93
Views
1
CrossRef citations to date
0
Altmetric
NEUROBIOLOGYEditor: Rakesh Karmacharya, MD, PhD

The Relevance of Caenorhabditis elegans Genetics for Understanding Human Psychiatric Disease

, PhD, , BS & , MD, PhD
Pages 210-218 | Published online: 26 Jul 2011

REFERENCES

  • Fauci AS, Braunwald E, Kasper DL, , eds. Harrison's principles of internal medicine. 17th ed. New York: McGraw-Hill Medical, 2008.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77:71–94.
  • Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science 1998;282:2028–33.
  • Benes FM, Lim B, Matzilevich D, Subburaju S, Walsh JP. Circuitry-based gene expression profiles in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc Natl Acad Sci U S A 2008;105:20935–40.
  • Jin Y, Jorgensen E, Hartwieg E, Horvitz HR. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 1999;19:539–48.
  • Bamber BA, Beg AA, Twyman RE, Jorgensen EM. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J Neurosci 1999;19:5348–59.
  • Dittman JS, Kaplan JM. Behavioral impact of neurotransmitter-activated G-protein–coupled receptors: muscarinic and GABAB receptors regulate Caenorhabditis elegans locomotion. J Neurosci 2008;28:7104–12.
  • Beg AA, Jorgensen EM. EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 2003;6:1145–52.
  • McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM. Identification and characterization of the vesicular GABA transporter. Nature 1997;389:870–6.
  • White JG, Southgate, E, Thomson, JN, Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans Royal Soc London Series B, Biol Science 1986;314:1–340.
  • Trent C, Tsuing N, Horvitz HR. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 1983;104:619–47.
  • Horvitz HR, Sternberg PW. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature 1991;351:535–41.
  • Silva AJ, Elgersma Y, Costa RM. Molecular and cellular mechanisms of cognitive function: implications for psychiatric disorders. Biol Psychiatry 2000;47:200–9.
  • Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999;59:1701s–6s.
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11.
  • Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med 2008;40:197–208.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.
  • Reinhart BJ, Slack FJ, Basson M, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000;403:901–6.
  • Hansen T, Olsen L, Lindow M, Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2007;2:e873.
  • Levitan D, Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 1995;377:351–4.
  • Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 1999;398:522–5.
  • De Strooper B. Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 2003;38:9–12.
  • Kopan R, Ilagan MX. Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 2004;5:499–504.
  • Selkoe DJ, Wolfe MS. Presenilin: running with scissors in the membrane. Cell 2007;131:215–21.
  • Carlezon WA, Jr., Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci 2005;28:436–45.
  • Zubenko GS, Hughes HB 3rd, Stiffler JS, Sequence variations in CREB1 cosegregate with depressive disorders in women. Mol Psychiatry 2003;8:611–8.
  • Zhang X, Gainetdinov RR, Beaulieu JM, Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005;45:11–6.
  • Blendy JA. The role of CREB in depression and antidepressant treatment. Biol Psychiatry 2006;59:1144–50.
  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 2000;403:560–4.
  • Zubenko GS, Jones ML, Estevez AO, Hughes HB 3rd, Estevez M. Identification of a CREB-dependent serotonergic pathway and neuronal circuit regulating foraging behavior in Caenorhabditis elegans: a useful model for mental disorders and their treatments? Am J Med Genet B Neuropsychiatr Genet 2009;150B:12–23.
  • Jamain S, Quach H, Betancur C, Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003;34:27–9.
  • Szatmari P, Paterson AD, Zwaigenbaum L, Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007;39:319–28.
  • Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008;9:341–55.
  • Kirov G, Gumus D, Chen W, Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008;17:458–65.
  • Walsh T, McClellan JM, McCarthy SE, Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008;320:539–43.
  • Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008;455:903–11.
  • Calahorro F, Alejandre E, Ruiz-Rubio M. Osmotic avoidance in Caenorhabditis elegans: synaptic function of two genes, orthologues of human NRXN1 and NLGN1, as candidates for autism. In: J Vis Exp; 2009; Dec 11. http://www.jove.com/Details.stp?ID =1616
  • Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 2010;3:366–76.
  • Feng Z, Li W, Ward A, A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 2006;127:621–33.
  • Ward A, Walker VJ, Feng Z, Xu XZ. Cocaine modulates locomotion behavior in C. elegans. PLoS One 2009;4:e5946.
  • Davies AG, Pierce-Shimomura JT, Kim H, A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 2003;115:655–66.
  • Davies AG, Bettinger JC, Thiele TR, Judy ME, McIntire SL. Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron 2004;42:731–43.
  • Kapfhamer D, Bettinger JC, Davies AG, Loss of RAB-3/A in Caenorhabditis elegans and the mouse affects behavioral response to ethanol. Genes Brain Behav 2008;7:669–76.
  • Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY. Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 2005;169:1425–36.
  • Karmacharya R, Sliwoski GR, Lundy MY, Suckow RF, Cohen BM, Buttner EA. Clozapine interaction with phosphatidyl inositol 3-kinase (PI3K)/insulin-signaling pathway in Caenorhabditis elegans. Neuropsychopharmacology 2009;34:1968–78.
  • Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS. Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 2008;86:2553–63.
  • Donohoe DR, Jarvis RA, Weeks K, Aamodt EJ, Dwyer DS. Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition. Neurosci Res 2009;64:280–9.
  • Evason K, Collins JJ, Huang C, Hughes S, Kornfeld K. Valproic acid extends Caenorhabditis elegans lifespan. Aging Cell 2008;7:305–17.
  • Tokuoka SM, Saiardi A, Nurrish SJ. The mood stabilizer valproate inhibits both inositol- and diacylglycerol-signaling pathways in Caenorhabditis elegans. Mol Biol Cell 2008;19:2241–50.
  • Choy RK, Thomas JH. Fluoxetine-resistant mutants in C. elegans define a novel family of transmembrane proteins. Mol Cell 1999;4:143–52.
  • Choy RK, Kemner JM, Thomas JH. Fluoxetine-resistance genes in Caenorhabditis elegans function in the intestine and may act in drug transport. Genetics 2006;172:885–92.
  • Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988;45:789–96.
  • Kumra S, Kranzler H, Gerbino-Rosen G, Clozapine and “high-dose” olanzapine in refractory early-onset schizophrenia: a 12-week randomized and double-blind comparison. Biol Psychiatry 2008;63:524–9.
  • Krupp P, Barnes P. Clozapine-associated agranulocytosis: risk and aetiology. Br J Psychiatry Suppl 1992: May;38–40.
  • Meltzer HY. What's atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 2004;4:53–7.
  • Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996;93:8455–9.
  • Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997;185:82–91.
  • Gould TD, Einat H, O'Donnell KC, Picchini AM, Schloesser RJ, Manji HK. Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. Neuropsychopharmacology 2007;32:2173–83.
  • Weeks KR, Dwyer DS, Aamodt EJ. Antipsychotic drugs activate the C. elegans Akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci 2010;1:463–73.
  • Kalkman HO. The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 2006;110:117–34.
  • Kim M, Hersh LB, Leissring MA, Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families. J Biol Chem 2007;282:7825–32.
  • Girgis RR, Javitch JA, Lieberman JA. Antipsychotic drug mechanisms: links between therapeutic effects, metabolic side effects and the insulin signaling pathway. Mol Psychiatry 2008;13:918–29.
  • Moy TI, Conery AL, Larkins-Ford J, High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009;4:527–33.
  • Best JD, Alderton WK. Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat 2008;4:567–76.
  • Lam SH, Mathavan S, Tong Y, Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology. PLoS Genet 2008;4: e1000121.
  • Lieberman JA, Stroup TS, McEvoy JP, Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353:1209–23.
  • Swartz MS, Perkins DO, Stroup TS, Effects of antipsychotic medications on psychosocial functioning in patients with chronic schizophrenia: findings from the NIMH CATIE study. Am J Psychiatry 2007;164:428–36.
  • Gray JA, Roth BL. The pipeline and future of drug development in schizophrenia. Mol Psychiatry 2007;12:904–22.
  • Santarelli L, Saxe M, Gross C, Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805–9.
  • Ahringer J. Turn to the worm! Curr Opin Genet Dev 1997;7:410–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.