216
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Cytotoxicity and apoptotic gene expression in an in vitro model of the blood–brain barrier following exposure to poly(butylcyanoacrylate) nanoparticles

, , , , , , , , , , & show all
Pages 635-644 | Received 25 Aug 2015, Accepted 03 Dec 2015, Published online: 05 Feb 2016

References

  • Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge (NY): Cambridge University Press; 2001. xvii, 353 p., 4 plates p.
  • Fernandes C, Soni U, Patravale V. Nano-interventions for neurodegenerative disorders. Pharmacol Res 2010;62:166–78.
  • Omidi Y, Barar J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. Bioimpacts 2012;2:5–22.
  • Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 2002;38:323–37.
  • Pardridge WM. Alzheimer's disease drug development and the problem of the blood-brain barrier. Alzheimers Dement 2009;5:427–32.
  • Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 2008;3:83–94.
  • Kolter M, Ott M, Hauer C, et al. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release 2015;197:165–79.
  • Reimold I, Domke D, Bender J, et al. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm 2008;70:627–32.
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995;674:171–4.
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009;17:564–74.
  • Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010;27:1759–71.
  • Schneider T, Becker A, Ringe K, et al. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008;195:21–7.
  • Darius J, Meyer FP, Sabel BA, Schroeder U. Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J Pharm Pharmacol 2000;52:1043–7.
  • Schroeder U, Schroeder H, Sabel BA. Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after i.v. injections to mice. Life Sci 2000;66:495–502.
  • Schroeder U, Sommerfeld P, Sabel BA. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides 1998;19:777–80.
  • Schroder U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res 1996;710:121–4.
  • Sommerfeld P, Sabel BA, Schroeder U. Long-term stability of PBCA nanoparticle suspensions. J Microencapsul 2000;17:69–79.
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81.
  • Steiniger SC, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004;109:759–67.
  • Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999;16:1564–9.
  • Schroeder U, Sabel BA, Schroeder H. Diffusion enhancement of drugs by loaded nanoparticles in vitro. Prog Neuropsychopharmacol Biol Psychiatry 1999;23:941–9.
  • Wang CX, Huang LS, Hou LB, et al. Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 2009;1261:91–9.
  • Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori 2008;94:271–7.
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013;65:157–70.
  • Wang S, Konorev EA, Kotamraju S, et al. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem 2004;279:25535–43.
  • Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185–229.
  • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;57:727–41.
  • Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 2009;16:3267–85.
  • Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 2000;275:33585–92.
  • Tacar O, Dass CR. Doxorubicin-induced death in tumour cells and cardiomyocytes: is autophagy the key to improving future clinical outcomes? J Pharm Pharmacol 2013;65:1577–89.
  • Riad A, Bien S, Gratz M, et al. Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart Fail 2008;10:233–43.
  • Usta Y, Ismailoglu UB, Bakkaloglu A, et al. Effects of pentoxifylline in adriamycin-induced renal disease in rats. Pediatr Nephrol 2004;19:840–3.
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005;2:108–19.
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008;105:11613–18.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3:16–20.
  • Voigt N, Henrich-Noack P, Kockentiedt S, et al. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Eur J Pharm Biopharm 2014;87:19–29.
  • Gelperina S, Maksimenko O, Khalansky A, et al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 2010;74:157–63.
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007;1:42–51.
  • Weiss C, Kohnle M, Landfester K, et al. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. ChemMedChem 2008;3:1395–403.
  • Garcia-Garcia E, Gil S, Andrieux K, et al. A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci 2005;62:1400–8.
  • Szabo CA, Deli MA, Ngo TK, Joo F. Production of pure primary rat cerebral endothelial cell culture: a comparison of different methods. Neurobiology (Bp) 1997;5:1–16.
  • Garcia CM, Darland DC, Massingham LJ, D'Amore PA. Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res 2004;152:25–38.
  • de Boer AG, Gaillard PJ. In vitro models of the blood-brain barrier: when to use which? Curr Med Chem Central Nerv Syst Agents 2002;2:203–9.
  • Garberg P, Ball M, Borg N, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro 2005;19:299–334.
  • Ashikawa K, Shishodia S, Fokt I, et al. Evidence that activation of nuclear factor-kappaB is essential for the cytotoxic effects of doxorubicin and its analogues Biochem Pharmacol 2004;67:353–64.
  • Mathew SJ, Haubert D, Kronke M, Leptin M. Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 2009;122:1939–46.
  • Eum HA, Vallabhaneni R, Wang Y, et al. Characterization of DISC formation and TNFR1 translocation to mitochondria in TNF-α-treated hepatocytes. . Am J Pathol 2011;179:1221–9.
  • Schneider-Brachert W, Tchikov V, Neumeyer J, et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 2004;21:415–28.
  • Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14:2060–71.
  • Kutuk O, Temel SG, Tolunay S, Basaga H. Aven blocks DNA damage-induced apoptosis by stabilising Bcl-xL Eur J Cancer 2010;46:2494–505.
  • Melzer IM, Fernandez SB, Bosser S, et al. The Apaf-1-binding protein Aven is cleaved by Cathepsin D to unleash its anti-apoptotic potential Cell Death Differ 2012;19:1435–45.
  • Sole C, Dolcet X, Segura MF, et al. The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-kapp B signaling J Cell Biol 2004;167:479–92.
  • Ryu SW, Choi K, Yoon J, et al. Endoplasmic reticulum-specific BH3-only protein BNIP1 induces mitochondrial fragmentation in a Bcl-2- and Drp1-dependent manner J Cell Physiol 2012;227:3027–35.
  • Chen Z, Guo K, Toh SY, et al. Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis J Biol Chem 2000;275:22619–22.
  • Punsawad C, Maneerat Y, Chaisri U, et al. Nuclear factor kappa B modulates apoptosis in the brain endothelial cells and intravascular leukocytes of fatal cerebral malaria. Malar J 2013;12:260.
  • Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004;72:111–27.
  • Chiosi E, Spina A, Sorrentino A, et al. Change in TNF-alpha receptor expression is a relevant event in doxorubicin-induced H9c2 cardiomyocyte cell death. J Interferon Cytokine Res 2007;27:589–97.
  • Gopinath S, Vanamala SK, Gujrati M, et al. Doxorubicin-mediated apoptosis in glioma cells requires NFAT3. Cell Mol Life Sci 2009;66:3967–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.