521
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent

, , , , , , & show all
Pages 657-665 | Received 23 Jun 2010, Accepted 11 Oct 2010, Published online: 23 Nov 2010

References

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 5, 505–515.
  • Avgoustakis K. (2004). Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv, 1, 321–333.
  • Chen Z, Yu D, Wang S, Zhang N, Ma C, Lu Z. (2009). Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent. Nanoscale Res Lett, 4, 618–626.
  • Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC. (2007). Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 28, 869–876.
  • de Marco G, Bogdanov A, Marecos E, Moore A, Simonova M, Weissleder R. (1998). MR imaging of gene delivery to the central nervous system with an artificial vector. Radiology, 208, 65–71.
  • Doiron AL, Chu K, Ali A, Brannon-Peppas L. (2008). Preparation and initial characterization of biodegradable particles containing gadolinium-DTPA contrast agent for enhanced MRI. Proc Natl Acad Sci USA, 105, 17232–17237.
  • Doiron AL, Homan KA, Emelianov S, Brannon-Peppas L. (2009). Poly(lactic-co-glycolic) acid as a carrier for imaging contrast agents. Pharm Res, 26, 674–682.
  • Duarte MG, Gil MH, Peters JA, Colet JM, Elst LV, Muller RN, Geraldes CF. (2001). Synthesis, characterization, and relaxivity of two linear Gd(DTPA)-polymer conjugates. Bioconjug Chem, 12, 170–177.
  • Favier A, D’Agosto F, Charreyre MT, Pichot C. (2004). Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights. Polymer, 45, 7821–7830.
  • Gindy ME, Prud’homme RK. (2009). Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv, 6, 865–878.
  • Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou CY. (2004). Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B, 108, 15608–15611.
  • Liu M, Li H, Luo G, Liu Q, Wang Y. (2008). Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res, 31, 547–554.
  • Liu X, Xu YK, Huang QL. (2004). [Preparation of a novel targeted MR contrast agent Gd-DTPA-streptavidin and exploration of its reaction conditions]. Di Yi Jun Yi Da Xue Xue Bao, 24, 15–17.
  • Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Kopelman RR, Philbert M, Weissleder R, Rehemtulla A, Ross BD. (2003). A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging, 2, 324–332.
  • Moghimi SM, Davis SS. (1994). Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. Crit Rev Ther Drug Carrier Syst, 11, 31–59.
  • Moghimi SM, Hunter AC, Murray JC. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 53, 283–318.
  • Moghimi SM, Porter CJ, Muir IS, Illum L, Davis SS. (1991). Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun, 177, 861–866.
  • Nakamura E, Makino K, Okano T, Yamamoto T, Yokoyama M. (2006). A polymeric micelle MRI contrast agent with changeable relaxivity. J Control Release, 114, 325–333.
  • Oja CD, Semple SC, Chonn A, Cullis PR. (1996). Influence of dose on liposome clearance: critical role of blood proteins. Biochim Biophys Acta, 1281, 31–37.
  • Park JA, Kim HK, Kim JH, Jeong SW, Jung JC, Lee GH, Lee J, Chang Y, Kim TJ. (2010). Gold nanoparticles functionalized by gadolinium-DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg Med Chem Lett, 20, 2287–2291.
  • Paschkunova-Martic I, Kremser C, Mistlberger K, Shcherbakova N, Dietrich H, Talasz H, Zou Y, Hugl B, Galanski M, Sölder E, Pfaller K, Höliner I, Buchberger W, Keppler B, Debbage P. (2005). Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol, 123, 283–301.
  • Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR. (2008). Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine, 3, 201–210.
  • Tessmar JK, Mikos AG, Göpferich A. (2002). Amine-reactive biodegradable diblock copolymers. Biomacromolecules, 3, 194–200.
  • Turner JL, Pan DPJ, Plummer R, Chen ZY, Whittaker AK, Wooley KL. (2005). Synthesis of gadolinium-labeled shell-crosslinked nanoparticles for magnetic resonance imaging applications. Adv Funct Mater, 15, 1248–1254.
  • Unger E, Shen DK, Wu GL, Fritz T. (1991). Liposomes as MR contrast agents: pros and cons. Magn Reson Med, 22, 304–308; discussion 313.
  • Wang S, Jarrett BR, Kauzlarich SM, Louie AY. (2007). Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc, 129, 3848–3856.
  • Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. (2003). Tissue-specific MR contrast agents. Eur J Radiol, 46, 33–44.
  • Xu ZP, Kurniawan ND, Bartlett PF, Lu GQ. (2007). Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. Chemistry, 13, 2824–2830.
  • Zou W, Liu C, Chen Z, Zhang N. (2009). Studies on bioadhesive PLGA nanoparticles: A promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm, 370, 187–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.