136
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Nanocurcumin: a novel antifilarial agent with DNA topoisomerase II inhibitory activity

, , &
Pages 395-407 | Received 21 Jul 2013, Accepted 24 Nov 2013, Published online: 30 Jan 2014

References

  • WHO. Global programme to eliminate lymphatic filariasis. Weekly Epidemiol Rec 2011;437–44
  • Melrose WD. Chemotherapy for lymphatic filariasis progress but not perfection. Expert Rev Anti Infect Ther 2003;1:571–7
  • Silva ND. Global elimination of lymphatic filariasis, addressing the public health problem. PLoS Negl Trop Dis 2010;4:34–45
  • Gyapong JO, Kumaraswami V, Biswas G, et al. Treatment strategies underpinning the global programme to eliminate lymphatic filariasis. Expert Opin Pharmacother 2010;6:179–200
  • Singh PK, Ajay A, Kushwaha S, et al. Towards novel antifilarial drugs, challenges and recent developments. Future Med Chem 2010;2:251–83
  • Gupta S, Srivastava AK. Biochemical targets in filarial worms for selective antifilarial drug design. Acta Parasitol 2005;50:1–18
  • Tripathi RP, Rastogi SK, Kundu B, et al. Identification of inhibitors of DNA topoisomerase II from a synthetic library of glycoconjugates. Comb Chem High Throughput Screen 2001;4:237–44
  • Murthy PK, Joseph SK, Murthy PS. Plant products in the treatment and control of filariasis and other helminth infections and assay systems for antifilarial/anthelmintic activity. Planta Med 2011;77:647–61
  • Misra N, Sharma M, Raj K, et al. Chemical constituents and antifilarial activity of Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent hosts. Parasitol Res 2007;100:439–48
  • Kayser O, Kiderlen A, Croft S. Natural products as antiparasitic drugs. Parasitol Res 2003;90:55–62
  • Chatterjee RK, Fatma N, Murthy PK, et al. Macrofilaricidal activity of the stem bark of Streblus asper and its major active constituents. Drug Develop Res 1992;26:67–78
  • Nagajyothi F, Zhao D, Weiss LM, Tanowitz HB. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol Res 2012;110:2491–9
  • Sikora E, Zmijewska AB, Magalska A, et al. Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated Dnase endonuclease in human jurkat cells. Mol Cancer Ther 2006;5:927–34
  • Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 2005;70:700–13
  • Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. Ann NY Acad Sci 2005;1056:206–17
  • Isacchi B, Bergonzi MC, Grazioso M, et al. Artemisinin and artemisinin plus curcumin liposomal formulations, enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur J Pharm Biopharm 2012;80:528–34
  • Srinivasan L, Mathew N, Karunan T, et al. Biochemical studies on glutathione S-transferase from the bovine filarial worm Setaria digitata. Parasitol Res 2011;109:213–19
  • Magalhães LG, Machado CB, Morais ER, et al. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 2009;104:1197–201
  • Cui L, Miao J, Cui L, et al. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum, inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 2007;51:488–94
  • Gomes Dde C, Alegrio LV, de Lima ME, et al. Synthetic derivatives of curcumin and their activity against Leishmania amazonensis. Arzneimittelforschung 2002;52:120–4
  • Saleheen D, Ali SA, Ashfaq K, et al. Latent activity of curcumin against leishmaniasis in vitro. Biol Pharm Bull 2002;25:386–9
  • Nayak A, Gayen P, Saini P, et al. Molecular evidence of curcumin induced apoptosis in the filarial worm Setaria cervi. Parasitol Res 2012;111:1173–86
  • Azeez S, Babu RO, Aykkal R, Narayanan R. Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J Mol Model 2012;18:51–63
  • Srinivasan L, Mathew N, Muthuswamy K. In vitro antifilarial activity of glutathione S transferase inhibitors. Parasitol Res 2009;105:1179–82
  • Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech 2012;13:159–66
  • Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv 2012;9:1347–64
  • Prasanth R, Nair G, Girish CM. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: an atomic force microscopy study. Appl Phys Lett 2011;99:163–76
  • Onoue S, Takahashi H, Kawabata Y, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci 2010;99:1871–81
  • Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol 2007;5:567–76
  • Lim KJ, Bisht S, Bar EE, et al. A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 2011;11:464–73
  • Dandekar PP, Jain R, Patil S, et al. Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci 2010;99:4992–501
  • Akhtar F, Rizvi MM, Kar SK. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 2011;30:310–20
  • Nayak AP, Tiyaboonchai W, Patankar S, et al. Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 2010;81:263–73
  • Ali M, Afzal M, Verma M, et al. Improved antifilarial activity of ivermectin in chitosan-alginate nanoparticles against human lymphatic filarial parasite, Brugia malayi. Parasitol Res 2013;112:2933–43
  • Ali M, Afzal M, Verma M, et al. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model. Parasitol Res 2014. [Epub ahead of print]. doi: 10.1007/s00436-013-3696-5
  • Bajpai P, Vedi S, Owais M, et al. Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model. J Drug Target 2005;13:375–81
  • Owais M, Misra-bhattacharya S, Haq W, Gupta CM. Immunomodulator tuftsin augments antifilarial activity of diethylcarbamazine against experimental Brugian Filariasis. J Drug Target 2003;11:247–51
  • Bisht S, Karikar C, Maitra A, et al. Polymeric nanoparticle encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 2007;5:3–12
  • Yang M, Pan HL, Xu HL. Determination of curcumin in GanZhiPing capsules by RPHPLC. Acta Chromatogr 2006;3:109–22
  • Lakshmi V, Srivastava S, Mishraa SS, et al. In vitro and in vivo antifilarial potential of marine sponge, Haliclona exigua (Kirkpatrick) against human lymphatic filarial parasite Brugia malayi. Parasitol Res 2009;105:1295–301
  • Misra S, Chaterjee RK, Sen AB. The response of litomosides carinii to antifilarial agents in cotton rats Sigmodon hispidus and multimammate rat. Indian J Med Res 1984;79:749–52
  • Taylor MJ, Bilo K, Cross HF, et al. 16 S rDNA phylogeny and ultra structural characterization of Wolbachia intracellular bacteria of filarial nematodes, Brugia malayi, Brugia pahangi and Wuchereria bancrofti. Exp Parasitol 1999;91:356–61
  • Donald E, Nicholas A, Peppas A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93–102
  • Ali M, Afzal M, Bhattacharya SM, et al. Nanopharmaceuticals to target antifilarials: a comprehensive review. Expert Opin Drug Deliv 2013;10:665–78
  • Ali M, Afzal M, Kaushik U, et al. Perceptive solutions to anti-filarial chemotherapy of lymphatic filariasis from the plethora of nanomedical sciences. J Drug Target 2014;22:1–13
  • Vishal Gupta N, Shivakumar HG. Development of a drug delivery system superporous hydrogel. Trop J Pharma Res 2010;9:257–64
  • Bertrand N, Fleischer JG, Wasan KM, Leroux JC. Pharmacokinetics and biodistribution of N-isopropylacrylamide copolymers for the design of pH-sensitive liposomes. Biomaterials 2009;30:2598–605
  • Feng SS. Nanoparticles of biodegradable polymers for new concept chemotherapy. Expert Rev Med Devices 2004;1:115–25
  • Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 2008;4:1752–61
  • Ma Z, Haddadi A, Molavi O, et al. Micelles of poly(ethylene oxide)-b-poly(e-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 2008;86:300–10
  • Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008;16:108–23
  • Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 2006;6:10–23
  • Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 2004;10:6847–54
  • Cheng AL, Hsu C, Lin JK. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001;21:2895–900
  • Hsu CH, Cheng AL. Clinical studies with curcumin. Adv Exp Med Biol 2007;595:471–80
  • Mukherjee M, Misra S, Chatterjee RK. Development of in vitro screening system for assessment of antifilarial activity of compounds. Acta Tropica 1998;70:251–5
  • Bajpai P, Srivastava K, Shakya S, et al. Improvement in the efficacy of existing combination of antifilarials by inclusion of tetracycline in rodent model of Brugian filariasis. Curr Sci 2007;92:655–8
  • Kumara A, Saxenab JK, Chauhana MS. Synthesis of 4-amino-5-cyano-2, 6-disubstituted pyrimidines as a potential antifilarial DNA topoisomerase II inhibitors. Med Chem 2008;4:577–85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.