83
Views
9
CrossRef citations to date
0
Altmetric
Original Article

LMP1-Induced Downregulation of CD99 Molecules in Hodgkin and Reed-Sternberg Cells

, , &
Pages 587-594 | Accepted 30 Dec 2000, Published online: 01 Jul 2009

References

  • Hodgkin T. On some morbid experiences of the absorbent glands and spleen. Med Chir Trans 1832; 17: 68–97
  • Wilks S. Cases of enlargement of the lymphatic glands and spleen or Hodgkin's disease. Guys Hosp Res 1865; 11: 56–67
  • Reed D. On the pathological changes in Hodgkin's disease, with special reference to its relationship to tuberculosis. J Hopkins Hosp Rep 1902; 10: 133–196
  • Sternberg C. Über eine eigenartige unter dem Bilde der Pseudoleukämie verlaufende Tuberkulose des lymphatischen Apparates. Z Heilkunde 1898; 19: 21–90
  • Baumforth K. R., Young L. S., Flavell K. J., Constandinou C., Murray P. G. The Epstein-Barr virus and its association with human cancers. Mol Pathol 1999; 52: 307–322
  • Li D., Oda K., Mikata A., Yumoto N. Epstein-Barr virus genomes in Hodgkin's disease and non-Hodgkin's lymphomas. Pathol Int 1995; 45: 735–741
  • Pallesen G., Hamilton-Dutoit S. J., Rowe M., Young L. S. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet 1991; 337: 320–322
  • Kim S. H., Choi E. Y., Shin Y. K., Kim T. J., Chung D. H., Chang S. I., Kim N. K., Park S. H. Generation of cells with Hodgkin's and Reed-Sternberg phenotype through downregulation of CD99 Mic2. Blood 1998; 92: 4287–4295
  • Kim S. H., Shin Y. K., Lee I-S, Bae Y. M., Sohn H. W., Suh Y. H., Ree H. J., Rowe M., Park S. H. Viral latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin's and Reed-Sternberg phenotype. Blood 2000; 95: 294–300
  • Sohn H. W., Shin Y. K., Lee I-S., Bae Y. M., Suh Y. H., Kim M. K., Kim T. J., Jung K. C., Park W. S., Park C. S., Chung D. H., Ahn K., Kim I. S., Ko Y. H., Bang Y. J., Kim C. W., Park S. H. CD99 regulates the transport of MHC class I molecules from the Golgi complex to the cell surface. J. Immunol. 2001; 166: 787–794
  • Drexler H. G. Recent results on the biology of Hodgkin and Reed-Sternberg cells. I. Biopsy material. Leuk Lymphoma 1992; 8: 283–313
  • Kadin M. E. Pathology of Hodgkin's disease. Curr Opin Oncol 1994; 6: 456–463
  • Haluska F. G., Brufsky A. M., Canellos G. P. The cellular biology of the Reed-Sternberg cell. Blood 1994; 84: 1005–1019
  • Rajewsky K., Küppers R. The origin of Hodgkin and reed/sternberg cells in Hodgkin's disease. Annu Rev Immunol 1998; 16: 471–493
  • Cossman J., Messineo C., Bagg A. Reed-sternberg cell: Survival in a hostile sea. Lab Invest 1998; 78: 2229–2235
  • Drexler H. G., Minowada J. Hodgkin's disease derived cell lines: a review. Hum Cell 1992; 5: 42–53
  • Gelin C., Aubrit F., Phalipon A., Raynal B., Cole S., Kaczorek M., Bernard A. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J 1989; 8: 3253–3259
  • Rosenkranz A. R., Majdic O., Stockl J., Pickl W., Stockinger H., Knapp W. Induction of neutrophil homotypic adhesion via sialophorin (CD43), a surface sialoglycoprotein restricted to haemopoietic cells. Immunology 1993; 80: 431–438
  • Majdic O., Stockl J., Pickl W. F., Bohuslav J., Strobl H., Scheinecker C., Stockinger H., Knapp W. Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood 1994; 83: 1226–1234
  • Goodfellow P. J., Darling S. M., Thomas N. S., Goodfellow P. N. A pseudoautosomal gene in man. Science 1986; 234: 740–743
  • Perlman E. J., Dickman P. S., Askin F. B., Grier H. E., Miser J. S., Link M. P. Ewing's sarcoma–routine diagnostic utilization of MIC2 analysis: a Pediatric Oncology Group/Children's Cancer Group Intergroup Study. Hum Pathol 1994; 25: 304–307
  • Goodfellow P. N. Expression of the 12E7 antigen is controlled independently by genes on the human x and Y chromosomes. Differentiation 1983; 23: S35–S39, Suppl
  • Latron F., Blanchard D., Cartron J. P. Immunochemical characterization of the human blood cell membrane glycoprotein recognized by the monoclonal antibody 12E7. Biochem J 1987; 247: 757–764
  • Dworzak M. N., Fritsch G., Buchinger P., Fleischer C., Printz D., Zellner A., Schollhammer A., Steiner G., Ambros P. F., Gadner H. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood 1994; 83: 415–425
  • Stevenson A. J., Chatten J., Bertoni F., Miettinen M. CD99 (p30/32MIC2 neuroectodermal/Ewing's sarcoma antigen as an immunohistochemical marker. Appl Immunohistochem 1994; 2: 231–240
  • Dworzak M N, Fritsch G, Buchinger P, Fleischer C, Printz D, Zellner A, Schollhammer A, Steiner G, Ambros P F, Gadner H. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood Jan 15, 1994; 83(2)415–425
  • Choi E. Y., Park W. S., Jung K. C., Kim S. H., Kim Y. Y., Lee W. J., Park S. H. Engagement of CD99 induces upregulation of TCR and MHC class I and II molecules on the surface of human thymocytes. J Immunol 1998; 161: 749–754
  • Hahn J. H., Kim M. K., Choi E. Y., Kim S. H., Sohn H. W., Ham D. I., Chung D. H., Kim T. J., Lee W. J., Park C. K., Ree H. J., Park S. H. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol 1997; 159: 2250–2258
  • Bernard G., Breittmayer J. P., De Matteis M., Trampont P., Hofman P., Senik A., Bernard A. Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 1997; 158: 2543–2550
  • Sohn H. W., Choi E. Y., Kim S. H., Lee I. S., Chung D. H., Sung U. A., Hwang D. H., Cho S. S., Jun B. H., Jang J. J., Chi J. G., Park S. H. Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. Am J Pathol 1998; 153: 1937–1945
  • Waclavicek M., Majdic O., Stulnig T., Berger M., Sunder-Plassmann R., Zlabinger G. J., Baumruker T., Stockl J, Ebner C., Knapp W., Pickl W. F. CD99 engagement on human peripheral blood T cells results in TCR/CD3-dependent cellular activation and allows for Th1-restricted cytokine production. J Immunol 1998; 161: 4671–4678
  • Pinkus G. S., Thomas P., Said J. W. Leu-MI– a marker for Reed-sternberg cells in Hodgkin's disease. An immunoperoxidase study of paraffin-embedded tissues. Am J Pathol 1985; 119: 244–252
  • Chittal S. M., Caveriviere P., Schwarting R., Gerdes J., Al Saati T., Rigal-Huguet F., Stein H., Delsol G. Monoclonal antibodies in the diagnosis of Hodgkin's disease. The search for a rational panel. Am J Surg Pathol 1988; 12: 9–21
  • Agnarsson B. A., Kadin M. E. The immunophenotype of Reed-sternberg cells. A study of 50 cases of Hodgkin's disease using fixed frozen tissues. Cancer 1989; 63: 2083–2087
  • Gorgan T. M. Hogkin's disease. Surgical Pathology of the lymph nodes and related organs, vol 16, E.S. Jaffe. Saunders, Philadelphia, PA 1995; 133
  • Grass H. J., Pinto A., Duyster J., Poppema S., Herrmann F. Hodgkin's disease: a tumor with disturbed immunological pathways. Immunol Today 1997; 18: 156–163
  • Floettmann J. E., Ward K., Rickinson A. B., Rowe M. Cytostatic effect of Epstein-Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology 1996; 223: 29–40
  • Knecht H., McQuain C., Martin J., Rothenberger S., Drexler H. G., Berger C., Bachmann E., Kittler E. L., Odermatt B. F., Quesenberry P. J. Expression of the LMP1 oncoprotein in the EBV negative Hodgkin's disease cell line L-428 is associated with Reed-Sternberg cell morphology. Oncogene 1996; 13: 947–953
  • Cossman J., Annunziata C. M., Barash S., Staudt L., Dillon P., He W. W., Ricciardi-Castagnoli P., Rosen C. A., Carter K. C. Reed-Sternberg cell genome expression supports a B-cell lineage. Blood 1999; 94: 411–416
  • http://www.hodgkins.georgetown.edu/
  • Mack T. M., Cozen W., Shibata D. K., Weiss L. M., Nathwani B. N., Hernandez A. M., Taylor C. R., Hamilton A. S., Deapen D. M., Rappaport E. B. Concordance for Hodgkin's disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. New Eng J Med 1995; 332: 413–418
  • Gokhale D. A., Evans D. G., Crowther D., Woll P., Watson C. J., Dearden S. P., Fergusson W. D., Stevens R. F., Taylor G. M. Molecular genetic analysis of a family with a history of Hodgkin's disease and dyschondrosteosis. Leukemia 1995; 9: 826–833
  • Horwitz M., Wiernik P. H. Pseudoautosomal linkage of Hodgkin disease. Am J Hum Genet 1999; 65: 1413–1422
  • Kieff E. Epstein-Barr virus and its replication. Field of virology. 3rd ed. Vol 2, BN Fields, DM Knipe, PM Howley. Lippincott-Raven, Philadelphia 1996; 2343
  • Kaye K. M., Izumi K. M., Mosialos G., Kieff E. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol 1995; 69: 675–683
  • Pokrovskaja K., Trivedi P., Klein G., Szekely L. Epstein-Barr virus-encoded LMP-1 protein upregulates the pNDCF group of nucleoskeleton-cytoskeleton-associated proteins. J Gen Virol 1997; 78: 2031–2040
  • Brodeur S. R., Cheng G., Baltimore D., Thorley-Lawson D. A. Localization of the major NF-kappaB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs. J Biol Chem 1997; 272: 19777–19784
  • Miller W. E., Mosialos G., Kieff E., Raab-Traub N. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J Virol 1997; 71: 586–594
  • Izumi K. M., Kieff E. D. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA 1997; 94: 12592–12597
  • Devergne O., Hatzivassiliou E., Izumi K. M., Kaye K. M., Kleijnen M. F., Kieff E., Mosialos G. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 1996; 16: 7098–7108
  • Sandberg M., Hammerschmidt W., Sugden B. Characterization of LMP-1′s association with TRAF1, TRAF2, and TRAF3. J Virol 1997; 71: 4649–4656
  • Kieser A., Kilger E., Gires O., Ueffing M., Kolch W., Hammerschmidt W. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 1997; 16: 6478–6485
  • Eliopoulos A. G., Young L. S. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1(LMP1). Oncogene 1998; 16: 1731–1742
  • Gires O., Kohlhuber F., Kilger E., Baumann M., Kieser A., Kaiser C., Zeidler R., Scheffer B., Ueffing M., Hammerschmidt W. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 1999; 18: 3064–3073
  • Deacon E. M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A. B., Young L. S. Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 1993; 177: 339–349
  • Herbst H., Dallenbach F., Hummel M., Niedobitek G., Pileri S., Muller-Lantzsch N., Stein H. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Sci U S A 1991; 88: 4766–4770
  • Pallesen G., Hamilton-Dutoit S. J., Rowe M., Young L. S. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet 1991; 337: 320–322
  • Wood K. M., Roff M., Hay R. T. Defective IkBα in Hodgkin cell lines with constitutively active NF-kB. Oncogene 1998; 16: 2131–2139
  • Krappmann D., Emmerich F., Kordes U., Scharschmidt E., Dörken B., Scheidereit C. Molecular mechanisms of constitutive NF-kB/Rel activation in Hogdkin/Reed-Sternberg cells. Oncogene 1999; 18: 943–953
  • Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J 1997; 16: 6131–6140
  • Lee I. S., Kim M. K., Choi E. Y., Mehl A., Jung K. C., Gil M. C., Rowe M., Park S. H. CD99 expression is positively regulated by Spl, and is negatively regulated by Epstein-Barr virus Latent Membrane Protein1 (EBV LMP1) via NF-kappaB, In press
  • Knecht H., Berger C., McQuain C., Rothenberger S., Bachmann E., Martin J., Esslinger C., Drexler H. G., Cai Y. C., Quesenberry P. J., Odermatt B. F. Latent membrane protein 1 associated signaling pathways are important in tumor cells of Epstein-Barr virus negative Hodgkin's disease. Oncogene 1999; 18: 7161–7167

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.