511
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment

, , , &
Pages 915-924 | Received 03 Jun 2011, Accepted 07 Sep 2011, Published online: 15 Nov 2011

References

  • Aragnol D, Leserman LD. (1986). Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci USA, 83, 2699–2703.
  • Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. (2011). Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm, 77, 417–423.
  • Arosio D, Manzoni L, Araldi EM, Scolastico C. (2011). Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug Chem, 22, 664–672.
  • Borgman MP, Aras O, Geyser-Stoops S, Sausville EA, Ghandehari H. (2009a). Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery. Mol Pharm, 6, 1836–1847.
  • Borgman MP, Coleman T, Kolhatkar RB, Geyser-Stoops S, Line BR, Ghandehari H. (2008). Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A"-DTPA) conjugates show increased kidney accumulation. J Control Release, 132, 193–199.
  • Borgman MP, Ray A, Kolhatkar RB, Sausville EA, Burger AM, Ghandehari H. (2009b). Targetable HPMA copolymer-aminohexylgeldanamycin conjugates for prostate cancer therapy. Pharm Res, 26, 1407–1418.
  • Breuer O, Sundararaj U. (2004). Big returns from small fibers: A review of polymer/carbon nanotube composites. Polymer Composites, 25, 630–645.
  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett, 6, 669–676.
  • Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y. (2005). Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett, 5, 473–477.
  • Chithrani BD, Chan WC. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett, 7, 1542–1550.
  • Chithrani BD, Ghazani AA, Chan WC. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 6, 662–668.
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1, 325–327.
  • Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, Oraevsky AA. (2004). Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol, 6, 341–349.
  • Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett, 269, 57–66.
  • Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, Liskamp RM, Boerman OC. (2007). Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging, 34, 267–273.
  • Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP. (2006). Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem, 17, 603–609.
  • Dudar TE, Jain RK. (1984). Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res, 44, 605–612.
  • Duncan R. (2003). The dawning era of polymer therapeutics. Nat Rev Drug Discov, 2, 347–360.
  • El-Sayed IH, Huang X, El-Sayed MA. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett, 5, 829–834.
  • Gabizon A, Papahadjopoulos D. (1992). The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta, 1103, 94–100.
  • Gormley AJ, Ghandehari H. (2009). Evaluation of toxicity of nanostructures in biological systems. In: Sahu SC & Casciano DA ed. Nanotoxicity: From In Vivo and In Vitro Models to Health Risks. West Sussex: Wiley, 115–159.
  • Gormley AJ, Greish K, Ray A, Robinson R, Gustafson JA, Ghandehari H. (2011). Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery. Int J Pharm, 415, 315–318.
  • Greish K, Ray A, Bauer H, Larson N, Malugin A, Pike D, Haider M, Ghandehari H. (2011). Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. J Control Release, 151, 263–270.
  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA, 100, 13549–13554.
  • Horsman MR. (2006). Tissue physiology and the response to heat. Int J Hyperthermia, 22, 197–203.
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond), 2, 681–693.
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci, 23, 217–228.
  • Huang X, Peng X, Wang Y, Wang Y, Shin DM, El-Sayed MA, Nie S. (2010). A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano, 4, 5887–5896.
  • Iyer AK, Khaled G, Fang J, Maeda H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today, 11, 812–818.
  • Jain PK, El-Sayed IH, El-Sayed MA. (2007). Au nanoparticles target cancer. Nano Today, 2, 18–29.
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B, 107, 668–677.
  • Khan JA, Pillai B, Das TK, Singh Y, Maiti S. (2007). Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem, 8, 1237–1240.
  • Kopecek J, Kopecková P. (2010). HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev, 62, 122–149.
  • Kumar CC, Nie H, Rogers CP, Malkowski M, Maxwell E, Catino JJ, Armstrong L. (1997). Biochemical characterization of the binding of echistatin to integrin alphavbeta3 receptor. J Pharmacol Exp Ther, 283, 843–853.
  • Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. (2002). Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm, 240, 95–102.
  • Li M, Schnablegger H, Mann S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Phys Rev Lett, 82, 1345–1349.
  • Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D. (2010). RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm, 7, 94–104.
  • Line BR, Mitra A, Nan A, Ghandehari H. (2005). Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. J Nucl Med, 46, 1552–1560.
  • Loo C, Lowery A, Halas N, West J, Drezek R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett, 5, 709–711.
  • Maeda H, Greish K, Fang J. (2006). The EPR effect and polymeric drugs: A paradigm shift for cancer chemotherapy in the 21st century. Adv Polymer Sci, 193, 103–121.
  • Mao Z, Wang B, Ma L, Gao C, Shen J. (2007). The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. Nanomedicine, 3, 215–223.
  • Maruyama K, Ishida O, Takizawa T, Moribe K. (1999). Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev, 40, 89–102.
  • Matsumura Y, Kataoka K. (2009). Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci, 100, 572–579.
  • Mitra A, Coleman T, Borgman M, Nan A, Ghandehari H, Line BR. (2006a). Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting. J Control Release, 114, 175–183.
  • Mitra A, Mulholland J, Nan A, McNeill E, Ghandehari H, Line BR. (2005). Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J Control Release, 102, 191–201.
  • Mitra A, Nan A, Papadimitriou JC, Ghandehari H, Line BR. (2006b). Polymer-peptide conjugates for angiogenesis targeted tumor radiotherapy. Nucl Med Biol, 33, 43–52.
  • Narayanan R, El-Sayed MA. (2005). Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B, 109, 12663–12676.
  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y. (2006). PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release, 114, 343–347.
  • Nikoobakht B, El-Sayed MA. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater, 15, 1957–1962.
  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett, 209, 171–176.
  • O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C; CAELYX Breast Cancer Study Group. (2004). Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol, 15, 440–449.
  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv, 11, 169–183.
  • Pasqualini R, Koivunen E, Ruoslahti E. (1997). Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol, 15, 542–546.
  • Peeters PAM, Storm G, Crommelin DJA. (1988). Immunoliposomes in vivo: state of the art. Adv Drug Deliv Rev, 1, 249–266.
  • Ray A, Larson N, Pike DB, Grüner M, Naik S, Bauer H, Malugin A, Greish K, Ghandehari H. (2011). Comparison of active and passive targeting of docetaxel for prostate cancer therapy by HPMA copolymer-RGDfK conjugates. Mol Pharm, 8, 1090–1099.
  • Rhim JS, Tsai WP, Chen ZQ, Chen Z, Van Waes C, Burger AM, Lautenberger JA. (1998). A human vascular endothelial cell model to study angiogenesis and tumorigenesis. Carcinogenesis, 19, 673–681.
  • Romanov VI, Goligorsky MS. (1999). RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate, 39, 108–118.
  • Ruoslahti E, Pierschbacher MD. (1987). New perspectives in cell adhesion: RGD and integrins. Science, 238, 491–497.
  • Sadekar S, Ray A, Janàt-Amsbury M, Peterson CM, Ghandehari H. (2011). Comparative biodistribution of PAMAM dendrimers and HPMA copolymers in ovarian-tumor-bearing mice. Biomacromolecules, 12, 88–96.
  • Sakko AJ, Ricciardelli C, Mayne K, Suwiwat S, LeBaron RG, Marshall VR, Tilley WD, Horsfall DJ. (2003). Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res, 63, 4786–4791.
  • Salem AK, Searson PC, Leong KW. (2003). Multifunctional nanorods for gene delivery. Nat Mater, 2, 668–671.
  • Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD. (2009). Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res, 69, 1659–1667.
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 21, 10644–10654.
  • Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. (2007). Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol, 26, 135–141.
  • Song CW, Kang MS, Rhee JG, Levitt SH. (1980). Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann N Y Acad Sci, 335, 35–47.
  • Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA. (2008). Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol, 179, 748–753.
  • Thumshirn G, Hersel U, Goodman SL, Kessler H. (2003). Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry, 9, 2717–2725.
  • Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL. (2004). Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem, 15, 482–490.
  • Tong L, Wei Q, Wei A, Cheng JX. (2009). Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol, 85, 21–32.
  • Vainrub A, Pustovyy O, Vodyanoy V. (2006). Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser. Opt Lett, 31, 2855–2857.
  • Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS. (2011). The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 32, 3435–3446.
  • Xie H, Diagaradjane P, Deorukhkar AA, Goins B, Bao A, Phillips WT, Wang Z, Schwartz J, Krishnan S. (2011). Integrin αv β3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine, 6, 259–269.
  • Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater, 8, 935–939.
  • Zarabi B, Borgman MP, Zhuo J, Gullapalli R, Ghandehari H. (2009). Noninvasive monitoring of HPMA copolymer-RGDfK conjugates by magnetic resonance imaging. Pharm Res, 26, 1121–1129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.