206
Views
33
CrossRef citations to date
0
Altmetric
Original Article

CD164-A Novel Sialomucin on CD34+ Cells

&
Pages 1-25 | Received 10 Aug 1999, Published online: 01 Jul 2009

References

  • Watt S.M., Bühring H.-J., Rappold I., Chan J. Y.-H., Lee-Prudhoe J., Jones T., Zannettino A.C.W., Simmons P.J., Sheer D., Doyonnas R., Butler L.H. CD164 a novel sialomucin on CD34+ and erythroid subsets is located on human chromosome 6q21. Blood 1998; 92: 849–866
  • Zannettino A.C.W., Bühring H.-J., Niutta S., Watt S.M., Benton M.A., Simmons P.J. The Sialomucin CD 164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells which serves as a potent negative regulator of hematopoiesis. Blood 1998; 92: 2613–2628
  • Zannettino A.C.W., Rappold I., Bühring H.J., Watt S.M., Benton M.A., Nuitta S., Simmons P.J. CD164 (MGC-24v) workshop panel report. Leucocyte Typing VI, T. Kishimoto, et al. Garland Publishing Inc, New York 1997; 456–457
  • Gum J.R. Human mucin glycoproteins: varied structures predict diverse properties and specific functions. Biochem. Soc. Trans. 1995; 23: 795–799
  • Kansas G.S. Selectins and their ligands: current concepts and controversies. Blood 1996; 88: 3259–3287
  • Shimizu Y., Shaw S. Mucins in the mainstream. Nature 1993; 366: 630–631
  • van Klinken B.W., Dekler J., Büller H.A., Einerhard A.W.C. Mucin gene structure and expression: protection versus adhesion. Am. J. Physiol. 1995; 269: G613–G627
  • Carraway K.L., Hull S.R. Cell surface mucin-type glycoproteins and mucin-like domains. Glycobiol. 1991; 1: 131–138
  • cule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cels after injury. J. Biol. Chem., 273: 4135–4142
  • Kershaw D.B., Beck S.G., Wharram B.L., Wiggins J.E., Goyal M., Thomas P.E., Wiggins R.C. Molecular cloning and characterization of human podocalyxin-like protein. J. Biol. Chem. 1997; 272: 15708–15714
  • Sassetti C.K.T., Singer M.S., Kershaw D.B., Rosen S.D. Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34. J. Exp. Med. 1998; 187: 1965–1975
  • Morgan S.M., Samulowitz U., Darley L., Simmons D.L., Westweber D. Biochemical characterization and molecular cloning of a novel endothelial-specific sialomucin. Blood 1999; 93: 165–175
  • Roth G.J. Platelets and blood vessels: the adhesion event. Immunol. Today 1992; 13: 100–105
  • Wenger R.H., Kieffer N., Wicki A.N., Clementson K.J. Structure of the human blood platelet membrane glycoprotein Ib alpha gene. Biochem. Biophys. Res. Commun. 1988; 156: 389–395
  • Holness C.L., Simmons D.L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 1993; 81: 1601613
  • Fukuda M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J. Biol. Chem. 1991; 266: 21327–21330
  • Chan J., Lee-Prudhoe J.E., Doyonnas R., Watt S.M. The chuman CD 164 gene: alternative splicing generates novel isoforms with restricted patterns of expression. 1999, (submitted)
  • Treon S.P., Mollick J.A., Urashima M., Teoh G., Chauhan D., Ogata A., Raje N., Hilgers J.H.M., Nadler L., Belch A.R., Oilarski L.M., Andeson K.C. Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. Blood 1999; 93: 1287–1298
  • Dowbenko D., Kikuta A., Fenny C., Gillet N., Lasky L.A. Glycosylation-dependent cell adhesion molecule I (GlyCAM-1) mucin is expressed by lactating mammary gland epithelial cells and is present in milk. J. Clin. Invest. 1993; 92: 952–960
  • Fina L., Molgaard H.V., Robertson D., Bradley N.J., Monaghan P., Delia D., Sutherland D.R., Baker M.A., Greaves M.F. Expression of the CD34 gene in vascular endothelial cells. Blood 1990; 75: 2417–2426
  • Simmons P.J., Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow by a novel monoclonal antibody. STRO-I. Blood 1991; 78: 55–58
  • Suda J., Sudo T., Masayo I., Ohno N., Yamaguchi Y., Suda T. Two types of murine CD34 mRNA generated by alternative splicing. Blood 1992; 79: 2288–2295
  • Laszik Z., Jansen P.J., Cummings R.D., Tedder T.F., McEver R.P., Moore K.L. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid and dendritic lineage and in some non-hematopoietic cells. Blood 1996; 88: 3010–3021
  • Moore K.L. Structure and function of P-selectin glycoprotein ligand-I. Leuk. Lymph. 1998; 29: 1–15
  • Pulford K.A., Sipos A., Cordell J.L., Stross W.P., Mason D.Y. Distribution of the CD68 macrophage/myeloid associated antigen. Int. Immunol. 1990; 2: 973–980
  • Watt S.M., Butler L.H., Bühring H.-J., Tavian M. The functionally defined CD 164 epitopes are expressed on CD34+ cells throughout ontogeny, but dislay distinct distribution patterns in adult hematopoietic and non-hematopoietic tissues. 1999, Submitted
  • Gendler S.J., Spicer A.P. Epithelial mucin genes. Annu. Rev. Physiol. 1995; 57: 607–634
  • Gum J.R., Hicks J.W., Toribara N.W., Siddiki B., Kim Y.S. Molecular cloning of human intestinal mucin (MUC2) cDNA. J. Biol. Chem. 1994; 269: 2440–2446
  • Cyster J., Shotton D.M., Williams A.F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 1991; 10: 893–902
  • Shynan A.M., Bertagnolli M., Kenney C.J., Briskin M.J. Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to alpha 4 beta 7-integrin binding domains of murine MAdCAM-1, but extrem divergence of mucin-like sequences. J. Immunol. 1996; 156: 2851–2857
  • Sako D., Chang X.-J., Barone K.M., Vachino G., White H.M., Shaw G., Veldman G.M., Bean K.M., Ahern T.J., Furie B., Cumming D.A., Larsen G.R. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 1993; 75: 1179–1186
  • Wang P.L., O'Farrell S., Clayberger C., Krensky A.M. Identification and molecular cloning of tactile: A novel human T cell activation antigen that is a member of the Ig gene superfamily. J. Immunol. 1992; 148: 2600–2608
  • Trowbridge I.S., Thomas M.C. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 1994; 12: 85–116
  • Simmons D.L., Satteithwaite A.B., Tenen D.G., Seed B. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J. Immunol. 1992; 148: 267–271
  • Lowe J.B. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int. 1997; 51: 1418–1426
  • McEver R.P., Cummings R.D. Perspectives Series: Cell adhesion in vascular biology. J. Clin. Invest. 1997; 100: 485–492
  • Varki A. Perspectives series: cell adhesion in vascular biology. J. Clin. Invest. 1997; 99: 158–162
  • Ellies L.G., Tsuboi S.P., Petryniak B., Lowe J.B., Fududa M., Marth J.D. Core 2 oligosaccharide biosymthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 1998; 9: 881–890
  • Fuhlbrigge R.C., Alon R., Puri K.D., Lowe J.B., Springer T.A. Sialylated, fucosylated ligands for L-selectin expressed on leukocytes mediate tethering and rolling adhesions in physiologic flow conditions. J. Cell Biol. 1996; 135: 837–847
  • Maly P., Thall A.D., Petryniak B., Rogers C.E., Smith P.L., Marks R.M., Kelly R.J., Gersten K.M., Cheng G., Saunders T.L., Camper S.A., Camphousen R.T., Sullivan F.X., Isogai Y., Hindsgaul O., von Andrian U.H., Lowe J.B. The α (1, 3) fucosyltransferase Fuc-TVII controls lymphocyte homing and blood leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 1996; 86: 643–653
  • Girard J.-P., Baekkevold E.S., Amalric F. Sulfation in high endothelial venules: cloning and expression of the human PAPS synthetase. FASEB J. 1998; 12: 603–612
  • Cyster J., Somoza C., Killeen N., Williams A.F. Protein sequence and gene structure for mouse leukosialin (CD43), a T lymphocyte mucin without introns in the coding sequence. Eur. J. Immunol. 1990; 20: 875–881
  • Satterthwaite A.B., Burn T.C., LeBeau M.M., Tenen D.G. Structure of the gene encoding CD34, a human hematopoietic stem cell antigen. Genomics 1992; 12: 788–794
  • Leung E., Berg R.W., Langley R., Greene J., Raymond L.A., Augustus M., Jian N., Carter K.C., Spurr N., Choo K.H.A., Krissansen G.W. Genomic organization, chromosomal mapping, and analysis of the 5′ promoter region of the human MAdCAM-1 gene. Immunogen. 1997; 46: 111–119
  • Leung E., Greene E.J., Raymond L.G., Lehnert K., Langley R., Krissansen G.W. Cloning of the mucosal addressin MAdCAM-1 from human brain: Identification of novel alternatively spliced transcripts. Immunol. Cell Biol. 1996; 74: 490–496
  • Shelley C.S., Remold-O'Donnell E., Rosen F.S., Whitehead A.S. Structure of the human sialophorin (CD43) gene. Biochem. J. 1990; 270: 569–576
  • Nakamura Y., Komano H., Nakauchi H. Two alternative forms of cDNA encoding CD34. Exp. Hematol. 1993; 21: 236–242
  • Krause D.S., Fackler M.J., Civin C.I., May W.S. CD34: Structure, biology and clinical utility. Blood 1996; 87: 1–13
  • Cheng J., Baumhueter S., Cacalano G., Carver-Moore K., Thibodeaux H., Thomas R., Broxmeyer H.E., Cooper S., Hague N., Moore M., Lasky L.A. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 1996; 87: 479–490
  • Fernandez-Luna J.L., Matthews R.J., Brownstein B.H., Schreiber R.D., Thomas M.L. Characterization and expression of the human leukocyte-common antigen (CD45) gene contained in yeast artificial chromosomes. Genomics 1991; 1991(10)756–764
  • Giordanengo V., Limouse M., Peyron J.-F., Lefebvre J.-C. Lymphocytic CD34 and CD45 bear sulfate residues potentially implicated in cell to cell interactions. Eur. J. Immunol. 1995; 25: 274–278
  • Puri K.D., Finger E.B., Gaudernack G., Springer T.A. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J. Cell. Biol. 1995; 131: 261–270
  • Clark R.A., Fuhlbrigge R.C., Springer T.A. L-selectin ligands that are O-glycoprotease resistant and distinct from MECA-79 antigen are sufficient for tethering and rolling of lymphocytes on human endothelial venules. J. Cell Biol. 1998; 140: 721–731
  • Baumhueter S., Singer M.S., Henzel W., Hemmerich S., Renz M., Rosen S.D., Lasky L.A. Binding of L-selectin to the vascular sialomucin CD34. Science 1993; 262: 436–438
  • Lasky L.A., Singer M.S., Dowbenko D., Imai Y., Henzel W.J., Grimley C., Fennie C., Gillet N., Watson S.R., Rosen S.D. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992; 69: 927–938
  • Commie D., Rosen S.D. Biosynthesis of Gly-CAM-I, a mucin-like ligand for L-selectin. J. Biol. Chem. 1995; 270: 22614–22624
  • Berg E.L., McEvoy L.M., Berline C., Bargatze R.F., Butcher E.C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 1993; 366: 695–698
  • Briskin M.J., McEvoy L.M., Butcher E.C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgAI. Nature 1993; 363: 461–464
  • Hoke D., Mebius R.E., Dybdal N., Dowbenko D., Gribling P., Kyle C., Baumhueter S., Watson S.R. Selective modulation of the expresion of L-selectin ligands by an immune response. Curr. Biol. 1995; 5: 670–678
  • Shailubhai K., Streeter P.R., Smith C.E., Jacob G.S. Sulfation and sialylation requirements for a glycoform of CD34, a major endothelial ligand for L-selectin in porcine peripheral lymph nodes. Glycobiol. 1997; 7: 305–314
  • Hemmerich S., Bertozzi C.R., Leffler H., Rosen S.D. Identification of the sufated monosaccharides of Gly-CAM-1, an endothelial-derived ligand for L-selectin. Biochemistry 1994; 33: 4820–4829
  • Spertini O., Cordey A.S., Monai N., Giuffre L., Schapira M. P-selectin glycoprotein ligand I is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells. J. Cell. Biol. 1996; 135: 523–531
  • Kikuta A., Rosen S.D. Localization of ligands for L-selectin in mouse perpiheral lymph node high endothelial cells by colloidal gold conjugates. Blood 1994; 84: 3766–3775
  • Koenig A., Jain R., Vig R., Norgard-Sumnicht K.E., Matta K.L., Varki A. Selectin inhibition: synthesis and evaluation of novel sialylated, sufated and fucosylated oligosaccharides, including the major capping group of GlyCAM-1. Glycobiol. 1997; 7: 79–93
  • Walcheck B., Moore K.L., McEver R.P., Kishimoto T.K. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. J. Clin. Invest. 1996; 98: 1081–1087
  • Berlin C., Berg E.L., Briskin M.J., Andrew D.P., Kilshaw P.J., Holzmann B., Weissman I.L., Hamann A., Butcher E.C. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAd-CAM-1. Cell 1993; 74: 185–195
  • Hwang S.T., Singer M.S., Giblin P.A., Yednock T.A., Bacon K.B., Simon S.I., Rosen S.D. GlyCAM-1, a physiologic ligand for L-selectin, activates β2 integrins on naive peripheral lymphocytes. J. Exp. Med. 1996; 184: 1343–1348
  • Ostberg J.R., Barth R.K., Frelinger J.G. The roman god janus: a paradigm for the function of CD43. Immunol. Today 1998; 19: 546–550
  • Stockton B.M., Cheng G., Manjunath N., Ardman B., von Andrian U.H. Negative regulation of T cell homing by CD43. Immunity 1998; 8: 373–381
  • Manjunath N., Correa M., Ardman M., Ardman B. Negative regulation of T-cell adhesion and activation of CD43. Nature 1995; 377: 535–538
  • Wiken M., Bjorck P., Axelsson B., Perlmann P. Enhancement of human B-cell proliferation by a monoclonal antibody to CD43. Scand. J. Immunol. 1989; 29: 363–370
  • Bazil V., Brandt J., Tsukamoto A., Hoffman R. Apoptosis of human hematopoietic progenitor cells induced by crosslinking of surface CD43, the major sialoglycoprotein of leukocytes. Blood 1995; 86: 502–511
  • Bazil V., Brandt J., Chen S., Roeding M., Luens K., Tsukamoto A., Hoffman R. A monoclonal antibody recognizing CD43 (leukosialin) initiates apoptosis of human hematopoietic progenitor cells but not stem cells. Blood 1996; 87: 1272–1281
  • Bazil V., Brandt J.E., Hoffman R. Resistance of human hematopoietic stem cells to a monoclonal antibody recognizing CD43. Stem Cells 1997; 15: 13–19
  • Anzai N., Gotoh A., Shibayama H., Broxmeyer H.E. Modulation of integrin function in hematopoietic progenitor cells by CD43 engagement: possible involvement of protein tyrosine kinase and phospholipase -γ. Blood 1999; 93: 3317–3326
  • Ardman B., Sikorski M.A., Staunton D.E. CD43 interferes with T-lymphocyte adhesion. Proc. Natl. Acad. Sci. USA 1992; 89: 5001–5005
  • Zhang K., Baeckstrom D., Brevinge H., Hansson G.C. Comparison of sialyl-Lewis a-carrying CD43 and MUCl mucins secreted from a colon carcinoma cell line for E-selectin binding and inhibition of leukocyte adhesion. Tumor Biol. 1997; 18: 175–187
  • Baum L.G., Pang M., Perillo N.L., Wu T., Delegeane A., Uittenbogaart C.H., Fukuda M., Seilhamer J.J. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med. 1995; 181: 877–887
  • Tsuboi S., Fukuda M. Branched O-linked oligosaccharides ectopically expressed intransgenic mice reduce primary T-cell immune responses. EMBO J. 1997; 16: 6364–6373
  • Barclay A.N., Brown M.H., Law S.K.A., McKnight A.J., Tomlinson M.G., van der Merwe P.A. The Leucocyte Antigen. Facts Book. Academic Press, LondonUK 1997
  • Chan J. The isolation and characterization of the CD164 gene, a negative regulator of haematopoiesis. D. Phil. Thesis, University of Oxford, OxfordUK 1999
  • Breathnach R., Benoist C., O'Hare K., Gannon F., Chambon P. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA 1978; 75: 4853–4857
  • Mount S.M. A catalogue of splice junction sequences. Nucl. Acids Res. 1982; 10: 459472
  • Doyonnas R., Chan J. H.-J., Butler L.H., Rappold I., Lee-Prudhoe J., Zannettino A.C.W., Simmons P.J., Bühring H.-J., Levesque J.-P., Watt S.M. The identification of three classes of epitopes on the novel adhesion and inhibitory sialomucin receptor CD164. 1999, (submitted)
  • Jentoft N. Why are proteins O-glycosylated? Trends Biol. Sci. 1990; 15: 291–294
  • Devine P.L., McKenzie I.F.C. Mucins: structure, function, and association with malignancy. BioEssays 1992; 14: 619–625
  • Fukuda M. Leukosialin, a major O-glycan-containing sialoglycoprotein defining leukocyte differentiation and malignancy. Glycobiol. 1991; 1: 347–356
  • Masuzawa Y., Mujauchi T., Hamanove M., Ando S., Yoshida J., Takao S., Shimazu H., Adachi M., Muramatsu T. A novel core protein as well as polymorphic epithelial muin carry peanut aggulatinin binding sites in human gastric carcinoma cells: sequence analysis and examination of gene expression. J. Biochem. 1992; 112: 609–615
  • Edwalds-Gilbert G., Veraldi K.L., Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end?. Nucl. Acids Res. 1997; 25: 2547–2561
  • Keller W., Bienroth S., Lang K.M., Christofori G. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA. EMBO J. 1991; 10: 4241–4249
  • Murthy K.G., Manley J.L. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J. Biol. Chem. 1992; 267: 14804–14811
  • MacDonald C.C., Wilusz J., Shenk T. The 64-kilodalton subunit of the CstF polyadenlation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol. Cell. Biol. 1994; 14: 6647–6654
  • Chen F., MacDonald C.C., Wilusz J. Cleavage site determintants in the mammalian polyadenylation signal. Nucl. Acids Res. 1995; 23: 2614–2620
  • Nevins J.R., Darnell J.E. Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 1976; 15: 1477–1493
  • Mann K.P., Weiss E.A., Nevins J.R. Alternatively Poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor. Mol. Cell. Biochem. 1993; 13: 2411–2419
  • Miyamoto S., Chiorini J.A., Urcelay E., Safter B. Regulation of gene expression for translation initiation factor elF-2α: importance of the 3′ untranslated region. Biochem. J. 1996; 315: 791–798
  • Colgan D.F., Murthy K.G.K., Prives C., Manley J.L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 1996; 384: 282–285
  • Takagaki Y., Manley J.L., MacDonald C.C., Wilusz J., Shenk T. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 1990; 4: 2112–2120
  • Levesque J.-P., Butler L., Doyonnas R., Pudney M., Chan J. Y.-H., Zannettino A.C.W., Simmons P.J., Watt S.M. Glycosylation dependent epitopes of the novel sialomucin CD 164 are differentially expressed in different tissues. 1999, (in preparation)
  • Perschl A., Lesley J., English N., Hyman R., Trowbridge I.S. Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. J. Cell Sci. 1995; 108: 1033–1041
  • Neame S.J., Uff C.R., Sheikh H., Wheatley S.C., Isacke C.M. CD44 exhibits a cell type dependent interaction with triton X-100 insoluble, lipid rich, plasma membrane domains. J. Cell Sci. 1995; 108: 3127–3135
  • Carey D.J., Bendt K.M., Stahl R.C. The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. J. Biol. Chem. 1996; 271: 15253–15260
  • Sutherland D.R., Watt S.M., Dowden G., Karhi K., Baker M.A., Greaves M.F., Smart J.E. Structural and partial amino acid sequence analysis of the human hemopoietic progenitor cell antigen CD34. Leukemia 1988; 2: 793–803
  • Watt S.M., Karhi K., Gatter K., Furley A.J.W., Katz F.E., Healy L.E., Altass L.J., Bradley N.J., Sutherland D.R., Levinsky R., Greaves M.F. Distribution and epitope analysis of the cell surface membrane glycoprotein (HPCA-1) associated with human hemopoietic progentor cells. Leukemia 1987; 1: 417–426
  • Sutherland D.R., Abdullah K.M., Cyopick P., Mellors A. Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. J. Immunol. 1992; 148: 1458–1464
  • Dieterlen-Liévre F. Hematopoiesis: progenitors and their genetic program. Curr. Biol. 1998; 8: R727–R730
  • Dzierzak E., Medvinsky A., de Bruijn M. Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol. Today 1998; 19: 228–236
  • Keller G., Lacaud G., Robertson S. Development of the hematopoietic system in the mouse. Exp. Hematol. 1999; 27: 777–787
  • Tavian M., Coulombel L., Luton D., Clemente H.S., Dieterlen-Liévre F., Péault B. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 1996; 87: 67–72
  • Tavian M., Hallais M.-F., Péault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 1999; 126: 793–803
  • Labastie M.-C., Cortes F., Romeo P.-H., Dulac C., Peault B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 1998; 92: 3624–3635
  • Cortüs F., Deschaseaux F., Uchida N., Labastie M.-C., Friera A.M., He D., Charbord P., Péault B. HCA, an immunoglobulin-like adhesion molecule present on the earliest human hematopoietic precursor cells, is also expressed by stromal cells in blood-forming tissues. Blood 1999; 93: 826–837
  • Tsai F.Y., Keller G., Kuo F.C., Weiss M., Chen J., Rosenblatt M., Alt F.W., Orkin S.H. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371: 221–226
  • Robb L., Elwood N.J., Elefanty A.G., Köntgen F., Li R., Barnett L.D., Begley C.G. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 1996; 15: 4123–4129
  • Porcher C., Swat W., Rockwell K., Fujiwara Y., Alt F.W., Orkin S.H. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 1996; 86: 47–57
  • Shalaby F., Ho J., Stanford W.L., Fischer K.D., Schuh A.C., Schwartz L., Bemstein A., Rossant J. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89: 981–990
  • Baum C.M., Weissman I.L., Tsukamoto A.S., Buckle A.M., Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 1992; 89: 2804–2808
  • Young J.C., Lin K., Hansteen G., Travis M., Murray L.J., Jaing L., Scollay R., Hill B.L. CD34+ cells from mobilized peripheral blood retain fetal bone marrow repopulating capacity within the Thy-1+ subset followingcell division ex vivo. Exp. Hematol. 1999; 27: 994–1003
  • Simmons P. J.J-P.L., Zannettino A.C.W. Adhesion molecules in haemopoiesis. Baill. Clin. Haemat. 1997; 10: 485–505
  • Udomsakdi C., Lansdorp P.M., Hogge D.E., Reid D.S., Eaves A.C., Eaves C.J. Characterization of primitive hematopoietic cells in normal human peripheral blood. Blood 1992; 80: 2513–2521
  • Andrews R.G., Singer J.W., Bernstein I.D. Precursors of colony forming cells in humans can be distinguished from colony forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J. Exp. Med. 1989; 169: 1721–1731
  • Terstappen L. W. M. M., Huang S., Safford M., Lansdorp P.M., Loken M.R. Sequential generations of hematopoietic colonies derived from single non-lineage committed CD34+ CD38 progenitor cells. Blood 1991; 77: 1218–1227
  • Donnelly D.S., Zetterman D., Sharkis S., Krause D.S. Functional activity of murine CD34+ and CD34 hematopoietic stem cell populations. Exp. Hematol. 1999; 27: 788–796
  • Morel F., Galy A., Chen B., Szilvassy S.J. Equal distribution of competitive long-term repopulating stem cells in the CD34+ and CD34− fractions of Thy-1low Linflow Sca-1+ bone marrow cells. Exp. Hematol. 1998; 26: 440–448
  • Zanjani E.D., Almeida-Porada G., Livingston A.G., Flake A.W., Ogawa M. Human bone marrow CD34− cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp. Hematol. 1998; 26: 353–360
  • Osawa M., Hanada K., Hamada H., Nakauchi H. Long-term lymphogematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273: 242–245
  • Moore T., Huang S., Terstappen L.W., Bennett M., Kumar V. Expression of CD43 on murine and human pluripotent hematopoietic stem cells. J. Immunol. 1994; 153: 4978–4987
  • Fackler M.J., Krause D.S., Smith O.M., Civin C.I., May W.S. Full-length but not truncated CD34 inhibits hematopoietic cell differentiation of M1 cells. Blood 1995; 85: 3040–3047
  • Healy L., May G., Gale K., Grosveld F., Greaves M., Enver T. The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc. Natl. Acad. Sci. USA 1995; 92: 12240–12244
  • Coombe D.R., Watt S.M., Parish C.R. Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells in stromal cell elements via recognition of stromal heparan sulfate. Blood 1994; 84: 739–752
  • Frenette P.S., Mayadas T.N., Rayburn H., Hynes R.O., Wager D.D. Susceptibility to infection and altered hematopoiesis in mice deficient in P- and E-selectins. Cell 1996; 84: 563–574
  • Frenette P.S., Subbarao S., Mazo I.B., von Andrian U.H., Wagner D.D. Endothelial selectins and vascular cell ahdesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl. Acad. Sci. USA 1998; 95: 14423–14428
  • Steen R., Tjonnefjord G.E., Gaudernack G., Brinch L., Egeland T. Differences in the distribution of CD34 epitopes on normal haemopoietic progenitor cells and leukaemic blast cells. Brit. J. Haemat. 1996; 94: 579–605
  • Suzuki A., Adnrew D.P., Gonzalo J.-A., Fukumoto M., Spellberg J., Hashiyar M., Takimoto H., Gerwin N., Webb I., Molineux G., Amakawa R., Tada Y., Wakeham A., Brown J., McNiece I., Ley K., Butcher B.C., Suda T., Gutierrez-Ramos J.-C., Mak T.W. CD34-deficient mice have reduced eosinophil accumulation after allergen exposure and show a novel crossreactive 90-kD protein. Blood 1996; 87: 3550–3562

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.