796
Views
36
CrossRef citations to date
0
Altmetric
Review Article

Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future

, , , &
Pages 97-113 | Received 29 Jan 2011, Accepted 20 Jul 2011, Published online: 25 Oct 2011

References

  • Aggarwal BB, Harikumar KB. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 41, 40–59.
  • Agyare EK, Curran GL, Ramakrishnan M, Yu CC, Poduslo JF, Kandimalla KK. (2008). Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res, 25, 2674–2684.
  • Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, Ahuja A, Akbar M. (2010). Strategy for effective brain drug delivery. Eur J Pharm Sci, 40, 385–403.
  • Alvarez A, Alarcón R, Opazo C, Campos EO, Muñoz FJ, Calderón FH, Dajas F, Gentry MK, Doctor BP, De Mello FG, Inestrosa NC. (1998). Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci, 18, 3213–3223.
  • Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. (1998). Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul, 15, 67–74.
  • Amtul Z, Wang L, Westaway D, Rozmahel RF. (2010). Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience, 169, 781–786.
  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB. (2010). Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol, 79, 330–338.
  • Andrews DF. (1991). Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 337, 1304–1308.
  • Anekonda TS. (2006). Resveratrol—a boon for treating Alzheimer’s disease?. Brain Res Rev, 52, 316–326.
  • Banks WA. (2008). The Blood Brain Barrier. . In: Tsuneya, I, Howard, EG. (eds.), Neuroimmune Pharmacology. Springer, pp. 21–38.
  • Barbu E, Molnàr E, Tsibouklis J, Górecki DC. (2009). The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv, 6, 553–565.
  • Barrenetxe J, Delagrange P, Martínez JA. (2004). Physiological and metabolic functions of melatonin. J Physiol Biochem, 60, 61–72.
  • Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL. (2004). Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann N Y Acad Sci, 1012, 224–236.
  • Bastus NG, Kogan MJ, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF. (2007). Gold nanoparticles for selective and remote heating of beta-amyloid protein aggregates. Mater Sci Eng: C, 27, 1236–40.
  • BAUA. Nanotechnology: Health and environmental risks of nanoparticles - Research strategy: Bundesanstalt fur arbeitsschutz und arbeitmedizin (Baua), Germany, 2006.
  • Baum L, Ng A. (2004). Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis, 6, 367–77; discussion 443.
  • Bilati U, Allémann E, Doelker E. (2005). Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci, 24, 67–75.
  • Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE. (2009). Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev, CD001191.
  • Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA. (2002). Iron: a pathological mediator of Alzheimer disease? Dev Neurosci, 24, 184–187.
  • Blake DR, Winyard P, Lunec J, Williams A, Good PA, Crewes SJ, Gutteridge JM, Rowley D, Halliwell B, Cornish A. (1985). Cerebral and ocular toxicity induced by desferrioxamine. Q J Med, 56, 345–355.
  • Bondy SC, Guo-Ross SX, Truong AT. (1998). Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res, 799, 91–96.
  • Borm PJ, Kreyling W. (2004). Toxicological hazards of inhaled nanoparticles–potential implications for drug delivery. J Nanosci Nanotechnol, 4, 521–531.
  • Boutin JA, Audinot V, Ferry G, Delagrange P. (2005). Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci, 26, 412–419.
  • Brem H, Walter KA, Tamargo RJ, Olivi A, Langer R. (1994). Drug delivery to the brain. In: Domb AJ, ed. Polymeric Site-Specific Pharmacotherapy. New York: John Wiley & Sons, 117–139.
  • Butt AM, Jones HC, Abbott NJ. (1990). Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol (Lond), 429, 47–62.
  • Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC. (2001). BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci, 4, 233–234.
  • Casadesus G, Smith MA, Zhu X, Aliev G, Cash AD, Honda K, Petersen RB, Perry G. (2004). Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. J Alzheimers Dis, 6, 165–169.
  • Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X. (2007). Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res, 32, 1640–1645.
  • Castelluccio C, Bolwell GP, Gerrish C, Rice-Evans C. (1996). Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant. Biochem J, 316 (Pt 2), 691–694.
  • Chakraborty C, Sarkar B, Hsu CH, Wen ZH, Lin CS, Shieh PC. (2009). Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol, 93, 285–286.
  • Chen D, Xi T, Bai J. (2007). Biological effects induced by nanosilver particles: in vivo study. Biomed Mater, 2, S126–S128.
  • Chen J, Patil S, Seal S, McGinnis JF. (2006). Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol, 1, 142–150.
  • Corrigan OI, Li X. (2009). Quantifying drug release from PLGA nanoparticulates. Eur J Pharm Sci, 37, 477–485.
  • Coyle J, Kershaw P. (2001). Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease. Biol Psychiatry, 49, 289–299.
  • Craparo EF, Pitarresi G, Bondì ML, Casaletto MP, Licciardi M, Giammona G. (2008). A nanoparticulate drug-delivery system for rivastigmine: physico-chemical and in vitro biological characterization. Macromol Biosci, 8, 247–259.
  • Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, Andrews DF. (1991). Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 337, 1304–1308.
  • Crouch PJ, Barnham KJ, Bush AI, White AR. (2006). Therapeutic treatments for Alzheimer’s disease based on metal bioavailability. Drug News Perspect, 19, 469–474.
  • Crowe A, Morgan EH. (1994). Effects of chelators on iron uptake and release by the brain in the rat. Neurochem Res, 19, 71–76.
  • Cuajungco MP, Fagét KY, Huang X, Tanzi RE, Bush AI. (2000). Metal chelation as a potential therapy for Alzheimer’s disease. Ann N Y Acad Sci, 920, 292–304.
  • Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ. (2005). Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm, 59, 263–272.
  • Davson H, Segal MB. (1996). Physiology of the CSF and Blood– Brain Barriers. Boca Raton, Florida: CRC Press.
  • Dunne M, Corrigan I, Ramtoola Z. (2000). Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 21, 1659–1668.
  • Epstein FH. (1997). Mechanisms of disease− melatonin in humans. N Engl J Med, 336, 186–195.
  • Faraji AH, Wipf P. (2009). Nanoparticles in cellular drug delivery. Bioorg Med Chem, 17, 2950–2962.
  • Farlow MR, Miller ML, Pejovic V. (2008). Treatment options in Alzheimer’s disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord, 25, 408–422.
  • Farlow MR. (2001). Pharmacokinetic profiles of current therapies for Alzheimer’s disease: implications for switching to galantamine. Clin Ther, 23 Suppl A, A13–A24.
  • Feng S, Huang G. (2001). Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J Control Release, 71, 53–69.
  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M; Alzheimer’s Disease International. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366, 2112–2117.
  • Florence AT, Hillery AM, Hussain N, Jani PU. (1995). Factors affecting the oral uptake and translocation of polystyrene nanoparticles: histological and analytical evidence. J Drug Target, 3, 65–70.
  • Fonseca C, Simões S, Gaspar R. (2002). Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release, 83, 273–286.
  • Francis PT, Palmer AM, Snape M, Wilcock GK. (1999). The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatr, 66, 137–147.
  • Gabor F, Ertl B, Wirth M, Mallinger R. (1999). Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics. J Microencapsul, 16, 1–12.
  • Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, Rong Z, Chen H, Jiang X. (2007). Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release, 121, 156–167.
  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem, 102, 1095–1104.
  • Gèze A, Putaux JL, Choisnard L, Jéhan P, Wouessidjewe D. (2004). Long-term shelf stability of amphiphilic beta-cyclodextrin nanosphere suspensions monitored by dynamic light scattering and cryo-transmission electron microscopy. J Microencapsul, 21, 607–613.
  • Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release, 57, 171–185.
  • Gozes I, Divinsky I, Pilzer I, Fridkin M, Brenneman DE, Spier AD. (2003). From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J Mol Neurosci, 20, 315–322.
  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. (1999). Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res, 16, 1564–1569.
  • Gutteridge JM. (1994). Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci, 738, 201–213.
  • Halliwell B. (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 18, 685–716.
  • Hardeland R, Pandi-Perumal SR, Cardinali DP. (2006). Melatonin. Int J Biochem Cell Biol, 38, 313–316.
  • Härtig W, Paulke BR, Varga C, Seeger J, Harkany T, Kacza J. (2003). Electron microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal injection in mouse: implications for targeting beta-amyloid in Alzheimer’s disease. Neurosci Lett, 338, 174–176.
  • Hider RC, Epemolu O, Singh S, Porter JB. (1994). Iron chelator design. Adv Exp Med Biol, 356, 343–349.
  • Hider RC, Hall AD. (1991). Clinically useful chelators of tripositive elements. Prog Med Chem, 28, 41–173.
  • Huang CY, Lee YD. (2006). Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vitro degradation. Int J Pharm, 325, 132–139.
  • Jang JH, Surh YJ. (2003). Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med, 34, 1100–1110.
  • Joshi SA, Chavhan SS, Sawant KK. (2010). Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm, 76, 189–199.
  • Kanwar JR, Mahidhara G, Kanwar RK. (2009). Recent Advances in Nanoneurology for Drug Delivery to the Brain. Curr Nanosci, 5, 441–448.
  • Kashiwada S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect, 114, 1697–1702.
  • Khumsupan P, Ramirez R, Khumsupan D, Narayanaswami V. (2011). Apolipoprotein E LDL receptor-binding domain-containing high-density lipoprotein: a nanovehicle to transport curcumin, an antioxidant and anti-amyloid bioflavonoid. Biochim Biophys Acta, 1808, 352–359.
  • Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH. (2006). Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci, 89, 338–347.
  • Klein WL, Krafft GA, Finch CE. (2001). Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci, 24, 219–224.
  • Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF. (2006). Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett, 6, 110–115.
  • Kong S, Liochev S, Fridovich I. (1992). Aluminum(III) facilitates the oxidation of NADH by the superoxide anion. Free Radic Biol Med, 13, 79–81.
  • Koo OM, Rubinstein I, Onyuksel H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine, 1, 193–212.
  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A. (2007). Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol, 2, 108–113.
  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin, RN. (1997). Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant coated nanoparticles. J Control Release, 49, 81–87.
  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R. (2002). Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target, 10, 317–325.
  • Kreuter J. (2004). Nanoparticles as drug delivery system. In: Nalwa, HS. ed. Encyclopedia of nanoscience and nanotechnology, New York: American Scientific Publisher, 161–80.
  • Kreuter J. (2001). Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev, 47, 65–81.
  • Kruck TP, Fisher EA, McLachlan DR. (1993). A predictor for side effects in patients with Alzheimer’s disease treated with deferoxamine mesylate. Clin Pharmacol Ther, 53, 30–37.
  • Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. (2010). Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2, 35–47.
  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W. (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol, 12, 247–256.
  • Lam CW, James JT, McCluskey R, Hunter RL. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci, 77, 126–134.
  • Leaden P, Barrionuevo J, Catalá A. (2002). The protection of long chain polyunsaturated fatty acids by melatonin during nonenzymatic lipid peroxidation of rat liver microsomes. J Pineal Res, 32, 129–134.
  • Lee G, Dallas S, Hong M, Bendayan R. (2001). Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev, 53, 569–596.
  • Lilienfeld S. (2002). Galantamine–a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev, 8, 159–176.
  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci, 21, 8370–8377.
  • Liu G, Bruenger FW, Miller SC, Arif AM. (1998). Molecular structure and biological and pharmacological properties of 3-hydroxy-2-methyl-1-(beta-D-ribofuranosyl or pyranosyl)-4-pyridinone: potential iron overload drugs for oral administration. Bioorg Med Chem Lett, 8, 3077–3080.
  • Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA. (2005). Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochim Biophys Acta, 1741, 246–252.
  • Liu G, Men P, Kenner GH, Miller SC, Bruenger FW. (2004). Acyclonucleoside iron chelators of 1-(2-hydroxyethoxy)methyl-2-alkyl-3-hydroxy-4-pyridinones: potential oral iron chelation therapeutics. Nucleosides Nucleotides Nucleic Acids, 23, 599–611.
  • Liu G, Men P, Kudo W, Perry G, Smith MA. (2009). Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci Lett, 455, 187–190.
  • Liu G, Men P, Perry G, Smith MA. (2009). Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J Nanoneurosci, 1, 42–55.
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. (2004). Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target, 12, 635–641.
  • Lockman PR, Mumper RJ, Khan MA, Allen DD. (2002). Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm, 28, 1–13.
  • Lu J. (2007). Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon, 45, 1599–1605.
  • Lu X, Ji C, Xu H, Li X, Ding H, Ye M, Zhu Z, Ding D, Jiang X, Ding X, Guo X. (2009). Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int J Pharm, 375, 89–96.
  • Lynch SG, Fonseca T, Levine SM. (2000). A multiple course trial of desferrioxamine in chronic progressive multiple sclerosis. Cell Mol Biol (Noisy-le-grand), 46, 865–869.
  • Majzik A, Fülöp L, Csapó E, Bogár F, Martinek T, Penke B, Bíró G, Dékány I. (2010). Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. Colloids Surf B Biointerfaces, 81, 235–241.
  • Marder K. (2002). Donepezil for cognitive impairment in Parkinson’s disease: a randomized controlled trial. Curr Neurol Neurosci Rep, 2, 390–391.
  • Matsubara E, Shoji M, Murakami T, Kawarabayashi T, Abe K. (2003). Alzheimer’s disease and melatonin. Int Congr Ser, 1252, 395–398.
  • Mistrya A, Stolnika S, Illum L. (2009). Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm, 379, 146–157.
  • Mittal G, Carswell H, Brett R, Currie S, Kumar MN. (2011). Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release, 150, 220–228.
  • Mulik R, Mahadik K, Paradkar A. (2009). Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. Eur J Pharm Sci, 37, 395–404.
  • Müller RH, Keck CM. (2004). Drug delivery to the brain–realization by novel drug carriers. J Nanosci Nanotechnol, 4, 471–483.
  • Nabeshima T, Nitta A. (1994). Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med, 174, 241–249.
  • Nash JM. (2001). Alzheimer’s disease. New insights into its cause lead to new drug strategies. Time, 157, 80–1, 85.
  • Neeraj V, Taehong M, Rhul M, Christopher NB, Steven M, Hong D, Ken-Tye Y, Indrajit R. (2010). Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology, 8, 22.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol, 2, 8.
  • Oberdörster G, Oberdörster E, Oberdörster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113, 823–839.
  • Olanow CW. (1992). An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol, 32 Suppl, S2–S9.
  • Ono K, Hasegawa K, Naiki H, Yamada M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res,75, 742–750.
  • Pantarotto D, Briand JP, Prato M, Bianco A. (2004). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb), 7, 16–17.
  • Pardridge WM. (2003). Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv, 3, 90–105, 51.
  • Park K. (2009). Transport across the blood–brain barrier using albumin nanoparticles. J Control Release, 137, 78–86.
  • Pasha S, Gupta K. (2010). Various drug delivery approaches to the central nervous system. Expert Opin Drug Deliv, 7, 113–135.
  • Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. (2008). Progress in drug delivery to the central nervous system by the prodrug approach. Molecules, 13, 1035–1065.
  • Pike CJ, Carroll JC, Rosario ER, Barron AM. (2009). Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol, 30, 239–258.
  • Popovic N, Brundin P. (2006). Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm, 314, 120–126.
  • Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. (2007). Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol, 2, 713–717.
  • Porter JB, Gyparaki M, Burke LC, Huehns ER, Sarpong P, Saez V, Hider RC. (1988). Iron mobilization from hepatocyte monolayer cultures by chelators: the importance of membrane permeability and the iron-binding constant. Blood, 72, 1497–1503.
  • Prasad KN, Hovland AR, Cole WC, Prasad KC, Nahreini P, Edwards-Prasad J, Andreatta CP. (2000). Multiple antioxidants in the prevention and treatment of Alzheimer disease: analysis of biologic rationale. Clin Neuropharmacol, 23, 2–13.
  • Ramassamy C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol, 545, 51–64.
  • Rapoport SI, Ohno K, Fredericks WR, Pettigrew KD. (1978). Regional cerebrovascular permeability to [14C]sucrose after osmotic opening of the blood-brain barrier. Brain Res, 150, 653–657.
  • Razay G, Wilcock GK. (2008). Galantamine in Alzheimer’s disease. Expert Rev Neurother, 8, 9–17.
  • Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. (2011). Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis, 23, 61–77.
  • Reale M, Iarlori C, Gambi F, Feliciani C, Salone A, Toma L, DeLuca G, Salvatore M, Conti P, Gambi D. (2004). Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J Neuroimmunol, 148, 162–171.
  • Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I, Sjögren M, Wallin A, Xilinas M, Gottfries CG. (2001). Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord, 12, 408–414.
  • Reiter RJ, Oh CS, Fujimori O. (1996). Melatonin Its intracellular and genomic actions. Trends Endocrinol Metab, 7, 22–27.
  • Reiter RJ, Tan DX, Burkhardt S. (2002). Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev, 123, 1007–1019.
  • Reiter RJ. (1998). Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol, 56, 359–384. Res Rev, 52, 316–326.
  • Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J. (2008). Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res, 1214, 177–187.
  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci, 25, 8807–8814.
  • Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. (2005). A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res, 2, 131–136.
  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL. (2003). Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol, 60, 1685–1691.
  • Ritchie CW, Bush AI, Masters CL. (2004). Metal-protein attenuating compounds and Alzheimer’s disease. Expert Opin Investig Drugs, 13, 1585–1592.
  • Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. (2011). Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release, 152, 208–231.
  • Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW. (1995). Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res, 705, 125–135.
  • Saraiva AM, Cardoso I, Saraiva MJ, Tauer K, Pereira MC, Coelho MA, Möhwald H, Brezesinski G. (2010). Randomization of amyloid-ß-peptide(1–42) conformation by sulfonated and sulfated nanoparticles reduces aggregation and cytotoxicity. Macromol Biosci, 10, 1152–1163.
  • Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. (2000). In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem, 74, 270–279.
  • Sayre LM, Smith MA, Perry G. (2001). Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem, 8, 721–738.
  • Schaffazick SR, Pohlmann AR, de Cordova CA, Creczynski-Pasa TB, Guterres SS. (2005). Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int J Pharm, 289, 209–213.
  • Schaffazick SR, Siqueira IR, Badejo AS, Jornada DS, Pohlmann AR, Netto CA, Guterres SS. (2008). Incorporation in polymeric nanocapsules improves the antioxidant effect of melatonin against lipid peroxidation in mice brain and liver. Eur J Pharm Biopharm, 69, 64–71.
  • Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. (1998). Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci, 87, 1305–1307.
  • Schubert D, Chevion M. (1995). The role of iron in beta amyloid toxicity. Biochem Biophys Res Commun, 216, 702–707.
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 285, 1569–1572.
  • Selkoe DJ. (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 81, 741–766.
  • Sharma HS, Sharma A. (2007). Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res, 162, 245–273.
  • Sharma HS, Johanson CE. (2007). Blood-cerebrospinal fluid barrier in hyperthermia. Prog Brain Res, 162, 459–478.
  • Sharma M, Gupta YK. (2002). Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci, 71, 2489–2498.
  • Sharma RA, Gescher AJ, Steward WP. (2005). Curcumin: the story so far. Eur J Cancer, 41, 1955–1968.
  • Siegemund T, Paulke BR, Schmiedel H, Bordag N, Hoffmann A, Harkany T, Tanila H, Kacza J, Härtig W. (2006). Thioflavins released from nanoparticles target fibrillar amyloid beta in the hippocampus of APP/PS1 transgenic mice. Int J Dev Neurosci, 24, 195–201.
  • Skaat H, Margel S. (2009). Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-beta fibrils detection and removal by a magnetic field. Biochem Biophys Res Commun, 386, 645–649.
  • Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. (2010). Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm, 389, 207–212.
  • Smith MA, Casadesus G, Joseph JA, Perry G. (2002). Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med, 33, 1194–1199.
  • Smith MA, Sayre LM, Monnier VM, Perry G. (1995). Radical AGEing in Alzheimer’s disease. Trends Neurosci, 18, 172–176.
  • Smith MA. (2006). Oxidative stress and iron imbalance in Alzheimer disease: how rust became the fuss! J Alzheimers Dis, 9, 305–308.
  • Smith QR. (1990). Advances in neurology. In: Wurtman RJ, ed. Alzheimer’s disease, New York: Raven Press, 217–22.
  • Sofroniew MV, Howe CL, Mobley WC. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci, 24, 1217–1281.
  • Songjiang Z, Lixiang W. (2009). Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech, 10, 900–905.
  • Sun M, Gao Y, Guo C, Cao F, Song Z, Xi Y, et al. (2010). Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res, 12, 3111–3122.
  • Sun ML, Cheng RM, Xu XC, Chen YW, Li MG. (2006). Studies on adsorption of phenol and substituted phenols on carbon nanotubes. Chem Res Appl, 18, 13–16.
  • Sun W, Xie C, Wang H, Hu Y. (2004). Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials, 25, 3065–3071.
  • Takenaka S, Arike T, Nakagawa K, Matsune H, Kishida M, Tanabe E. (2008). Synthesis of carbon nanotube-supported Pt nanoparticles covered with silica layers. Carbon, 46, 365–368.
  • Tamagno E, Guglielmotto M, Aragno M, Borghi R, Autelli R, Giliberto L, Muraca G, Danni O, Zhu X, Smith MA, Perry G, Jo DG, Mattson MP, Tabaton M. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. J Neurochem, 104, 683–695.
  • Tanaka M, Nishigaki Y, Fuku N, Ibi T, Sahashi K, Koga Y. (2007). Therapeutic potential of pyruvate therapy for mitochondrial diseases. Mitochondrion, 7, 399–401.
  • Thomas MB, Mansoor MA. (2009). Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv, 6, 211–225.
  • Vinogradov SV, Bronich TK, Kabanov AV. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev, 54, 135–147.
  • Wang X, Chi N, Tang X. (2008). Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm, 70, 735–740.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci, 77, 117–125.
  • Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. (2008). Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res, 1200, 159–168.
  • Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. (2008). Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm, 70, 75–84.
  • Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. (2010). Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine, 6, 144–152.
  • Wong SS. (1991). Chemistry of Protein Conjugation and Cross-Linking, Florida, New York: CRC Press.
  • Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P. (1995). Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med, 1, 693–699.
  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem, 280, 5892–5901.
  • Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C. (2010). Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine, 6, 427–441.
  • Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, Norton MC, Welsh-Bohmer KA, Breitner JC; Cache County Study Group. (2004). Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol, 61, 82–88.
  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. (2004). Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci, 5, 863–873.
  • Zhou Y, Yokel RA. (2005). The chemical species of aluminum influences its paracellular flux across and uptake into Caco-2 cells, a model of gastrointestinal absorption. Toxicol Sci, 87, 15–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.