-grating protein CipA. J. Bacteriol. 1994a; 176: 2822–2827
  • Salamitou S., Lemaire M., Fujino T., Ohayon H., Gounon P., Béguin P., Aubert J.-P. Subcellular localization ofClostridium thermocellumORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J. Bacteriol 1994b; 176: 2828–2834
  • Schimming S., Schwarz W. H., Staudenbauer W. L. Properties of a thermoactive β-1, 3-glucanase (lichenase) fromClostridium thermocellumexpressed in. Escherichia coli. Biochem. Biophys. Res. Commun. 1991; 177: 447–452
  • Schwarz W., Bronnenmeier K., Staudenbauer W. L. Molecular cloning ofClostridium thermocellumgenes involved in β-glucan degradation in bacteriophage lambda. Biotechnol. Lett. 1985; 7: 859–864
  • Schwarz W. H., Schimming S., Staudenbauer W. L. Isolation of aClostridium thermocellumgene encoding a thermostable β-l, 3-ghicanase (laminarinase). Biotechnol. Lett. 1988; 10: 225–230
  • Semeriva M., Desnuelle P. Pancreatic lipase and colipase: an example of heterogeneous biocatalysis. Horiz. Biochem. Biophys. 1976; 2: 32–59
  • Shima S., Igarashi Y., Kodama T. Nucleotide sequence analysis of the endo-glucanase-encoding gene. celCCD, of Clostridium cellulolyticum. Gene 1991; 104: 33–38
  • Shoseyov O., Doi R. H. Essential 170-kDa subunit for degradation of crystalline cellulose byClostridium cellulovoranscellulase. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 2192–2195
  • Shoseyov O., Takagi M., Goldstein M. A., Doi R. H. Primary sequence analysis ofClostridium cellulovoranscellulose-binding protein A. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 3483–3487
  • Singh R. N., Akimenko V. K. Isolation of a cellobiohydrolase ofClostridium thermocellumcapable of degrading natural crystalline cellulose. Biochem. Biophys. Res. Commun. 1973; 192: 1123–1130
  • Singh R. N., Akimenko V. K. Syner-gism among three purified cellulolytic components of. Clostridium thermocellum. FEMS Microbiol. Lett. 1994; 122: 257–261
  • Sinnott M. L. Catalytic mechanisms of en-zymic glycosyl transfers. Chem. Rev. 1990; 90: 1171–1202
  • Stack R. J., Hungate R. E. Effect of 3-phenylpropionic acid on capsule and cellu-lases of. Ruminococcus albus. Appl. Environ. Microbiol. 1984; 48: 218–223
  • Takagi M., Hashida S., Goldstein M. A., Doi R. H. The hydrophobic repeated domain of theClostridium cellulovoranscellulose-binding protein (CbpA) has specific interactions with endoglucanases. J. Bacteriol. 1993; 175: 7119–7122
  • Teather R. M., Wood P. J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 1982; 43: 777–780
  • Teunissen M. J., Hermans J. M. H., Intveld J. H., Vogels G. D. Purification and characterization of a complex-bound and a free p-1, 4-endoxylanase from the culture fluid of the anaerobic fungusPyromycessp. strain E2. Arch. Microbiol. 1993; 159: 265–271
  • Teunissen M. J., Op den Camp H. J. M. Anaerobic fungi and their cellulolytic and xylanolytic enzymes. Antonie van Leeuwenhoek Int. J. Genet. Mol. Microbiol. 1993; 63: 63–76
  • Tokatlidis K., Dhurjati P., Millet J., Béguin P., Aubert J.-P. a. High activity of inclusion bodies formed inEscherichia colioverproducingClostridium thermo-cellumendoglucanase D. FEBS Lett. 1991; 282: 205–208
  • Tokatlidis K., Salamitou S., Béguin P., Dhurjati P., Aubert J.-P. Interaction of the duplicated segment carried byClostridium thermocellumcellulases with cellulosome components. FEBS Lett. 1991b; 291: 185–188
  • Tokatlidis K., Dhurjati P., Béguin P. Properties conferred onClostridium thermocellumendoglucanase CelC by grafting the duplicated segment of endoglucanase CelD. Protein Eng. 1993; 6: 947–952
  • Tomme P., van Tilbeurgh H., Pettersson G., van Damme J., Vandekerckhove J., Knowles J., Teeri T., Claeyssens M. Studies of the cellulolytic system ofTrichoderma reeseiQM 9414. Eur. J. Biochem. 1988; 170: 575–581
  • Tuka K., Zverlov V. V., Bumazkin B. K., Velikodvorskaya G. A., Strongin A. Y. Cloning and expression ofClostridium thermocellumgenes coding for thermostable exoglucanases (cellobiohydrolases) inEscherichia colicells. Biochem. Biophys. Res. Commun. 1990; 169: 1055–1060
  • Tuka K., Zverlov V. V., Velikodvorskaya G. A. Synergism betweenClostridium thermocellumcellulases cloned in. Escherichia coli. Appl. Biochem. Biotechnol. 1992; 37: 201–207
  • van Tilbeurgh H., Claeyssens M., De Bruyne C. K. The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 1982; 149: 152–156
  • van Tilbeurgh H., Tomme P., Claeyssens M., Bhikhabhai R., Pettersson G. Limited proteolysis of the cellobiohydrolase I from. Trichoderma reesei. FEBS Lett. 1986; 204: 223–227
  • Wakil S. J. Fatty acid synthetase, a proficient multifunctional enzyme. Biochemistry 1989; 28: 4523–4530
  • Wang Q., Tull D., Meinke A., Gilkes N. R., Warren R. A. J., Aebersold R., Withers S. G. Glu280 is the nucleophile in the active site ofClostridium thermocellumCelC, a family A endo-(5-l, 4-glucanase. J. Biol. Chem. 1993a; 268: 14096–14102
  • Wang W. K., Kruus K., Wu J. H. D. Cloning and DNA sequence of the gene coding forClostridium thermocellumcellulase Ss(CelS), a major cellulosome component. J. Bacteriol. 1993b; 175: 1293–1302
  • Wiegel J., Mothershed C. P., Puls J. Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and. Clostridium thermocellum. Appl. Environ. Microbiol. 1985; 49: 656–659
  • Wilson C., Wood T. M. The anaerobic fungusNeocallimastixfrontalis:isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl. Microbiol. Biotechnol. 1992a; 37: 125–129
  • Wilson C. A., Wood T. M. Studies on the cellulase of the rumen anaerobic fungusNeocallimastix frontalis, with special reference to the capacity to degrade crystalline cellulose. Enzyme Microb. Technol. 1992b; 14: 258–264
  • Wood T. M., McCrae S. I. The cellulase ofTrichoderma koningii.Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone or in synergism with the cellobiohydrolase. Biochem. J. 1978; 171: 61–72
  • Wood T. M. Aspects of the biochemistry of cellulose degradation. Cellulose and its Derivatives, Chemistry, Biochemistry, and Applications, J. R Kennedy, G. O. Phillips, D. J. Wedlock, P. A. Williams. John Wiley & Sons, New York 1985; 173–188
  • Wu J. H. D., Demain A. L. Proteins of theClostridium thermocellumcellulase complex responsible for degradation of crystalline cellulose. FEMS Symposium No. Biochemistry and Genetics of Cellulose Degradation, J.-P. Aubert, P. Béguin, J. Millet. Academic Press, New York 1988; 117–131
  • Wu J. H. D., Orme-Johnson W. H., Demain A. L. Two components of an extracellular protein aggregate ofClostridium thermo-cellumtogether degrade crystalline cellulose. Biochemistry 1988; 27: 1703–1709
  • Xue G. P., Gobius K. S., Orpin C. G. A novel polysaccharide hydrolase cDNA (celD) fromNeocallimastix patriciarumencoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase, and xylanase activity. J. Gen. Microbiol. 1992a; 138: 2397–2403
  • Xue G. P., Orpin C. G., Gobius K. S., Aylward J. H., Simpson G. D. Cloning and expression of multiple cellulase cDNAs from the anaerobic fungus. Neocallimastix patriciarum. J. Gen. Microbiol. 1992b; 138: 1413–1420
  • Yaron S., Morag E., Bayer E. A., Lamed R., Shoham Y. Expression, purification and subunit-binding properties of cohesins 2 and 3 of theClostridium thermocellumcellulosome. FEBS Lett. 1995; 360: 121–124
  • Zhou L. Q., Xue G. P., Orpin C. G., Gilbert H. J., Hazlewood G. P. IntronlesscelBfrom the anaerobic fungusNeocallimastix patriciarumencodes a modular family A endoglucanase. Biochem. J. 1994; 297: 359–364

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.