81
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Homing-Associated Cell Adhesion Molecule (H-CAM/CD44) on Human CD34+ Hematopoietic Progenitor Cells

&
Pages 25-37 | Published online: 01 Jul 2009

References

  • Andrews R. G., Singer J. W., Bernstein I. D. Human hematopoietic precursors in long term culture: Single CD34+ cells that lack detectable T, B, and myeloid antigens produce multiple colony forming cells when cultured with marrow stromal cells. J Exp Med 1990; 172: 355–358
  • Sutherland H. J., Lansdorp P. M., Henkelman D. H., Evans A. C., Evans C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 1990; 87: 3584–3588
  • Verfaille C., Blakolmer K., McGlave P. Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectivity to irradiated bone marrow stroma. J Exp Med 1990; 172: 509–512
  • Goodman J. W., Hodgson G. S. Evidence for stem cells in the peripheral blood of mice. Blood 1962; 19: 702–708
  • Barr R. D., Whang-Peng J., Perry S. Hemopoietic stem cells in human peripheral blood. Science 1975; 190: 284–285
  • Kessinger A., Armitage J. D., Landmark J. D., Weisenberger D. D. Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol 1986; 14: 192–196
  • Watanabe T., Dave B., Heimann D. G., Jackson J. D., Kessinger A., Talmadge J. E. Cell adhesion molecule expression on CD34+ cells in grafts and platelet recovery after autologous stem cell transplantation. Exp Hematol 1998; 26: 10–18
  • Khaldoyanidi S., Denzel A., Zoller M. Requirement for CD44 in proliferation and homing of hematopoietic precursor cells. J Leukoc Biol 1996; 60: 579–592
  • Kansas G. S., Miurhead M. J., Daily M. O. Expression of the CD11/CD18, leukocyte adhesion molecule, and CD44 adhesion molecules during normal myeloid and erythroid differentiation in human. Blood 1990; 76: 2483–2492
  • Teixido J., Helmer M. E., Greenberger J. S., Ankles-Saria P. Role of β1, and β2 integrins is the adhesion of human CD34hi cells to bone marrow stroma. J Clin Invest 1993; 90: 358–367
  • Voura E. B., Billia F., Iscove N. N., Hawley R. G. Expression mapping of adhesion receptor genes during differentiation of individual hematopoietic precursors. Exp Hematol 1997; 25: 1172–1179
  • Gunji Y., Nakamura M., Hagiwara T., Hayakawa K., Matsushita H., Osawa H. Expression and function of adhesion molecules on human hematopoietic stem cells: CD34+LFA-1- cells are more primitive than CD34+LFA-1+ cells. Blood 1992; 80: 429–06
  • Lewinsohn D. M., Nagler A., Ginzton N., Greenberg P., Butcher E. C. Hematopoietic progenitor cell expression of the H-CAM (CD44) horming-associated adhesion molecule. Blood 1990; 75: 589–595
  • Picker L. J., De Los Toyos J., Telen M. J., Haynes B. F., Butcher E. C. Monoclonal antibodies against the CD44 [In(Lu)-related p80], and Pgp-1 antigens in man recognize the Hermes class of lymphocyte homing receptors. J Immunol 1989; 142: 2046–2051
  • Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol 1994; 54: 271–335
  • Ghaffari S., Smadja-Joffe F., Oostendorp R., Levesque J. P., Dougherty G., Eaves A., Eaves C. CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 1999; 27: 978–993
  • Smadja-Joffe F., Legras S., Girard N., Li Y., Delpech B., Bloget F., Morimoto K., Le Bousse-Kerdiles C., Clay D., Jasmin C., Levesque I. P. CD44 and hyaluro-nan binding by human myeloid cells. Leuk Lymphoma 1996; 21: 407–420
  • Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyarulonate. Cell 1990; 61: 1303–1313
  • Legras S., Levesque J. P., Charrad R., Morimoto K., Bousse C. L., Clay D., Jasmin C., Smadja-Joffe F. CD44-mediated adhesiveness of human hematopoietic progenitors to hyaruronan is modulated by cytokines. Blood 1997; 89: 1905–1914
  • Gallagher J. T., Spooncer E., Dexter T. M. Role of the cellular matrix in haemopoiesis. I. Synthesis of glycosaminoglycans by mouse bone marrow cell cultures. J Cell Sci 1983; 63: 155–171
  • Spooncer E., Gallagher J. T., Krizsa F., Dexter T. M. Regulation of haemmopoiesis in long term culture bone marrow cultures. IV. Glycosaminoglycan synthesis and the stimulation of haemopoiesis by beta-D-xylosides. J Cell Biol 1983; 96: 510–514
  • Underhill C. CD44: the hyaluronan receptor. J Cell Sci 1992; 103: 293–298
  • Miyake K., Medina K. L., Hayashi S., Ono S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hematopoiesis in long-term bone marrow cultures. J Exp Med 1990; 171: 477–488
  • Rossbach H. C., Krizanac-Bengez L., Santos E. B., Gooley T. A., Sandmaier B. M. An antibody to CD44 enhances hematopoiesis in longterm marrow cultures. Exp Hematol 1996; 24: 221–227
  • Ghaffari S., Dougherty G. J., Evans A. C., Evans C. J. Diverse effect of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukemic (CML) haemopoiesis in vitro. Brit J Haematol 1997; 97: 22–28
  • Verfaillie C. M., Benis A., Iida J., McGlave P. B., McCarthy J. B. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood 1994; 84: 1802–11
  • Oostendorp R. A., Spitzer E., Dormer P. Adhesion of human hematopoietic progenitor cells to bone-marrow-derived stromal cells is enhanced by antibodies to CD44. Acta Haematol 1996; 95: 243–247
  • Oostendorp R. A., Spitzer E., Brandl M., Eaves C. J., Dormer P. Evidence for differences in the mechanisms by which antibodies against CD44 promote adhesion of erythroid and granulopoietic progenitors to marrow stromal cells. Br J Haematol 1998; 101: 436–445
  • Oostendorp R. A., Spitzer E., Reisbach G., Dormer P. Antibodies to the beta 1-integrin chain, CD44, or ICAM-3 stimulate adhesion of blast colony-forming cells and may inhibit their growth. Exp Hematol 1997; 25: 345–9
  • Bendall L. J., Kirkness J., Hutchinson A., Bianchi A., Makrynikola V., Bradstock K. F., Gottlieb D. J. Antibodies to CD44 enhance adhesion of normal CD34+ cells and acute myeloblastic but not lymphoblastic leukaemia cells to bone marrow stroma. Br J Haematol 1997; 98: 828–37
  • Deguchi T., Komada Y., Sugiyama K., Zhang X. L., Azuma E., Yamamoto H., Sakurai M. Expression of homing-associated cell adhesion molecule (H-CAM/CD44) on human CD34+ hematopoietic progenitor cells. Exp Hematol 1999; 27: 542–552
  • Jalkanen S., Jalkanen M., Bargatze R., Tammi M., Butcher E. C. Biochemical properties of glycoproteins involved inlymphocyte recognition of high endothelial venules in man. J Immunol 1988; 141: 1615–1623
  • Kalomiris E. L., Bourguignon L. Y. Mouse T lymphoma cells contain a transmembrane glycoprotein (GP85) that binds ankyrin. J Cell Biol 1988; 106: 319–327
  • Culty M., Miyake K., Kincade P. W., Sikorski E., Butcher E. C., Underhill C. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 1990; 111: 2765–2774
  • Brown T. A., Bouchard T., St John T., Wayner E., Carter W. G. Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol 1991; 113: 207–221
  • Zhou D. P., Ding J. F., Picker L. J., Bargatze R. F., Butcher E. C., Goeddel D. V. Molecular cloning and expression of Pgp-1. The mouse homolog of the human H-CAM (Hermes) lymphocyte homing receptor. J Immunol 1989; 143: 3390–3395
  • Nottenburg C., Rees G., St John T. Isolation of mouse CD44 cDNA: structural features are distinct from the primate cDNA. Proc Natl Acad Sci USA 1989; 86: 8521–8525
  • Stamenkovic I., Amiot M., Pesando J. M., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 1989; 56: 1057–1062
  • Goldstein L. A., Zhou D. P., Picker L. J., Minty C. N., Bargatze R. P., Ding J. F., Butcher E. C. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 1989; 56: 1063–1072
  • Jalkanen S., Bargatze R. F., De Los Toyos J., Butcher E. C. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85-95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol 1987; 105: 983–990
  • Underhill C. B., Green S. J., Comoglio P. M., Tarone G. The hyaluronate receptor is identical to a glycoprotein of Mr 85,000 (gp85) as shown by a monoclonal antibody that interferes with binding activity. J Biol Chem 1987; 161: 13142–13146
  • Yang B., Yang B. L., Savani R. C., Turley E. A. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. Embo J 1994; 13: 286–96
  • Wayner E. A., Carter W. G. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunit. J Cell Biol 1987; 105: 1873–1884
  • Carter W. G., Wayner E. A. Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem 1988; 105: 1615–1623
  • Kansas G. S., Wood G. S., Dailey M. O. A family of cell-surface glycoproteins defined by a putative anti-endothelial cell receptor antibody in man. J Immunol 1990; 142: 3050–3057
  • Naujokas M. F., Morin M., Anderson M. S., Peterson M., Miller J. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 1993; 74: 257–268
  • Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 1990; 111: 69–75
  • Peach R. J., Hojlenbaugh D., Stamenkovic I., Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol 1993; 111: 257–264
  • Jalkanen S., Aho R., Kallajoki M., Ekfors T., Nortamo P., Gahmberg C., Duijvestijn A., Kalimo H. Lymphocyte homing receptors and adhesion molecules in intravascular malignant lymphomatosis. Int J Cancer 1989; 44: 777–782
  • Spring F. A., Dalchau R., Daniels G. L., Mallinson G., Judson P. A., Parsons S. F., Fabre J. W., Anstee D. J. The Ina and Inb blood group antigens are located on a glycoprotein of 80,000 MW (the CDw44 glycoprotein) whose expression is influenced by the In (Lu) gene. Immunology 1988; 64: 37–43
  • Goodfellow P. N., Banting G., Wiles M. V., Tunnaciliffe A., Parker M., Solomon E., Dalchau R., Fabre J. W. The gene MIC4, which controls expression of the antigen defined by monoclonal antibody F10.44.2, is on human chromosome 11. Eur J Immunol 1982; 12: 659–663
  • Francke U., Foellmer B. E., Haynes B. F. Chromosome mapping of human cell surface molecules: monoclonal anti-human lymphocyte antibodies 4F2, A3D8, and A1G3 defined antigens controlled by different regions of choromosome 11. Somatic Cell Genet 1983; 9: 333–344
  • Screaton G. R., Bell M. V., Jackson D. G., Cornells F. B., Gerth U., Bell J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 1992; 89: 12160–12164
  • Screaton G. R., Bell M. V., Bell J. I., Jackson D. G. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem 1993; 268: 12235–12238
  • Dougherty G. J., Cooper D. L., Memory J. F., Chiu R. K. Ligand binding specificity of alternatively spliced CD44 isoforms. Recognition and binding of hyaluronan by CD44R1. J Biol Chem 1994; 269: 9074–9078
  • Gunthert U. CD44: a multitude of isoforms with diverse functions. Curr Top Microbiol Immunol 1993; 184: 47–63
  • Dougherty G. J., Landorp P. M., Cooper D. L., Humphries R. K. Molecular cloning of CD44R1 and CD44R2, two novel isoforms of the human CD44 lymphocyte “homing” receptor expressed by hemopoietic cells. J Exp Med 1991; 174: 1–5
  • Hofmann M., Rudy W., Zoller M., Tolg C., Ponta H., Herrlich P., Gunthert U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 1991; 51: 5292–5297
  • Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. Embo J 1991; 10: 343–8
  • Jackson D. G., Buckley J., Bell J. I. Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem 1992; 267: 4732–4739
  • Bosworth B. T., St John T., Gallatin W. M., Harp J. A. Sequence of the bovine CD44 cDNA: comparison with human and mouse sequences. Mol Immunol 1991; 28: 1131–1135
  • Gunthert U., Hofmann M., Rudy W., Reber S., Zoller M., Haussmann I., Matzku S., Wenzel A., Ponta H., Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13–24
  • He Q., Lesley J., Hyman R., Ishihara K., Kincade P. W. Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J Cell Biol 1992; 119: 1711–1719
  • Bennett K. L., Modrell B., Greenfield B., Bartolazzi A., Stamenkovic I., Peach R., Jackson D. G., Spring F., Aruffo A. Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol 1995; 131: 1623–1633
  • Ghaffari S., Dougherty G. J., Eaves A. C., Eaves C. J. Altered patterns of CD44 epitope expression in human chronic and acute myeloid leukemia. Leukemia 1996; 10: 1773–1781
  • Torg C., Hofmann M., Herrlich P., Ponta H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res 1993; 21: 1225–1229
  • Lesley J., English N., Perschl A., Gregoroff J., Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J Exp Med 1995; 182: 431–437
  • Katoh S., Zheng Z., Oritani K., Shimozato T., Kincade P. W. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J Exp Med 1995; 182: 419–429
  • Lesley J., Kincade P. W., Hyman R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol 1993; 23: 1902–1909
  • Khaldoyanidi S., Schnabel D., Fohr N., Zoller M. Functional activity of CD44 isoforms in haemopoiesis of the rat. Br J Haematol 1997; 96: 31–45
  • Neame S. J., Isacke C. M. Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localization or cytoskeletal interaction in epithelial cells. Embo J 1992; 11: 4733–4738
  • Neame S. J., Isacke C. M. The cytoplasmic tail of CD44 is required for basolateral localization in epithelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. J Cell Biol 1993; 121: 1299–1310
  • Wolffe E. J., Gause W. C., Pelfrey C. M., Holland S. M., Steinberg A. D., August J. T. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins. J Biol Chem 1990; 265: 341–347
  • Lacy B. E., Underhill C. B. The hyaluronan receptor is associated with actin filaments. J Cell Biol 1987; 105: 1395–1404
  • Tsukita S., Oishi K., Sato N., Sagara J., Kawai A., Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 1994; 126: 391–401
  • Taher T. E., Smit L., Griffioen A. W., Schilder-Tol E. J., Borst J., Pals S. T. Signaling through CD44 is mediated by tyrosine kinases. Association with p561ck in T lymphocytes. J Biol Chem 1996; 271: 2863–2867
  • Ilangumaran S., Briol A., Hoessli D. C. CD44 selectively associates with active Src family protein tyrosine kinases Lck and Fyn in glycosphingolipid-rich plasma membrane domains of human peripheral blood lymphocytes. Blood 1998; 91: 3901–3908
  • Kalomiris E. L., Bourguignon L. Y. Lymphoma protein kinase C is associated with the transmembrane glycoprotein, GP85, and may function in GP85-ankyrin binding. J Biol Chem 1989; 264: 8113–8119
  • Camp R. L., Kraus T. A., Pure E. Variations in the cytoskeletal interaction and posttranslational modification of the CD44 homing receptor in macrophages. J Cell Biol 1991; 115: 1283–1292
  • Neame S. J., Isacke C. M. The cytoplasmic tail of CD44 is required for basolateral localization in epithelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. J Cell Biol 1993; 121: 1299–1310
  • Hyman R., Lesley J., Schulte R. Somatic cell mutants distinguish CD44 expression and hyaluronic acid binding. Immunogenetics 1991; 33: 392–395
  • Murakami S., Shimabukuro Y., Miki Y., Saho T., Hino E., Kasai D., Nozaki T., Kusumoto Y., Okada H. Inducible binding of human lymphocytes to hyalur-onate via CD44 does not require cytoskeleton association but does require new protein synthesis. J Immunol 1994; 152: 467–477
  • Morimoto K., Robin E., Le Bousse-Kerdiles M. C., Li Y., Clay D., Jasmin C., Smadja-Joffe F. CD44 mediates hyaluronan binding by human myeloid KG1A and KG1 cells. Blood 1994; 83: 657–662
  • Liu D., Sy M. S. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. J Exp Med 1996; 183: 1987–1994
  • Li R., Walker J. R., Johnson P. Chimeric CD4/CD44 molecules associate with CD44 via the transmembrane region and reduce hyaluronan binding in T cell lines. Eur J Immunol 1998; 28: 1745–1754
  • Lokeshwar V. B., Bourguignon L. Y. The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide-binding protein which regulates GP85 (CD44)-ankyrin interaction. J Biol Chem 1992; 267: 22073–8
  • Lesley J., Kincade P. W., Hyman R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol 1993; 23: 1902–1909
  • Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. W. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med 1992; 175: 257–266
  • Lokeshwar V. B., Fregien N., Bourguignon L. Y. Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function. J Cell Biol 1994; 126: 1099–1109
  • Thomas L., Byers H. R., Vink J., Stamenkovic I. CD44H regulates tumor cell migration on hyaluro-nate-coated substrate. J Cell Biol 1992; 118: 971–977
  • Hathcock K. S., Hirano H., Murakami S., Hodes R. J. CD44 expression on activated B cells. Differential capacity for CD44- dep endent binding to hyaluronic acid. J Immunol 1993; 151: 6712–6722
  • Perschl A., Lesley J., English N., Trowbridge I., Hyman R. Role of CD44 cytoplasmic domain in hyaluronan binding. Eur J Immunol 1995; 25: 495–501
  • Haynes B. F., Telen M. J., Hale L. P., Denning S. M. CD44-a molecule involved in leukocyte adherence and T-cell activation [published erratum appears in Immunol Today1990 Mar;11(3)80]. Immunol Today 1989; 10: 423–8
  • Kansas G. S., Dailey M. O. Expression of adhesion structures during B cell development in man. J Immunol 1989; 142: 3058–3062
  • Murakami S., Miyake K., Kincade P. W., Hodes R. J. Functional role of CD44 (Pgp-1) on activated B cells. Immunol Res 1991; 10: 15–27
  • Murakami S., Miyake K., Abe R., Kincade P. W., Hodes R. J. Characterization of autoantibody-secreting B cells in mice undergoing stimulatory (chronic) graft-versus-host reactions. Identification of a CD44hi population that binds specifically to hyaluronate. J Immunol 1991; 146: 1422–1427
  • Kincade P. W. Cell interaction molecules and cytokines which participate in B lymphopoiesis. Baillieres Clin Haematol 1992; 5: 575–598
  • Camp R. L., Kraus T. A., Birkeland M. L., Pure E. High levels of CD44 expression distinguish virgin from antigen-primed B cells. J Exp Med 1991; 173: 763–6
  • Khaldoyanidi S., Moll J., Karakhanova S., Herrlich P., Ponta H. Hyaluronate-enhanced hematopoie-sis: two different receptors trigger the release of interleukin-1 beta and interleukin-6 from bone marrow macrophages. Blood 1999; 94: 940–949
  • Ghaffari S., Dougherty G. J., Lansdorp P. M., Eaves A. C., Eaves C. J. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia. Blood 1995; 86: 2976–2985
  • Charrad R. S., Li Y., Delpech B., Balitrand N., Clay D., Jasmin C., Chomienne C., Smadja-Joffe F. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med 1999; 5: 669–676
  • Horst E., Meijer C. J., Radaskiewicz T., Van Dongen J. J., Pieters R., Figdor C. G., Hooftman A., Pals S. T. Expression of a human homing receptor (CD44) in lymphoid malignancies and related stages of lymphoid development. Leukemia 1990; 4: 383–389
  • Davi F., Faili A., Gritti C., Blanc C., Laurent S., Schmitt C., Merle-BÉRal H. Early onset of imm-noglobulin heavy chain gene rearrangements in normal human bone marrow CD34+ cells. Blood 1997; 90: 4014–4021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.