64
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Different p16INK4a and p14ARF Expression Patterns in Acute Myeloid Leukaemia and Normal Blood Leukocytes

, , , , , , , & show all
Pages 1077-1087 | Published online: 01 Jul 2009

References

  • Duro D., Bernard O., Delia Valle V., et al. A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 1995; 11: 21–29
  • Quelle D. E., Zindy F., Ashmun R. A., Sherr C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993–1000
  • Chin L., Pomerantz J., DePinho R. A. The INK4a/ARF tumor suppressor: one gene—two products—two pathways. Trends Biochem Sci 1998; 23: 291–296
  • Liggett W. H., Jr., Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998; 16: 1197–1206
  • Kamb A. Cell-cycle regulators and cancer. Trends Genet 1995; 11: 136–140
  • Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330
  • Kamijo T., Weber J. D., Zambetti G., et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292–8297
  • Tao W., Levine A. J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci US A 1999; 96: 6937–6941
  • Lohrum M. A., Ashcroft M., Kubbutat M. H., Vousden K. H. Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2000; 2: 179–181
  • Weber J. D., Kuo M. L., Bothner B., et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 2000; 20: 2517–2528
  • Quesnel B., Preudhomme C., Philippe N., et al. p16 gene homozygous deletions in acute lymphoblastic leukemia. Blood 1995; 85: 657–663
  • Sill H., Goldman J. M., Cross N. C. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 1995; 85: 2013–2016
  • Hayette S., Thomas X., Bertrand Y., et al. Molecular analysis of cyclin-dependent kinase inhibitors in human leukemias. Leukemia 1997; 11: 1696–1699
  • Hirai H., Ogawa S., Hangaishi A., et al. Recent progress in molecular mechanisms of leukemogenesis: the cyclin-dependent kinase 4-inhibitor gene in human leukemias. Leukemia 1997; 11(Suppl 3)358–360
  • Herman J. G., Merlo A., Mao L., et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55: 4525–4530
  • Gardie B., Cayuela J. M., Martini S., Sigaux F. Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood 1998; 91: 1016–1020
  • Jamal R., Thomas N. S., Gale R. E., Linch D. C. Variable expression of p16 protein in patients with acute myeloid leukemia without gross rearrangements at the DNA level. Leukemia 1996; 10: 629–636
  • Drexler H. G. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998; 12: 845–859
  • Herman J. G., Civin C. I., Issa J. P., et al. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997; 57: 837–841
  • Issa J. P., Baylin S. B., Herman J. G. DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 1997; 11(Suppl 1)S7–11
  • Dodge J. E., List A. F., Futscher B. W. Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. Int J Cancer 1998; 78: 561–567
  • Taniguchi T., Chikatsu N., Takahashi S., et al. Expression of p16INK4A and p14ARF in hematological malignancies. Leukemia 1999; 13: 1760–1769
  • Colotta F., Peri G., Villa A., Mantovani A. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. I. Effectors belong to the monocyte-macrophage lineage. J Immunol 1984; 132: 936–944
  • Uguccioni M., D'Apuzzo M. Loetscher, et al. Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol 1995; 25: 64–68
  • Zhang Y., Xiong Y., Yarbrough W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734
  • Vonlanthen S., Heighway J., Tschan M. P., et al. Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene 1998; 17: 2779–2785
  • Becker-Andre M., Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res 1989; 17: 9437–9446
  • Schwaller J., Pabst T., Bickel M., et al. Comparative detection and quantitation of human CDK inhibitor mRNA expression of p15INK4B, p16INK4A, p16beta, p18INK4C, p19INK4D, p21WAF1, p27KIP1 and p57KIP2 by RT-PCR using a polycompetitive internal standard. Br J Haematol 1997; 99: 896–900
  • Pabst T., Peters U. R., Tinguely M., et al. Divergent Expression of Cyclin-Dependent Kinase Inhibitors (CKI) and p14ARF/p16β in Non-Hodgkin's Lymphomas and Chronic Lymphocytic Leukemia. Leuk Lymphoma 2000; 37: 639–648
  • Tschan M. P., Peters U. R., Cajot J. F., et al. The cyclin-dependent kinase inhibitors p18INK4c and p19INK4d are highly expressed in CD34+ progenitor and acute myeloid leukaemic cells but not in normal differentiated myeloid cells. Br J Haematol 1999; 106: 644–651
  • Larison K. D., BreMiller R., Wells K. S., et al. Use of a new fluorogenic phosphatase substrate in immunohisto-chemical applications. J Histochem Cytochem 1995; 43: 77–83
  • Stone S., Jiang P., Dayananth P., et al. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 1995; 55: 2988–2994
  • Haidar M. A., Cao X. B., Manshouri T., et al. p16INK4A and p15INK4B gene deletions in primary leukemias. Blood 1995; 86: 311–315
  • Nakamaki T., Kawamata N., Schwaller J., et al. Structural integrity of the cyclin-dependent kinase inhibitor genes, p15, p16 and p18 in myeloid leukaemias. Br J Haematol 1995; 91: 139–149
  • Haber D. A. Splicing into senescence: the curious case of p16 and p19ARF. Cell 1997; 91: 555–558
  • Kamijo T., Zindy F., Roussel M. F., et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659
  • Olsson I., Bergh G., Ehinger M., Gullberg U. Cell differentiation in acute myeloid leukemia. Eur J Haematol 1996; 57: 1–16
  • Hayashi K., Metzger R., Salonga D., et al. High frequency of simultaneous loss of p16 and p16beta gene expression in squamous cell carcinoma of the esophagus but not in adenocarcinoma of the esophagus or stomach. Oncogene 1997; 15: 1481–1488
  • Van Zee K. J., Calvano J. E., Bisogna M. Hypomethylation and increased gene expression of p16INK4a in primary and metastatic breast carcinoma as compared to normal breast tissue. Oncogene 1998; 16: 2723–2727
  • Parry D., Bates S., Mann D. J., Peters G. Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. Embo J 1995; 14: 503–511
  • Shapiro G. I., Edwards CD., Kobzik L., et al. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res 1995; 55: 505–509
  • Yeager T., Stadler W., Belair C., et al. Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res 1995; 55: 493–497
  • Paggi M. G., de Fabritiis P., Bonetto F., et al. The retinoblastoma gene product in acute myeloid leukemia: a possible involvement in promyelocytic leukemia. Cancer Res 1995; 55: 4552–4556
  • Delia Valle V., Duro D., Bernard O., Larsen C. J. The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative beta transcript of the p16INK4a/MTS1 gene. Oncogene 1997; 15: 2475–2481
  • Gazzeri S., Delia Valle V., Chaussade L., et al. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 1998; 58: 3926–3931
  • Flaman J. M., Frebourg T., Moreau V., et al. A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 1995; 92: 3963–3967
  • Seliger B., Papadileris S., Vogel D., et al. Analysis of the p53 and MDM-2 gene in acute myeloid leukemia. Eur J Haematol 1996; 57: 230–240
  • Nakano Y., Naoe T., Kiyoi H., et al. Prognostic value of p53 gene mutations and the product expression in de novo acute myeloid leukemia. Eur J Haematol 2000; 65: 23–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.