1,755
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor

, , &
Pages 865-887 | Received 01 Feb 2015, Accepted 12 Mar 2015, Published online: 02 Apr 2015

References

  • Andlin-Sobocki P, Jönsson B, Wittchen HU, Olesen J. Cost of disorders of the brain in Europe. Eur J Neurol 2005;12:1–27
  • Rohilla R, Garg T, Bariwal J, et al. Development, optimization and characterization of glycyrrhetinic acid-chitosan nanoparticles of atorvastatin for liver targeting. Drug Deliv 2014. [Epub ahead of print]. doi: 10.3109/10717544.2014.977460
  • Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem 2006;13:1757–75
  • Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. In: Prokai L, Prokai-Tatrai K, eds. Peptide transport and delivery into the central nervous system. Basel: Springer; 2003
  • Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 2006;58:140–61
  • Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007;13:1663–74
  • Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001;53:569–96
  • Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 2007;254:11–29
  • Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006;1:223–36
  • Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood–brain barrier. J Pharm Sci 2000;89:1371–88
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006;7:41–53
  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57:178–201
  • Packhaeuser C, Schnieders J, Oster C, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 2004;58:445–55
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1–20
  • Deli MA, Ábrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005;25:59–127
  • Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990;429:47–62
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 2005;298:274–92
  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre J-Y. Primary brain tumours in adults. Lancet 2003;361:323–31
  • Pardridge WM. Blood–brain barrier delivery. Drug Discov Today 2007a;12:54–61
  • Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 2001;307:77–80
  • Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab 1997;17:713–31
  • Saito Y, Wright E. Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 1983;336:635–48
  • Pappas GD, Tennyson VM. An electron microscopic study of the passage of colloidal particles from the blood vessels of the ciliary processes and choroid plexus of the rabbit. J Cell Biol 1962;15:227–39
  • Colgan OC, Collins NT, Ferguson G, et al. Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res 2008;1193:84–92
  • Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 2008;13:1099–106
  • Olivier J-C. Drug transport to brain with targeted nanoparticles. NeuroRx 2005;2:108–19
  • Joó F. The blood-brain barrier in vitro: the second decade. Neurochem Int 1993;23:499–521
  • Donelli M, Zucchetti M, D'Incalci M. Do anticancer agents reach the tumor target in the human brain? Cancer Chemother Pharmacol 1992;30:251–60
  • Pardridge WM, Triguero D, Yang J, Cancilla PA. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J Pharmacol Exp Ther 1990;253:884–91
  • Brightman MW. Ultrastructure of brain endothelium. In: Bradbury MWB, ed. Physiology and pharmacology of the blood-brain barrier. Berlin: Springer; 1992
  • Brightman M, Reese T. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969;40:648–77
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–85
  • Reese T, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207–17
  • Saunders N, Habgood M, Dziegielewska K. Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol 1999;26:85–91
  • Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci 2008;31:279–86
  • Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol 2000;20:29–40
  • Stewart PA. Endothelial vesicles in the blood–brain barrier: are they related to permeability? Cell Mol Neurobiol 2000;20:149–63
  • Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 2007;6:650–61
  • Newton HB. Advances in strategies to improve drug delivery to brain tumors. Expert Rev Neurother 2006;6:1495–509
  • Begley DJ. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 1996;48:136–46
  • Gao H, Pang Z, Jiang X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm Res 2013;30:2485–98
  • Piper HM. Cell culture techniques in heart and vessel research. Berlin: Springer-Verlag; 1990
  • Kimelberg HK, Norenberg MD. Astrocytes. Sci Am 1989;260:66–72, 74, 76
  • Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene 2003;22:7537–52
  • Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005;6:591–602
  • Ramge P, Unger RE, Oltrogge JB, et al. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 2000;12:1931–40
  • Sun J-J, Xie L, Liu X-D. Transport of carbamazepine and drug interactions at blood-brain barrier. Acta Pharmacol Sin 2006;27:249–53
  • Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 1998;165:201–11
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004;99:259–69
  • Hau P, Fabel K, Baumgart U, et al. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 2004;100:1199–207
  • Han H-K, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000;2:48–58
  • Pardridge WM. Drug targeting to the brain. Pharm Res 2007;24:1733–44
  • King GL, Johnson SM. Receptor-mediated transport of insulin across endothelial cells. Science 1985;227:1583–6
  • Maratos-Flier E, Kao C-YY, Verdin EM, King GL. Receptor-mediated vectorial transcytosis of epidermal growth factor by Madin-Darby canine kidney cells. J Cell Biol 1987;105:1595–601
  • Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood-brain barrier. J Cell Sci 1993;104:521–32
  • Kumagai A, Eisenberg JB, Pardridge W. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem 1987;262:15214–19
  • Sai Y, Kajita M, Tamai I, et al. Adsorptive-mediated endocytosis of a basic peptide in enterocyte-like Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 1998;275:G514–20
  • Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 2007;59:748–58
  • Vyas S, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000;43:101–64
  • Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003;3:90–105
  • Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem 2008;106:1534–44
  • Murata H, Futami J, Kitazoe M, et al. Intracellular delivery of glutathione S-transferase-fused proteins into mammalian cells by polyethylenimine–glutathione conjugates. J Biochem 2008;144:447–55
  • Cornford EM, Young D, Paxton JW, et al. Melphalan penetration of the blood-brain barrier via the neutral amino acid transporter in tumor-bearing brain. Cancer Res 1992;52:138–43
  • Umezawa F, Eto Y. Liposome targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Commun 1988;153:1038–44
  • Benoit J-P, Faisant N, Venier-Julienne M-C, Menei P. Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release 2000;65:285–96
  • Menei P, Benoit J-P, Boisdron-Celle M, et al. Drug targeting into the central nervous system by stereotactic implantation of biodegradable microspheres. Neurosurgery 1994;34:1058–64
  • Mittal S, Cohen A, Maysinger D. In vitro effects of brain derived neurotrophic factor released from microspheres. Neuroreport 1994;5:2577–82
  • Brem H, Ewend MG, Piantadosi S, et al. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neuro-oncol 1995;26:111–23
  • Ewend MG, Williams JA, Tabassi K, et al. Local delivery of chemotherapy and concurrent external beam radiotherapy prolongs survival in metastatic brain tumor models. Cancer Res 1996;56:5217–23
  • Valtonen S, Timonen U, Toivanen P, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997;41:44–9
  • Sheleg SV, Korotkevich EA, Zhavrid EA, et al. Local chemotherapy with cisplatin-depot for glioblastoma multiforme. J Neuro-oncol 2002;60:53–9
  • Vukelja SJ, Anthony SP, Arseneau JC, et al. Phase 1 study of escalating-dose OncoGel (R)(ReGel (R)/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anti-Cancer Drugs 2007;18:283–9
  • Boer GJ, van der Woude TP, Kruisbrink J, van Heerikhuize J. Successful ventricular application of the miniaturized controlled-delivery Accurel technique for sustained enhancement of cerebrospinal fluid peptide levels in the rat. J Neurosci Methods 1984;11:281–9
  • Fortin D, Desjardins A, Benko A, et al. Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors. Cancer 2005;103:2606–15
  • Dave N, Gudelsky GA, Desai PB. The pharmacokinetics of letrozole in brain and brain tumor in rats with orthotopically implanted C6 glioma, assessed using intracerebral microdialysis. Cancer Chemother Pharmacol 2013;72:349–57
  • Remsen LG, Trail PA, Hellström I, et al. Enhanced delivery improves the efficacy of a tumor-specific doxorubicin immunoconjugate in a human brain tumor xenograft model. Neurosurgery 2000;46:704–9
  • Muldoon LL, Soussain C, Jahnke K, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007;25:2295–305
  • Blanchette M, Fortin D. Blood-brain barrier disruption in the treatment of brain tumors. Methods Mol Biol 2011;686:447–63
  • Lossinsky A, Vorbrodt A, Wisniewski H. Scanning and transmission electron microscopic studies of microvascular pathology in the osmotically impaired blood-brain barrier. J Neurocytol 1995;24:795–806
  • Salahuddin T, Johansson B, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions. Acta Neuropathol 1988;77: 5–13
  • Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 1998;42:1083–99
  • de Boer A, Gaillard P. In vitro models of the blood-brain barrier: when to use which? Curr Med Chem 2002;2:203–9
  • Cosolo WC, Martinello P, Louis W, Christophidis N. Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol 1989;256:R443–7
  • De Vries HE, Blom-Roosemalen M, Oosten MV, et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 1996;64:37–43
  • Black KL, Cloughesy T, Huang S-C, et al. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. J Neurosurg 1997;86:603–9
  • Emerich DF, Snodgrass P, Pink M, et al. Central analgesic actions of loperamide following transient permeation of the blood brain barrier with Cereport™(RMP-7). Brain Res 1998;801:259–66
  • Bartus R. The blood-brain barrier as a target for pharmacological modulation. Curr Opin Drug Discov Dev 1999;2:152–67
  • Mertsch K, Maas J. Blood-brain barrier penetration and drug development from an industrial point of view. Curr Med Chem 2002;2:187–201
  • Nakagawa H, Groothuis D, Blasberg RG. The effect of graded hypertonic intracarotid infusions on drug delivery to experimental RG-2 gliomas. Neurology 1984;34:1571–81
  • Neuwelt EA, Goldman D, Dahlborg S, et al. Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: prolonged survival and preservation of cognitive function. J Clin Oncol 1991;9:1580–90
  • Grossman SA, Trump DL, Chen DC, et al. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis: an evaluation using 111indium-DTPA ventriculography. Am J Med 1982;73:641–7
  • Begley DJ, Squires LK, Zloković BV, et al. Permeability of the blood-brain barrier to the immunosuppressive cyclic peptide cyclosporin A. J Neurochem 1990;55:1222–30
  • Mamelak AN, Rosenfeld S, Bucholz R, et al. Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 2006;24:3644–50
  • Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 1995;680:196–206
  • Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 1996;39:125–34
  • Tetsuya T, Yoshiharu D, Yuko K, et al. Determination of in vivo steady-state unbound drug concentration in the brain interstitial fluid by microdialysis. Int J Pharm 1992;81:143–52
  • Olson L, Nordberg A, von Holst H, et al. Nerve growth factor affects11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm 1992;4:79–95
  • Menacherry S, Hubert W, JusticeJr. JB. In vivo calibration of microdialysis probes for exogenous compounds. Analyt Chem 1992;64:577–83
  • Erben M, Decker S, Franke H, Galla H-J. Electrical resistance measurements on cerebral capillary endothelial cells – a new technique to study small surface areas. J Biochem Biophys Methods 1995;30:227–38
  • Gath U, Hakvoort A, Wegener J, et al. Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur J Cell Biol 1997;74:68–78
  • Sawyer AJ, Piepmeier JM, Saltzman WM. Cancer issue: new methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 2006;79:141–52
  • Guerin C, Olivi A, Weingart JD, et al. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest New Drugs 2004;22:27–37
  • Raza SM, Pradilla G, Legnani FG, et al. Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 2005;5:477–94
  • Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91:2076–80
  • Vogelbaum MA. Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neuro-oncol 2007;83:97–109
  • Sampson JH, Akabani G, Archer GE, et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 2008;10:320–9
  • Ashby LS, Shapiro WR. Intra-arterial cisplatin plus oral etoposide for the treatment of recurrent malignant glioma: a phase II study. J Neuro-oncol 2001;51:67–86
  • Dropcho EJ, Rosenfeld SS, Vitek J, et al. Phase II study of intracarotid or selective intracerebral infusion of cisplatin for treatment of recurrent anaplastic gliomas. J Neuro-oncol 1998;36:191–8
  • Neuwelt EA. Mechanisms of disease: the blood-brain barrier. Neurosurgery 2004;54:131–42
  • Jahnke K, Kraemer DF, Knight KR, et al. Intraarterial chemotherapy and osmotic blood-brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer 2008;112:581–8
  • Gundersen S, Lote K, Watne K. A retrospective study of the value of chemotherapy as adjuvant therapy to surgery and radiotherapy in grade 3 and 4 gliomas. Eur J Cancer 1998;34:1565–9
  • Hirano Y, Mineura K, Mizoi K, Tomura N. Therapeutic results of intra-arterial chemotherapy in patients with malignant glioma. Int J Oncol 1998;13:537–79
  • Joshi S, Reif R, Wang M, et al. Intra-arterial mitoxantrone delivery in rabbits: an optical pharmacokinetic study. Neurosurgery 2011;69:706–12; discussion 712
  • Rapoport SI. Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000;20:217–30
  • Brown MT, Coleman RE, Friedman AH, et al. Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: phase I trial results. Clin Cancer Res 1996;2:963–72
  • Blacklock JB, Wright DC, Dedrick RL, et al. Drug streaming during intra-arterial chemotherapy. J Neurosurg 1986;64:284–91
  • Bargoni A, Cavalli R, Zara GP, et al. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II – tissue distribution. Pharmacol Res 2001;43:497–502
  • Cavalli R, Zara GP, Caputo O, et al. Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I – A pharmacokinetic study. Pharmacol Res 2000;42:541–5
  • Fundarò A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res 2000;42:337–43
  • Zara GP, Cavalli R, Bargoni A, et al. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 2002;10:327–35
  • de Lange E, Danhof M, De Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood–brain barrier. Brain Res Rev 1997;25:27–49
  • Pardridge WM. Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharm Sci Technol Today 1999;2:49–59
  • Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 2000;97:7567–72
  • Zhang Y-F, Boado RJ, Pardridge WM. Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm Res 2003;20:1779–85
  • Nutt J, Burchiel K, Comella C, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003;60:69–73
  • Ko YT, Bhattacharya R, Bickel U. Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Release 2009;133:230–7
  • Miller L, Meythaler J, Peduzzi J. Direct central nervous system catheter and temperature control system. EP Patent 1,600,186; 2005
  • Raghavan R, Brady ML, Rodríguez-Ponce MI, et al. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 2006;20:E12
  • Chen MY, Lonser RR, Morrison PF, et al. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 1999;90:315–20
  • Bauman M, Gillies G, Raghavan R, et al. Physical characterization of neurocatheter performance in a brain phantom gelatin with nanoscale porosity: steady-state and oscillatory flows. Nanotechnology 2004;15:92–104
  • Morrison PF, Chen MY, Chadwick RS, et al. Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 1999;277:R1218–29
  • Linninger AA, Somayaji MR, Mekarski M, Zhang L. Prediction of convection-enhanced drug delivery to the human brain. J Theor Biol 2008;250:125–38
  • de Lange E, De Vries J, Zurcher C, et al. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res 1995;12:1924–31
  • Olson J, Blakeley J, Grossman S, et al. Differences in the distribution of methotrexate into high grade gliomas following intravenous administration, as monitored by microdialysis, are associated with blood brain barrier integrity. J Clin Oncol 2006;24:1548–59
  • Portnow J, Badie B, Xi B, et al. Intracerebral microdialysis for determination of the neuropharmacokinetics and neuropharmacodynamics of temozolomide in patients with primary or metastatic brain tumors. J Clin Oncol 2007;25:2074–82
  • Casacó A, López G, García I, et al. Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188-Re in adult recurrent high-grade glioma. Cancer Biol Ther 2008;7:333–9
  • Mcrae-Degueurce A, Hjorth S, Dillon DL, et al. Implantable microencapsulated dopamine (DA): a new approach for slow-release DA delivery into brain tissue. Neurosci Lett 1988;92:303–9
  • Rousseau J, Barth RF, Moeschberger ML, Elleaume H. Efficacy of intracerebral delivery of carboplatin in combination with photon irradiation for treatment of F98 glioma-bearing rats. Int J Radiat Oncol Biol Phys 2009;73:530–6
  • Jayachandra Babu R, Dayal PP, Pawar K, Singh M. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats. J Drug Target 2011;19:731–40
  • de Lange E, De Boer BA, Breimer DD. Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 1999;36:211–27
  • Parsons L, JusticeJr. J. Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 1993;8:189–220
  • Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol 1996;38:499–507
  • Nakashima M, Shibata S, Tokunaga Y, et al. In-vivo microdialysis study of the distribution of cisplatin into brain tumour tissue after intracarotid infusion in rats with 9L malignant glioma. J Pharm Pharmacol 1997;49:777–80
  • Dykstra KH, Hsiao JK, Morrison PF, et al. Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem 1992;58:931–40
  • Groothuis DR, Ward S, Schlageter KE, et al. Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis probes. Brain Res 1998;803:218–30
  • Morgan ME, Singhal D, Anderson BD. Quantitative assessment of blood-brain barrier damage during microdialysis. J Pharmacol Exp Ther 1996;277:1167–76
  • Westergren I, Nyström B, Hamberger A, Johansson BB. Intracerebral dialysis and the blood-brain barrier. J Neurochem 1995;64:229–34
  • Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 1998;58:672–84
  • Yang FY, Lin YL, Chou FI, et al. Pharmacokinetics of BPA in gliomas with ultrasound induced blood-brain barrier disruption as measured by microdialysis. PLoS One 2014;9:e100104
  • Hannon GJ. RNA interference. Nature 2002;418:244–51
  • Hébert SS, De Strooper B. Molecular biology. miRNAs in neurodegeneration. Science (New York, NY) 2007;317:1179–80
  • Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 2002;4:183–94
  • Daneman R, Barres B. Permeability of blood-brain barrier. WO Patent 2007137303, 2007
  • Patel N, Addo RT, Ubale R, et al. The effect of antisense to NF-kappaB in an albumin microsphere formulation on the progression of left-ventricular remodeling associated with chronic volume overload in rats. J Drug Target 2014;22:796–804
  • Liu CH, Kim YR, Ren JQ, et al. Imaging cerebral gene transcripts in live animals. J Neurosci 2007;27:713–22
  • Masotti A, Vicennati P, Boschi F, et al. A novel near-infrared indocyanine dye−polyethylenimine conjugate allows DNA delivery imaging in vivo. Bioconjug Chem 2008;19:983–7
  • Béduneau A, Saulnier P, Benoit J-P. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947–67
  • Schneider T, Becker A, Ringe K, et al. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008;195:21–7
  • Ljubimova JY, Fujita M, Khazenzon NM, et al. Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 2008;171:195–203
  • Ljubimova JY, Fujita M, Ljubimov AV, et al. Poly (malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine 2008;3:247–65
  • Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine 2008;4:273–82
  • Jain K. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 2008;17:89–101
  • Kim YK, Xing L, Chen BA, et al. Aerosol delivery of programmed cell death protein 4 using polysorbitol-based gene delivery system for lung cancer therapy. J Drug Target 2014;22:829–38
  • Ren H, Boulikas T, Söling A, et al. Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene – a phase I/II clinical protocol. J Neuro-oncol 2003;64:147–54
  • Cusack. Jr JC, Tanabe KK. Cancer gene therapy. Surg Oncol Clin North Am 1998;7:421–69
  • Dickson PV, Nathwani AC, Davidoff AM. Delivery of antiangiogenic agents for cancer gene therapy. Technol Cancer Res Treat 2005;4:331–41
  • Robson T, Worthington J, McKeown S, Hirst D. Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat 2005;4:343–61
  • Dent P, Yacoub A, Park M, et al. Searching for a cure: gene therapy for glioblastoma. Cancer Biol Ther 2008;7:1335–40
  • Lang FF, Bruner JM, Fuller GN, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 2003;21:2508–18
  • Klatzmann D, Valery CA, Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Hum Gene Ther 1998;9:2595–604
  • Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000;11:2389–401
  • Colombo F, Barzon L, Franchin E, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 2005;12:835–48
  • Eck SL, Alavi J, Judy K, et al. Treatment of recurrent or progressive malignant glioma with a recombinant adenovirus expressing human interferon-beta (H5. 010CMVhIFN-beta): a phase I trial. Hum Gene Ther 2001;12:97–113
  • Okada H, Pollack IF, Lieberman F, et al. Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admixed with IL-4 transduced fibroblasts to elicit an immune response. Hum Gene Ther 2001;12:575–95
  • Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 2002;6:67–72
  • Hattori Y, Maitani Y. Folate-linked lipid-based nanoparticle for targeted gene delivery. Curr Drug Deliv 2005;2:243–52
  • Lu W, Sun Q, Wan J, et al. Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 2006;66:11878–87
  • Zhang Y, Calon F, Zhu C, et al. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther 2003;14:1–12
  • Hatakeyama H, Akita H, Kogure K, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 2006;14:68–77
  • Green NM. Avidin. Adv Protein Chem 1974;29:85–133
  • Sood A, Panchagnula R. Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 2001;101:3275–304
  • Vandermeulen GW, Klok HA. Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. Macromol Biosci 2004;4:383–98
  • Neuwelt EA. Method for diagnostically imaging lesions in the brain inside a blood-brain barrier. Google Patents; 1991
  • Wu D, Yang J, & Pardridge WM. Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. Journal of Clinical Investigation 1997;100:1804–12
  • Pardridge WM, Boado RJ. Drug delivery of antisense oligonucleotides and peptides to tissues in vivo and to cells using avidin-biotin technology. Google Patents; 2001
  • Pardridge WM, Wu D, Sakane T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm Res 1998;15:576–82
  • Wu G, Barth RF, Yang W, et al. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 2006;5:52–9
  • Arwert E, Hingtgen S, Figueiredo J-L, et al. Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res 2007;67:7335–42
  • Ren H, Yang B, Rainov NG. Receptor tyrosine kinases as therapeutic targets in malignant glioma. Rev Recent Clin Trials 2007;2:87–101
  • Weppler SA, Li Y, Dubois L, et al. Expression of EGFR variant vIII promotes both radiation resistance and hypoxia tolerance. Radiother Oncol 2007;83:333–9
  • Aaron J, Nitin N, Travis K, et al. Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J Biomed Opt 2007;12:034007
  • Faillot T, Magdelénat H, Mady E, et al. A phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery 1996;39:478–83
  • Stragliotto G, Vega F, Stasiecki P, et al. Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55 900) in patients with recurrent malignant gliomas. Eur J Cancer 1996;32:636–40
  • Ramos TC, Figueredo J, Catala M, et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial. Cancer Biol Ther 2006;5:375–9
  • Wygoda Z, Kula D, Bierzynska-Macyszynz G, et al. Use of monoclonal anti-EGFR antibody in the radioimmunotherapy of malignant gliomas in the context of EGFR expression in grade III and IV tumors. Hybridoma 2006;25:125–32
  • Combs SE, Heeger S, Haselmann R, et al. Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolomide (GERT)–phase I/II trial: study protocol. BMC Cancer 2006;6:133
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81
  • Yamamoto H, Kuno Y, Sugimoto S, et al. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 2005;102:373–81
  • Cohen H, Levy R, Gao J, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 2000;7:1896–905
  • Anderson RG, Brown MS, Goldstein JL. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 1977;10:351–64
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev 2001;46:247–79
  • Pardridge WM. Blood-brain barrier biology and methodology. J Neurovirol 1999;5:556–69
  • Engelhardt B. Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm 2006;113:477–85
  • Banks W, Kastin A, Ehrensing C. Endogenous peptide Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) is transported from the brain to the blood by peptide transport system-1. J Neurosci Res 1993;35:690–5
  • Allen DD, Geldenhuys WJ. Molecular modeling of blood–brain barrier nutrient transporters: in silico basis for evaluation of potential drug delivery to the central nervous system. Life Sci 2006;78:1029–33
  • Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005;2:54–62
  • Gynther M, Laine K, Ropponen J, et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem 2008;51:932–6
  • Siegal T, Zylber-Katz E. Strategies for increasing drug delivery to the brain. Clin Pharmacokinet 2002;41:171–86
  • Cole S, Bhardwaj G, Gerlach J, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258:1650–4
  • Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004;104:29–45
  • Keir ST, Dewhirst MW, Kirkpatrick JP, et al. Cellular redox modulator, ortho Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) in the treatment of brain tumors. Anticancer Agents Med Chem 2011;11:202–12
  • Namba H, Iwadate Y, Iyo M, et al. Glucose and methionine uptake by rat brain tumor treated with prodrug-activated gene therapy. Nucl Med Biol 1998;25:247–50
  • Savolainen J, Edwards JE, Morgan ME, et al. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab Dispos 2002;30:479–82
  • Pignatello R, Pantò V, Salmaso S, et al. Flurbiprofen derivatives in Alzheimer’s disease: synthesis, pharmacokinetic and biological assessment of lipoamino acid prodrugs. Bioconjug Chem 2007;19:349–57
  • Begley DJ. Efflux mechanisms in the central nervous system: a powerful influence on drug distribution within the brain. In: Sharma HS, ed. Blood-spinal cord and brain barriers in health and disease. New York: Academic Press; 2004b:83–97
  • Blakeley J. Drug delivery to brain tumors. Curr Neurol Neurosci Rep 2008;8:235–41
  • Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 2006;27:17–24
  • Kabanov AV, Batrakova EV, Miller DW. Pluronic® block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev 2003;55:151–64
  • Litman T, Skovsgaard T, Stein WD. Pumping of drugs by P-glycoprotein: a two-step process? J Pharmacol Exp Ther 2003;307:846–53
  • Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein the two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. J Biol Chem 2001;276:11653–61
  • Wang F, Zhou F, Kruh GD, Gallo JM. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro Oncol 2010;12:1043–9
  • Regina A, Demeule M, Che C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 2008;155:185–97
  • Jones AR, Shusta EV. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24:1759–71
  • Karkan D, Pfeifer C, Vitalis TZ, et al. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS One 2008;3:e2469
  • Waldeck W, Wiessler M, Ehemann V, et al. TMZ-BioShuttle – a reformulated Temozolomide. Int J Med Sci 2008;5:273–84
  • Nam JP, Park JK, Son DH, et al. Evaluation of polyethylene glycol-conjugated novel polymeric anti-tumor drug for cancer therapy. Colloids Surf B Biointerfaces 2014;120:168–75
  • Cserr H, Patlak C. Secretion and bulk flow of interstitial fluid. In: Bradbury MWB, ed. Physiology and pharmacology of the blood-brain barrier. Berlin: Springer; 1992
  • Laquintana V, Trapani A, Denora N, et al. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009;6:1017–32
  • Modgill V, Garg T, Goyal AK, Rath G. Transmucosal delivery of linagliptin for the treatment of type-2 diabetes mellitus by ultra-thin nanofibers. Curr Drug Deliv 2014. [Epub ahead of print]. doi: 10.2174/1567201811666141117144332
  • Fellner S, Bauer B, Miller DS, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 2002;110:1309–18
  • Gupta S. QSAR studies on drugs acting at the central nervous system. Chem Rev 1989;89:1765–800
  • Hansch C, Leo A, Hoekman D. Exploring QSAR: hydrophobic, electronic, and steric constants. Washington, DC: American Chemical Society; 1995
  • van de Waterbeemd H, Smith DA, Beaumont K, Walker DK. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 2001;44:1313–33
  • Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv 2013;10:889–905
  • Rösler A, Vandermeulen GW, Klok H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 2012;53:95–108
  • Chaudhary S, Garg T, Murthy RS, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target 2014;22:871–82
  • Tang J, Fu H, Kuang Q, et al. Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery. J Drug Target 2014;22:313–26
  • Gagandeep Garg T, Malik B, Rath G, Goyal AK. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci 2014;53:10–16
  • Qin Y, Li ZW, Yang Y, et al. Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites. J Drug Target 2014;22:165–74
  • Garg T. Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif Cells Nanomed Biotechnol 2014. [Epub ahead of print]. doi: 10.3109/21691401.2014.916715
  • Chrai SS, Murari R, Ahmad I. Liposomes (a review) – Part one: manufacturing issues. Biopharm – the applied technologies of biopharmaceutical development. Pharm Technol Eur 2001;14:10–38
  • Garg T, Goyal AK. Iontophoresis: drug delivery system by applying an electrical potential across the skin. Drug Deliv Lett 2012;2:270–80
  • Garg T, Goyal AK. Liposomes: targeted and controlled delivery system. Drug Deliv Lett 2014;4:62–71
  • Garg T, Goyal AK. Medicated chewing gum: patient compliance oral drug delivery system. Drug Deliv Lett 2014;4:72–8
  • Garg T, Goyal AK. Biomaterial-based scaffolds – current status and future directions. Expert Opin Drug Deliv 2014;11:767–89
  • Lim HJ, Cho EC, Shim J, et al. Polymer-associated liposomes as a novel delivery system for cyclodextrin-bound drugs. J Colloid Interface Sci 2008;320:460–8
  • Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev 1999;36:299–321
  • Rahman A, Husain SR, Siddiqui J, et al. Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells. J Natl Cancer Inst 1992;84:1909–15
  • Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 1994;15:215–20
  • McNeeley KM, Annapragada A, Bellamkonda RV. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology 2007;18:385101
  • Ishida T, Atobe K, Wang X, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release 2006;115:251–8
  • McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 2009;30:3986–95
  • Szebeni J, Baranyi L, Savay S, et al. Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J Liposome Res 2002;12:165–72
  • Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release 2008;129:144–50
  • Jia Y, Joly H, Omri A. Liposomes as a carrier for gentamicin delivery: development and evaluation of the physicochemical properties. Int J Pharm 2008;359:254–63
  • Zaru M, Mourtas S, Klepetsanis P, et al. Liposomes for drug delivery to the lungs by nebulization. Eur J Pharm Biopharm 2007;67:655–66
  • Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol Bioeng 2007;96:381–91
  • Budai L, Hajdú M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm 2007;343:34–40
  • Gupta B, Levchenko TS, Torchilin VP. TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res 2006;16:351–9
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996;93:14164–9
  • Lee HJ, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 2000;292:1048–52
  • Olivier J-C, Huertas R, Lee HJ, et al. Synthesis of pegylated immunonanoparticles. Pharm Res 2002;19:1137–43
  • Pardridge WM, Boado RJ, Kang Y-S. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci USA 1995;92:5592–6
  • Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res 2001;889:49–56
  • Feng B, Tomizawa K, Michiue H, et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 2009;30:1746–55
  • Gaillard PJ, Appeldoorn CC, Dorland R, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One 2014;9:e82331
  • Calvo P, Remunan-Lopez C, Vila-Jato J, Alonso M. Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid Polym Sci 1997;275:46–53
  • Douglas S, Davis S, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 1987;3:233–68
  • Garg T, Rath G, Goyal AK. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol 2015. [Epub ahead of print]. doi: 10.3109/21691401.2015.1008508
  • Gref R, Couvreur P, Barratt G, Mysiakine E. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 2003;24:4529–37
  • Kumar S, Jana AK, Dhamija I, Maiti M. Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J Drug Target 2014;22:123–37
  • Garg T, Goyal AK, Arora S, Murthy R. Development, optimization & evaluation of porous chitosan scaffold formulation of gliclazide for the treatment of type-2 diabetes mellitus. Drug Deliv Lett 2012;2:251–61
  • Garg T, Rath G. Development, optimization and evaluation ofelectrospun nanofibers: tool fortargeted vaginal delivery of antimicrobials against urinary tract infections. Curr Drug Deliv 2015. [Epub ahead of print]. doi: 10.2174/1567201812666150212123348
  • Kumar A, Garg T, Sarma GS, et al. Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design. Eur J Pharm Sci 2015;70C:140–51
  • Ilium L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998;15:1326–31
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 2004;100:5–28
  • Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008;29:487–96
  • Chertok B, David AE, Huang Y, Yang VC. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 2007;122:315–23
  • Tsutsui Y, Tomizawa K, Nagita M, et al. Development of bionanocapsules targeting brain tumors. J Control Release 2007;122:159–64
  • Cheng Q, Feng J, Li F. Brain delivery of neurotoxin-I-loaded nanoparticles through intranasal administration. Acta Pharm Sin 2008;43:431–4
  • Liu M, Li H, Luo G, et al. Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res 2008;31:547–54
  • Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008;29:4429–38
  • Gelperina S, Maksimenko O, Khalansky A, et al. Drug delivery to the brain using surfactant-coated poly (lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 2010;74:157–63
  • Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997;14:325–8
  • Wilson B, Samanta MK, Santhi K, et al. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly (n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 2008;70:75–84
  • Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 2009;137:78–86
  • Gao H, Qian J, Cao S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 2012;33:5115–23
  • Gao H, Yang Z, Zhang S, et al. Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. J Control Release 2013;172:921–8
  • Gao H, Qian J, Yang Z, et al. Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(epsilon-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials 2012;33:6264–72
  • Gao H, Yang Z, Cao S, et al. Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles. Nanotechnology 2012;23:435101
  • Gao H, Hu Y, Xiong Y, et al. Glioma targeting and anti-glioma effect of interleukin 13 peptide and RGD peptide dual functionalized nanoparticles. Curr Pharm Biotechnol 2014;14:1118–26
  • Gao H, Xiong Y, Zhang S, et al. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm 2014;11:1042–52
  • Gao H, Yang Z, Cao S, et al. Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials 2014;35:2374–82
  • Gao H, Wang Y, Chen C, et al. Incorporation of lapatinib into core-shell nanoparticles improves both the solubility and anti-glioma effects of the drug. Int J Pharm 2014;461:478–88
  • Ruan S, Yuan M, Zhang L, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015;37:425–35
  • Müller R, Lucks J. Arzneistoffträger aus festen lipidteilchen, feste lipidnanosphären (sln). European patent, 605497; 1996
  • Zhu X, Huang S, Huang H, et al. In vitro and in vivo anti-cancer effects of targeting and photothermal sensitive solid lipid nanoparticles. J Drug Target 2014;22:822–8
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–77
  • Smith A. Evaluation of poly (lactic acid) as a biodegradable drug delivery system for parenteral administration. Int J Pharm 1986;30:215–20
  • Du J, Lu W-L, Ying X, et al. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood−brain barrier and survival of brain tumor-bearing animals. Mol Pharm 2009;6:905–17
  • Yanagië H, Ogata A, Sugiyama H, et al. Application of drug delivery system to boron neutron capture therapy for cancer. Expert Opin Drug Deliv 2008;5:427–43
  • Brioschi AM, Calderoni S, Zara GP, et al. Chapter 11 – Solid lipid nanoparticles for brain tumors therapy: state of the art and novel challenges. Prog Brain Res 2009;180:193–223
  • Müller R, Radtke M, Wissing S. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121–8
  • Gill KK, Kaddoumi A, Nazzal S. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J Drug Target 2015;23:222–31
  • Sharma AK, Garg T, Goyal AK, Rath G. Role of microemuslsions in advanced drug delivery. Artif Cells Nanomed Biotechnol 2015. [Epub ahead of print]. doi: 10.3109/21691401.2015.1012261
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008;130:98–106
  • Liu L, Guo K, Lu J, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials 2008;29:1509–17
  • Soni S, Babbar AK, Sharma RK, Maitra A. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 2006;14:87–95
  • Inoue T, Yamashita Y, Nishihara M, et al. Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models. Neuro-oncology 2009;11:151–7
  • Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 2013;7:8583–92
  • Garg T, Singh O, Arora S, Murthy R. Dendrimer – a novel scaffold for drug delivery. Int J Pharm Sci Rev Res 2011;7:211–20
  • Kim JH, Yoon HJ, Sim J, et al. The effects of dendrimer size and central metal ions on photosensitizing properties of dendrimer porphyrins. J Drug Target 2014;22:610–18
  • Esfand R, Tomalia DA. Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001;6:427–36
  • Kailasan A, Yuan Q, Yang H. Synthesis and characterization of thermoresponsive polyamidoamine–polyethylene glycol–poly (d,l-lactide) core–shell nanoparticles. Acta Biomater 2010;6:1131–9
  • Sarkar K, Yang H. Encapsulation and extended release of anti-cancer anastrozole by stealth nanoparticles. Drug Deliv 2008;15:343–6
  • Yang H, Lopina ST. Stealth dendrimers for antiarrhythmic quinidine delivery. J Mate Sci Mater Med 2007;18:2061–5
  • Wiwattanapatapee R, Carreño-Gómez B, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 2000;17:991–8
  • Jevprasesphant R, Penny J, Attwood D, D'Emanuele A. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release 2014;97:259–67
  • Dhanikula RS, Argaw A, Bouchard J-F, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008;5:105–16
  • Zhang X-Q, Intra J, Salem AK. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery. Bioconjug Chem 2007;18:2068–76
  • He H, Li Y, Jia XR, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011;32:478–87
  • Garg T, Kumar A, Rath G, Goyal AK. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer. Crit Rev Ther Drug Carrier Syst 2014;31:531–57
  • Garg T, Rath G, Goyal AK. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv 2014d. [Epub ahead of print]. doi: 10.3109/10717544.2013.879355
  • Garg T, Rath G, Goyal AK. Ancient and advanced approaches for the treatment of an inflammatory autoimmune disease-psoriasis. Crit Rev Ther Drug Carrier Syst 2014;31:331–64
  • Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 2006;12:1317–24
  • Foote M. Using nanotechnology to improve the characteristics of antineoplastic drugs: improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel. Biotechnol Annu Rev 2007;13:345–57
  • Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008;60:876–85
  • Henderson IC, Bhatia V. Nab-paclitaxel for breast cancer: a new formulation with an improved safety profile and greater efficacy. Exp Rev Anticancer Ther 2007;7:919–43
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 2008;132:171–83
  • Miele E, Spinelli GP, Miele E, et al. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed 2009;4:99–105
  • Paál K, Müller J, Hegedûs L. High affinity binding of paclitaxel to human serum albumin. Eur J Biochem 2001;268:2187–91
  • Purcell M, Neault J, Tajmir-Riahi H. Interaction of taxol with human serum albumin. Biochim Biophys Acta 2000;1478:61–8
  • Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target 2014;23:202–21
  • Brown TJ, Shaw PA, Karp X, et al. Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecol Oncol 1999;75:25–33
  • Kim YW, Park Y-K, Lee J. Expression of osteopontin and osteonectin. J Korean Med Sci 1998;13:652–7
  • Porter PL, Sage EH, Lane TF, et al. Distribution of SPARC in normal and neoplastic human tissue. J Histochem Cytochem 1995;43:791–800
  • Thomas R, True LD, Bassuk JA, et al. Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin Cancer Res 2000;6:1140–9
  • Trieu V, Damascelli B, Soon-Shiong P, Desai N. SPARC expression in head and neck cancer correlates with tumor response to nanoparticle albumin-bound paclitaxel (nab-paclitaxel, ABI-007, Abraxane). Proc Am Assoc Cancer Res 2006;2006:1050
  • Desai N, Trieu V, Yao R, et al. SPARC expression in breast tumors may correlate to increased tumor distribution of nanoparticle albumin-bound paclitaxel (ABI-007) vs Taxol. Breast Cancer Research and Treatment. New York, NY: Springer; 2004:S26–7
  • Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007;357:2666–76
  • Wilson B, Lavanya Y, Priyadarshini SR, et al. Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm 2014;473:73–9
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 2004;4:105–28
  • Ratcheson RA, Ommaya AK. Experience with the subcutaneous cerebrospinal-fluid reservoir: preliminary report of 60 cases. N Engl J Med 1968;279:1025–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.