4,851
Views
393
CrossRef citations to date
0
Altmetric
Review Article

Chemistry and biochemistry of lipid peroxidation products

, , , , , , , & show all
Pages 1098-1124 | Received 29 Mar 2010, Published online: 13 Sep 2010

References

  • Gray JI, Monahan FJ. Measurement of lipid oxidation in meat and meat products. Trends Food Sci Technol 1992;3:315–319.
  • Kubow S. Routes of formation and toxic consequences of lipid oxidation products in foods. Free Radic Biol Med 1992;12:63–81.
  • Edreva AM, Georgieva ID, Cholakova NI. Pathogenic and non-pathogenic stress effects on peroxidases in leaves of tobacco. Environ Exp Bot 1989;29:365–373, 375–377.
  • Galliard T, Phillips DR, Matthew JA. Enzymic reactions of fatty acid hydroperoxides in extracts of potato tuber II. Conversion of 9- and 13-hydroperoxy-octadecadienoic acids to monohydroxydienoic acid, epoxyhydroxy- and trihydroxymonoenoic acid derivatives. Biochim Biophys Acta Lipids Lipid Metab 1975;409:157–171.
  • Hailstones MD, Smith MT. Lipid peroxidation in relation to decilning vigour in seeds of soya (Glycine max L.) and cabbage (Brassica oleraceae L.). J Plant Physiol 1988;133:452–456.
  • Gardner HW. Sequential enzymes of linoleic acid oxidation in corn germ: lipoxygenase and linoleate hydroperoxide isomerase. J Lipid Res 1970;11:311–321.
  • Dix TA, Aikens J. Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 1993;6:2–18.
  • Esterbauer H. Aldehydic products of lipid peroxidation. Mc Brien DC, Slater TF. Free radicals, lipid peroxidation and cancer. London, UK: Academic Press; 1982. 101–128.
  • Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutrition 1993; 57:S715–S724.
  • Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 1993;57:S779–S785.
  • Uchida K. Future of Toxicology/Lipid Peroxidation in the Future:From Biomarker to Etiology. Chem Res Toxicol 2006;20:3–5.
  • Murphy RC, Johnson KM. Cholesterol, Reactive Oxygen Species, and the Formation of Biologically Active Mediators. J Biol Chem 2008;283:15521–15525.
  • Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 2005;338:668–676.
  • Smith WL, Murphy RC. Oxidized Lipids Formed Non-enzymatically by Reactive Oxygen Species. J Biol Chem 2008;283:15513–15514.
  • Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995;30:277–292.
  • Gardner HW. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med 1989;7:65–86.
  • Spiteller P, Kern W, Reiner J, Spiteller G. Aldehydic lipid peroxidation products derived from linoleic acid. Biochim Biophys Acta Mol Cell Biol L 2001;1531:188–208.
  • Cheng ZY, Li YZ. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: An update. Chemical Reviews 2007;107:748–766.
  • Min B, Ahn DU. Mechanism of lipid peroxidation in meat and meat products - A review. Food Sci Biotechnol 2005; 14:152–163.
  • Jones CM, Burkitt MJ. EPR Spin-Trapping Evidence for the Direct, One-Electron Reduction of tert-Butylhydroperoxide to the tert-Butoxyl Radical by Copper(II): Paradigm for a Previously Overlooked Reaction in the Initiation of Lipid Peroxidation. J Am Chem Soc 2003;125:6946–6954.
  • Poli G, Dianzani MU, Cheeseman KH, Slater TF, Lang J, Esterbauer H. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem J 1985;227:629–638.
  • Hogg N, Kalyanaraman B. Nitric oxide and lipid peroxidation. BBA Bioenergetics 1999;1411:378–384.
  • Morita M, Tokita M. The real radical generator other than main-product hydroperoxide in lipid autoxidation. Lipids 2006;41:91–95.
  • Schneider C, Porter NA, Brash AR. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 2008;283:15539–15543.
  • Niki E, Noguchi N. Evaluation of antioxidant capacity. What capacity is being measured by which method? IUBMB Life 2000;50:323–329.
  • Casalino E, Sblano C, Landriscina C. A possible mechanism for initiation of lipid peroxidation by ascorbate in rat liver microsomes. Int J Biochem Cell Biol 1996;28:137–149.
  • Neuzil J, Thomas SR, Stocker R. Requirement for, Promotion, or Inhibition by -Tocopherol of Radical-Induced Initiation of Plasma Lipoprotein Lipid Peroxidation. Free Radic Biol Med 1997;22:57–71.
  • Witting PK, Upston JM, Stocker R. Role of α-Tocopheroxyl Radical in the Initiation of Lipid Peroxidation in Human Low-Density Lipoprotein Exposed to Horse Radish Peroxidase. Biochemistry 1997;36:1251–1258.
  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science 1987;235:1043–1046.
  • Joshi M, Billing BH, Hallinan T. Dietary modulation of plasma bilirubin and of hepatic microsomal lipid peroxidation in the Gunn rat. Free Radic Res 1991;11:287–293.
  • Frankel EN. Volatile lipid oxidation products. Prog Lipid Res 1982;22:1–33.
  • Nakamura T, Toyomizu M. Lipid degradation products capable of reacting with amino acid. Identification of 4–hydroxy–2–hexenal, 9–formyl methyl-8-nonenoate, and 10-formyl methyl-9-decenoate from autoxidized methyl linolenate. Bull Jp Soc Sci Fisheries 1977;43:1097–1104.
  • Shibamoto T. Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J Pharm Biomed Anal 2006;41:12–25.
  • Kneepkens CMF, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic Biol Med 1994;17:127–160.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128.
  • Pryor WA, Stanley JP. Suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymic production of prostaglandin endoperoxides during autoxidation. J Org Chem 1975;40:3615–3617.
  • Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004;142:231–255.
  • Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008;52:7–25.
  • Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003;42:318–343.
  • Gasc N, Tache S, Rathahao E, Bertrand-Michel J, Roques V, Gueraud F. 4-hydroxynonenal in foodstuffs: heme concentration, fatty acid composition and freeze-drying are determining factors. Redox Rep 2007;12:40–44.
  • Esterbauer H, Weger W. Uber die Wirkungen von Aldehyden auf gesunde und maligne Zellen, 3. Mitt. : Synthese von homologen 4-hydroxy-2-alkenalen. Monatsh Chem 1967;98:1994–2000.
  • Kurangi RF, Tilve SG, Blair IA. Convenient and efficient syntheses of 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal. Lipids 2006;41:877–880.
  • Lee SH, Blair IA. Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chem Res Toxicol 2000;13:698–702.
  • Schneider C, Tallman KA, Porter NA, Brash AR. Two Distinct Pathways of Formation of 4-Hydroxynonenal. J Biol Chem 2001;276:20831–20838.
  • Gardner HW, Hamberg M. Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L.). J Biol Chem 1993;268:6971–6977.
  • Van Kuijk FJGM, Holte LL, Dratz EA. 4-Hydroxyhexenal: A lipid peroxidation product derived from oxidized docosahexaenoic acid. Biochim 1 Acta Lipids Lipid Metab 1990;1043:116–118.
  • Segall H, Wilson D, Dallas J, Haddon W. trans-4-Hydroxy-2-hexenal: a reactive metabolite from the macrocyclic pyrrolizidine alkaloid senecionine. Science 1985;229:472–475.
  • Rindgen D, Nakajima M, Wehrli S, Xu K, Blair IA. Covalent Modifications to 2’-Deoxyguanosine by 4-Oxo-2-nonenal, a Novel Product of Lipid Peroxidation. Chem Res Toxicol 1999;12:1195–1204.
  • Kuiper HC, Miranda CL, Sowell JD, Stevens JF. Mercapturic Acid Conjugates of 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal Metabolites Are in Vivo Markers of Oxidative Stress. J Biol Chem 2008;283:17131–17138.
  • Ward JP, van Dorp DA. A stereospecific synthesis of 4-oxo-2trans-hexenal. Recl Trav Chim Pays-Bas 1969;88:989–993.
  • Maekawa M, Kawai K, Takahashi Y, Nakamura H, Watanabe T, Sawa R, Hachisuka K, Kasai H. Identification of 4-Oxo-2-hexenal and Other Direct Mutagens Formed in Model Lipid Peroxidation Reactions as dGuo Adducts. Chem Res Toxicol 2005;19:130–138.
  • Kawai K, Matsuno K, Kasai H. Detection of 4-oxo-2-hexenal, a novel mutagenic product of lipid peroxidation, in human diet and cooking vapor. Mutat Res Genet Toxicol Environ Mutagen 2006;603:186–192.
  • Lee SH, Oe T, Blair IA. Vitamin C-Induced Decomposition of Lipid Hydroperoxides to Endogenous Genotoxins. Science 2001;292:2083–2086.
  • Lin J, Fay LB, Welti DH, Blank I. Quantification of key odorants formed by autoxidation of arachidonic acid using isotope dilution assay. Lipids 2001;36:749–756.
  • Jian W, Arora JS, Oe T, Shuvaev VV, Blair IA. Induction of endothelial cell apoptosis by lipid hydroperoxide-derived bifunctional electrophiles. Free Radic Biol Med 2005;39:1162–1176.
  • Gallasch B, Spiteller G. Synthesis of 9,12-dioxo-10(Z)-dodecenoic acid, a new fatty acid metabolite derived from 9-hydroperoxy-10,12-octadecadienoic acid in lentil seed (Lens culinaris Medik.). Lipids 2000;35:953–960.
  • Alary J, Gueraud F, Cravedi JP. Fate of 4-hydroxynonenal in vivo: disposition and metabolic pathways. Mol Aspects Med 2003;24:177–187.
  • Siems W, Grune T. Intracellular metabolism of 4-hydroxynonenal. Mol Aspects Med 2003;24:167–175.
  • Balogh LM, Le Trong I, Kripps KA, Shireman LM, Stenkamp RE, Zhang W, Mannervik B, Atkins WM. Substrate specificity combined with stereopromiscuity in glutathione transferase A4–4-dependent metabolism of 4-hydroxynonenal. Biochemistry 2010;49:1541–1548.
  • Dick RA, Kwak MK, Sutter TR, Kensler TW. Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J Biol Chem 2001;276:40803–40810.
  • Srivastava S, Chandra A, Bhatnagar A, Srivastava SK, Ansari NH. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun 1995; 217:741–746.
  • Zhong L, Liu Z, Yan R, Johnson S, Zhao Y, Fang X, Cao D. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels. Biochem Biophys Res Commun 2009;387:245–250.
  • Marchette LD, Thompson DA, Kravtsova M, Ngansop TN, Mandal MN, Kasus-Jacobi A. Retinol dehydrogenase 12 detoxifies 4-hydroxynonenal in photoreceptor cells. Free Radic Biol Med 2010;48:16–25.
  • Demozay D, Mas JC, Rocchi S, Van Obberghen E. FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3T3-L1 adipocytes. Diabetes 2008;57:1216–1226.
  • Aldini G, Granata P, Marinello C, Beretta G, Carini M, Facino RM. Effects of UVB radiation on 4-hydroxy-2-trans-nonenal metabolism and toxicity in human keratinocytes. Chem Res Toxicol 2007;20:416–423.
  • Cheng JZ, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC. Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 2001;276:41213–41223.
  • Yang Y, Sharma A, Sharma R, Patrick B, Singhal SS, Zimniak P, Awasthi S, Awasthi YC. Cells preconditioned with mild, transient UVA irradiation acquire resistance to oxidative stress and UVA-induced apoptosis: role of 4-hydroxynonenal in UVA-mediated signaling for apoptosis. J Biol Chem 2003;278:41380–41388.
  • Alary J, Debrauwer L, Fernandez Y, Paris A, Cravedi JP, Dolo L, Rao D, Bories G. Identification of novel urinary metabolites of the lipid peroxidation product 4-hydroxy-2-nonenal in rats. Chem Res Toxicol 1998;11:1368–1376.
  • Alary J, Fernandez Y, Debrauwer L, Perdu E, Gueraud F. Identification of intermediate pathways of 4-hydroxynonenal metabolism in the rat. Chem Res Toxicol 2003;16:320–327.
  • Gueraud F, Alary J, Costet P, Debrauwer L, Dolo L, Pineau T, Paris A. In vivo involvement of cytochrome P450 4A family in the oxidative metabolism of the lipid peroxidation product trans-4-hydroxy-2-nonenal, using PPARalpha-deficient mice. J Lipid Res 1999;40:152–159.
  • Honzatko A, Brichac J, Picklo MJ. Quantification of trans-4-hydroxy-2-nonenal enantiomers and metabolites by LC-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007;857:115–122.
  • Alary J, Bravais F, Cravedi JP, Debrauwer L, Rao D, Bories G. Mercapturic acid conjugates as urinary end metabolites of the lipid peroxidation product 4-hydroxy-2-nonenal in the rat. Chem Res Toxicol 1995;8:34–39.
  • de Zwart LL, Hermanns RC, Meerman JH, Commandeur JN, Vermeulen NP. Disposition in rat of [2–3H]-trans-4-hydroxy-2,3-nonenal, a product of lipid peroxidation. Xenobiotica 1996;26:1087–1100.
  • Winter CK, Segall HJ, Jones AD. Distribution of trans-4-hydroxy-2-hexenal and tandem mass spectrometric detection of its urinary mercapturic acid in the rat. Drug Metab Dispos 1987;15:608–612.
  • Alary J, Debrauwer L, Fernandez Y, Cravedi JP, Rao D, Bories G. 1,4-Dihydroxynonene mercapturic acid, the major end metabolite of exogenous 4-hydroxy-2-nonenal, is a physiological component of rat and human urine. Chem Res Toxicol 1998;11:130–135.
  • Gueraud F, Peiro G, Bernard H, Alary J, Creminon C, Debrauwer L, Rathahao E, Drumare MF, Canlet C, Wal JM, Bories G. Enzyme immunoassay for a urinary metabolite of 4-hydroxynonenal as a marker of lipid peroxidation. Free Radic Biol Med 2006;40:54–62.
  • Peiro G, Alary J, Cravedi JP, Rathahao E, Steghens JP, Gueraud F. Dihydroxynonene mercapturic acid, a urinary metabolite of 4-hydroxynonenal, as a biomarker of lipid peroxidation. Biofactors 2005;24:89–96.
  • Pierre F, Peiro G, Tache S, Cross AJ, Bingham SA, Gasc N, Gottardi G, Corpet DE, Gueraud F. New marker of colon cancer risk associated with heme intake: 1,4-dihydroxynonane mercapturic acid. Cancer Epidemiol Biomarkers Prev 2006;15:2274–2279.
  • Kuiper HC, Langsdorf BL, Miranda CL, Joss J, Jubert C, Mata JE, Stevens JF. Quantitation of mercapturic acid conjugates of 4-hydroxy-2-nonenal and 4-oxo-2-nonenal metabolites in a smoking cessation study. Free Radic Biol Med 2010;48:65–72.
  • Goicoechea E, Van Twillert K, Duits M, Brandon ED, Kootstra PR, Blokland MH, Guillen MD. Use of an in vitro digestion model to study the bioaccessibility of 4-hydroxy-2-nonenal and related aldehydes present in oxidized oils rich in omega-6 acyl groups. J Agri Food Chem 2008;56:8475–8483.
  • Enoiu M, Herber R, Wennig R, Marson C, Bodaud H, Leroy P, Mitrea N, Siest G, Wellman M. gamma-Glutamyltranspeptidase-dependent metabolism of 4-hydroxynonenal-glutathione conjugate. Arch Biochem Biophys 2002;397:18–27.
  • Hashmi M, Vamvakas S, Anders MW. Bioactivation mechanism of S-(3-oxopropyl)-N-acetyl-L-cysteine, the mercapturic acid of acrolein. Chem Res Toxicol 1992;5:360–365.
  • Yang Y, Trent MB, He N, Lick SD, Zimniak P, Awasthi YC, Boor PJ. Glutathione-S-transferase A4–4 modulates oxidative stress in endothelium: possible role in human atherosclerosis. Atherosclerosis 2004;173:211–221.
  • Picaud JC, Steghens JP, Auxenfans C, Barbieux A, Laborie S, Claris O. Lipid peroxidation assessment by malondialdehyde measurement in parenteral nutrition solutions for newborn infants: a pilot study. Acta Paediatr 2004;93:241–245.
  • Steghens JP, van Kappel AL, Denis I, Collombel C. Diaminonaphtalene, a new highly specific reagent for HPLC-UV measurement of total and free malondialdehyde in human plasma or serum. Free Radic Biol Med 2001;31:242–249.
  • Renes J, de Vries EE, Hooiveld GJ, Krikken I, Jansen PL, Muller M. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 2000;350 Pt 2:555–561.
  • Reichard JF, Doorn JA, Simon F, Taylor MS, Petersen DR. Characterization of multidrug resistance-associated protein 2 in the hepatocellular disposition of 4-hydroxynonenal. Arch Biochem Biophys 2003;411:243–250.
  • Miranda CL, Reed RL, Kuiper HC, Alber S, Stevens JF. Ascorbic acid promotes detoxification and elimination of 4-hydroxy-2(E)-nonenal in human monocytic THP-1 cells. Chem Res Toxicol 2009;22:863–874.
  • Singhal SS, Sehrawat A, Mehta A, Sahu M, Awasthi S. Functional reconstitution of RLIP76 catalyzing ATP-dependent transport of glutathione-conjugates. Int J Oncol 2009;34:191–199.
  • Singhal SS, Yadav S, Roth C, Singhal J. RLIP76: A novel glutathione-conjugate and multi-drug transporter. Biochem Pharmacol 2009;77:761–769.
  • Singhal J, Singhal SS, Yadav S, Suzuki S, Warnke MM, Yacoub A, Dent P, Bae S, Sharma R, Awasthi YC, Armstrong DW, Awasthi S. RLIP76 in defense of radiation poisoning. Int J Radiat Oncol Biol Phys 2008;72:553–561.
  • Warnke MM, Wanigasekara E, Singhal SS, Singhal J, Awasthi S, Armstrong DW. The determination of glutathione-4-hydroxynonenal (GSHNE), E-4-hydroxynonenal (HNE), and E-1-hydroxynon-2-en-4-one (HNO) in mouse liver tissue by LC-ESI-MS. Anal Bioanal Chem 2008;392:1325–1333.
  • Burcham PC. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 1998;13:287–305.
  • Benedetti A, Comporti M, Esterbauer H. Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 1980;620:281–296.
  • Nakamura T, Toyomizu M, Nagamoto T. Lipid degradation products capable of reacting with amino acid - identification of 4-hydroxy-2-hexenal, 9-formyl methyl-8-nonenoate, and 10-formyl methyl-9-decenoate from autoxidized methyl linolenate. Bul Japan Soc Sci Fish 1977;43:1097–1104.
  • Eckl P, Esterbauer H. Genotoxic effects of 4-hydroxyalkenals. Adv Biosci 1989;76:141–157.
  • Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 1993;57:779S–785S; discussion S785–S786.
  • Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev 2008;28:569–631.
  • Mukai FH, Goldstein BD. Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science 1976;191:868–869.
  • Basu AK, Marnett LJ. Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis 1983;4:331–333.
  • Marnett LJ, Tuttle MA. Comparison of the mutagenicities of malondialdehyde and the side products formed during its chemical synthesis. Cancer Res 1980;40:276–282.
  • Marnett LJ, Hurd HK, Hollstein MC, Levin DE, Esterbauer H, Ames BN. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 1985;148:25–34.
  • Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 2003; 278:31426–31433.
  • Yau TM. Mutagenicity and cytotoxicity of malonaldehyde in mammalian cells. Mech Ageing Dev 1979;11:137–144.
  • Bird RP, Draper HH, Basrur PK. Effect of malonaldehyde and acetaldehyde on cultured mammalian cells. Production of micronuclei and chromosomal aberrations. Mutat Res 1982;101:237–246.
  • Brambilla G, Bassi AM, Faggin P, Ferro M, Finollo R, Martelli A, Sciaba L, Marinari UM. Genotoxic effects of lipid peroxidation products. Poli G, Cheeseman KH, Dianzani MU, Slater TF. Free Radical in Liver Injury. Oxford: IRL Press; 1985. 59–70.
  • Seto H, Akiyama K, Okuda T, Hashimoto T, Takesue T, Ikemura T. Structure of a New Modified Nucleoside Formed by Guanosine-Malonaldehyde Reaction. Chem Lett+ 1981:707–708.
  • Stone K, Ksebati MB, Marnett LJ. Investigation of the adducts formed by reaction of malondialdehyde with adenosine. Chem Res Toxicol 1990;3:33–38.
  • Stone K, Uzieblo A, Marnett LJ. Studies of the reaction of malondialdehyde with cytosine nucleosides. Chem Res Toxicol 1990;3:467–472.
  • Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002;181–182:219–222.
  • Kadlubar FF, Anderson KE, Haussermann S, Lang NP, Barone GW, Thompson PA, MacLeod SL, Chou MW, Mikhailova M, Plastaras J, Marnett LJ, Nair J, Velic I, Bartsch H. Comparison of DNA adduct levels associated with oxidative stress in human pancreas. Mutat Res 1998;405:125–133.
  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999;424:83–95.
  • Fink SP, Reddy GR, Marnett LJ. Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc Natl Acad Sci U S A 1997;94:8652–8657.
  • Brambilla G, Sciaba L, Faggin P, Maura A, Marinari UM, Ferro M, Esterbauer H. Cytotoxicity, DNA fragmentation and sister-chromatid exchange in Chinese hamster ovary cells exposed to the lipid peroxidation product 4-hydroxynonenal and homologous aldehydes. Mutat Res 1986; 171:169–176.
  • Cajelli E, Ferraris A, Brambilla G. Mutagenicity of 4-hydroxynonenal in V79 Chinese hamster cells. Mutat Res 1987;190:169–171.
  • Benamira M, Marnett LJ. The lipid peroxidation product 4-hydroxynonenal is a potent inducer of the SOS response. Mutat Res 1992;293:1–10.
  • Eckl PM, Ortner A, Esterbauer H. Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes. Mutat Res 1993;290:183–192.
  • Karlhuber GM, Bauer HC, Eckl PM. Cytotoxic and genotoxic effects of 4-hydroxynonenal in cerebral endothelial cells. Mutat Res 1997;381:209–216.
  • Schaeferhenrich A, Beyer-Sehlmeyer G, Festag G, Kuechler A, Haag N, Weise A, Liehr T, Claussen U, Marian B, Sendt W, Scheele J, Pool-Zobel BL. Human adenoma cells are highly susceptible to the genotoxic action of 4-hydroxy-2-nonenal. Mutat Res 2003;526:19–32.
  • Honzatko A, Brichac J, Murphy TC, Reberg A, Kubatova A, Smoliakova IP, Picklo MJ, Sr. Enantioselective metabolism of trans-4-hydroxy-2-nonenal by brain mitochondria. Free Radic Biol Med 2005;39:913–924.
  • Alija A, Picklo M, Bresgen N, Siems W, Ohlenschlager I, Eckl P. Clastogenic effects of 4-hydroxynonenal enantiomers. International COST B35 Meeting “Oxygen, Stress and Lipids”. Dubrovnik; 2007.
  • Chung FL, Nath RG, Ocando J, Nishikawa A, Zhang L. Deoxyguanosine adducts of t-4-hydroxy-2-nonenal are endogenous DNA lesions in rodents and humans: detection and potential sources. Cancer Res 2000;60:1507–1511.
  • Chen HJ, Chung FL. Epoxidation of trans-4-hydroxy-2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem Res Toxicol 1996;9:306–312.
  • Chen HJ, Gonzalez FJ, Shou M, Chung FL. 2,3-epoxy-4-hydroxynonanal, a potential lipid peroxidation product for etheno adduct formation, is not a substrate of human epoxide hydrolase. Carcinogenesis 1998;19:939–943.
  • Wacker M, Wanek P, Eder E. Detection of 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal after gavage of trans-4-hydroxy-2-nonenal or induction of lipid peroxidation with carbon tetrachloride in F344 rats. Chem Biol Interact 2001;137:269–283.
  • Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, Chung FL, Tang MS. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 2002;23:1781–1789.
  • Chung FL, Chen HJ, Nath RG. Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis 1996;17:2105–2111.
  • Nair J, Vaca CE, Velic I, Mutanen M, Valsta LM, Bartsch H. High dietary omega-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol Biomarkers Prev 1997;6:597–601.
  • Suzuki YJ, Carini M, Butterfield DA. Protein carbonylation. Antioxid Redox Signal 2010;12:323–325.
  • Burcham PC, Kuhan YT. Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem Biophys Res Commun 1996;220:996–1001.
  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2008;153:6–20.
  • Sayre LM, Lin D, Yuan Q, Zhu X, Tang X. Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab Rev 2006;38:651–675.
  • Shimozu Y, Shibata T, Ojika M, Uchida K. Identification of advanced reaction products originating from the initial 4-oxo-2-nonenal-cysteine Michael adducts. Chem Res Toxicol 2009;22:957–964.
  • Yuan Q, Zhu X, Sayre LM. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation. Chem Res Toxicol 2007;20:129–139.
  • Grune T, Davies KJ. The proteasomal system and HNE-modified proteins. Mol Aspects Med 2003;24:195–204.
  • Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J 1997;11:526–534.
  • Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003;42:318–343.
  • Kurtz AJ, Lloyd RS. 1,N2-deoxyguanosine adducts of acrolein, crotonaldehyde, and trans-4-hydroxynonenal cross-link to peptides via Schiff base linkage. J Biol Chem 2003;278:5970–5976.
  • Sayre LM, Arora PK, Iyer RS, Salomon RG. Pyrrole formation from 4-hydroxynonenal and primary amines. Chem Res Toxicol 1993;6:19–22.
  • Nadkarni DV, Sayre LM. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem Res Toxicol 1995;8:284–291.
  • Petersen DR, Doorn JA. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic Biol Med 2004;37:937–945.
  • Jurgens G, Lang J, Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta 1986;875:103–114.
  • Lin D, Lee HG, Liu Q, Perry G, Smith MA, Sayre LM. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem Res Toxicol 2005;18:1219–1231.
  • Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963–20966.
  • Chowdhury PK, Halder M, Choudhury PK, Kraus GA, Desai MJ, Armstrong DW, Casey TA, Rasmussen MA, Petrich JW. Generation of fluorescent adducts of malondialdehyde and amino acids: toward an understanding of lipofuscin. Photochem Photobiol 2004;79:21–25.
  • LoPachin RM, Barber DS, Gavin T. Molecular mechanisms of the conjugated alpha,beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 2008;104:235–249.
  • Hinson JA, Roberts DW. Role of covalent and noncovalent interactions in cell toxicity: effects on proteins. Annu Rev Pharmacol Toxicol 1992;32:471–510.
  • Schultz TW, Carlson RE, Cronin MT, Hermens JL, Johnson R, O'Brien PJ, Roberts DW, Siraki A, Wallace KB, Veith GD. A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. SAR QSAR Environ Res 2006;17:413–428.
  • Kehrer JP, Biswal SS. The molecular effects of acrolein. Toxicol Sci 2000;57:6–15.
  • Horvat S, Jakas A. Peptide and amino acid glycation: New insights into the Maillard reaction. J Pept Sci 2004;10:119–137.
  • Thornalley PJ, Yurek-George A, Argirov OK. Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem Pharmacol 2000;60:55–65.
  • Fink AL. Chaperone-mediated protein folding. Physiol Rev 1999;79:425–449.
  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 2000;20:7146–7159.
  • Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci 2009;10:85–95.
  • Nollen EA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 2002;115:2809–2816.
  • Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jaattela M, Schwarz T. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 1995;95:926–933.
  • McKay DB. Structure and mechanism of 70-kDa heat-shock-related proteins. Adv Protein Chem 1993;44:67–98.
  • Sadis S, Hightower LE. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange. Biochemistry 1992;31:9406–9412.
  • Schmid D, Baici A, Gehring H, Christen P. Kinetics of molecular chaperone action. Science 1994;263:971–973.
  • Carbone DL, Doorn JA, Kiebler Z, Sampey BP, Petersen DR. Inhibition of Hsp72-mediated protein refolding by 4-hydroxy-2-nonenal. Chem Res Toxicol 2004;17:1459–1467.
  • Doorn JA, Petersen DR. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chem Res Toxicol 2002;15:1445–1450.
  • Srinivasan G, Post JF, Thompson EB. Optimal ligand binding by the recombinant human glucocorticoid receptor and assembly of the receptor complex with heat shock protein 90 correlate with high intracellular ATP levels in Spodoptera frugiperda cells. J Steroid Biochem Mol Biol 1997;60:1–9.
  • Carbone DL, Doorn JA, Kiebler Z, Petersen DR. Cysteine modification by lipid peroxidation products inhibits protein disulfide isomerase. Chem Res Toxicol 2005;18: 1324–1331.
  • Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, Roy S, Hanninen O, Sen CK. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 2004;97:605–611.
  • Oksala NK, Laaksonen DE, Lappalainen J, Khanna S, Nakao C, Hanninen O, Sen CK, Atalay M. Heat shock protein 60 response to exercise in diabetes: effects of alpha-lipoic acid supplementation. J Diabetes Complications 2006;20:257–261.
  • Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem 1993;268:6388–6393.
  • Luckey SW, Tjalkens RB, Petersen DR. Mechanism of inhibition of rat liver class 2 ALDH by 4-hydroxynonenal. Adv Exp Med Biol 1999;463:71–77.
  • Carbone DL, Doorn JA, Kiebler Z, Ickes BR, Petersen DR. Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease. J Pharmacol Exp Ther 2005;315:8–15.
  • Suh SK, Hood BL, Kim BJ, Conrads TP, Veenstra TD, Song BJ. Identification of oxidized mitochondrial proteins in alcohol-exposed human hepatoma cells and mouse liver. Proteomics 2004;4:3401–3412.
  • Walker KW, Gilbert HF. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem 1997;272:8845–8848.
  • Liu XW, Sok DE. Inactivation of protein disulfide isomerase by alkylators including alpha,beta-unsaturated aldehydes at low physiological pHs. Biol Chem 2004;385:633–637.
  • West JD, Ji C, Duncan ST, Amarnath V, Schneider C, Rizzo CJ, Brash AR, Marnett LJ. Induction of apoptosis in colorectal carcinoma cells treated with 4-hydroxy-2-nonenal and structurally related aldehydic products of lipid peroxidation. Chem Res Toxicol 2004;17:453–462.
  • Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010;49:835–842.
  • Roede JR, Carbone DL, Doorn JA, Kirichenko OV, Reigan P, Petersen DR. In vitro and in silico characterization of peroxiredoxin 6 modified by 4-hydroxynonenal and 4-oxononenal. Chem Res Toxicol 2008;21:2289–2299.
  • Doorn JA, Hurley TD, Petersen DR. Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal. Chem Res Toxicol 2006;19:102–110.
  • Meister A. Selective modification of glutathione metabolism. Science 1983;220:472–477.
  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009;30:1–12.
  • Sen CK. Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 2000;36:1–30.
  • Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006;8:1865–1879.
  • Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 2004;17:3–16.
  • Blair IA. Endogenous glutathione adducts. Curr Drug Metab 2006;7:853–872.
  • Jian W, Lee SH, Mesaros C, Oe T, Elipe MV, Blair IA. A novel 4-oxo-2(E)-nonenal-derived endogenous thiadiazabicyclo glutathione adduct formed during cellular oxidative stress. Chem Res Toxicol 2007;20:1008–1018.
  • Zhu P, Jian W, Blair IA. A 4-oxo-2(E)-nonenal-derived glutathione adduct from 15-lipoxygenase-1-mediated oxidation of cytosolic and esterified arachidonic acid. Free Radic Biol Med 2009;47:953–961.
  • Yadav S, Zajac E, Singhal SS, Singhal J, Drake K, Awasthi YC, Awasthi S. POB1 over-expression inhibits RLIP76-mediated transport of glutathione-conjugates, drugs and promotes apoptosis. Biochem Biophys Res Commun 2005;328:1003–1009.
  • Tammali R, Ramana KV, Singhal SS, Awasthi S, Srivastava SK. Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res 2006;66:9705–9713.
  • Volkel W, Alvarez-Sanchez R, Weick I, Mally A, Dekant W, Pahler A. Glutathione conjugates of 4-hydroxy-2(E)-nonenal as biomarkers of hepatic oxidative stress-induced lipid peroxidation in rats. Free Radic Biol Med 2005;38:1526–1536.
  • Catala A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 2009;157:1–11.
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972;175:720–731.
  • Engelman DM. Membranes are more mosaic than fluid. Nature 2005;438:578–580.
  • Fan J, Sammalkorpi M, Haataja M. Formation and regulation of lipid microdomains in cell membranes: Theory, modeling, and speculation. FEBS Lett 2010;584:1678–1684.
  • Awasthi YC, Sharma R, Cheng JZ, Yang Y, Sharma A, Singhal SS, Awasthi S. Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Aspects Med 2003;24:219–230.
  • Zarkovic N, Ilic Z, Jurin M, Schaur RJ, Puhl H, Esterbauer H. Stimulation of HeLa cell growth by physiological concentrations of 4-hydroxynonenal. Cell Biochem Funct 1993;11:279–286.
  • Bacot S, Bernoud-Hubac N, Chantegrel B, Deshayes C, Doutheau A, Ponsin G, Lagarde M, Guichardant M. Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals. J Lipid Res 2007;48:816–825.
  • Schaur RJ. Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 2003;24:149–159.
  • Guichardant M, Taibi-Tronche P, Fay LB, Lagarde M. Covalent modifications of aminophospholipids by 4-hydroxynonenal. Free Radic Biol Med 1998;25:1049–1056.
  • Guichardant M, Bernoud-Hubac N, Chantegrel B, Deshayes C, Lagarde M. Aldehydes from n-6 fatty acid peroxidation. Effects on aminophospholipids. Prostaglandins Leukot Essent Fatty Acids 2002;67:147–149.
  • Irvine RF. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 1982;204:3–16.
  • Selley ML, McGuiness JA, Jenkin LA, Bartlett MR, Ardlie NG. Effect of 4-hydroxy-2,3-trans-nonenal on platelet function. Thromb Haemost 1988;59:143–146.
  • Akaishi T, Nakazawa K, Sato K, Saito H, Ohno Y, Ito Y. Modulation of voltage-gated Ca2+ current by 4-hydroxynonenal in dentate granule cells. Biol Pharm Bull 2004;27:174–179.
  • de Jongh R, Haenen GR, van Koeveringe GA, Dambros M, van Kerrebroeck PE. Lipid peroxidation product 4-hydroxynonenal contributes to bladder smooth muscle damage. Urology 2008;71:974–978.
  • Lekehal M, Pessayre D, Lereau JM, Moulis C, Fouraste I, Fau D. Hepatotoxicity of the herbal medicine germander: metabolic activation of its furano diterpenoids by cytochrome P450 3A Depletes cytoskeleton-associated protein thiols and forms plasma membrane blebs in rat hepatocytes. Hepatology 1996;24:212–218.
  • Sastry PS, Rao KS. Apoptosis and the nervous system. J Neurochem 2000;74:1–20.
  • Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 2002;22: 101–107.
  • Davies SS, Amarnath V, Roberts LJ, 2nd. Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway. Chem Phys Lipids 2004;128:85–99.
  • Michel P, Eggert W, Albrecht-Nebe H, Grune T. Increased lipid peroxidation in children with autoimmune diseases. Acta Paediatr 1997;86:609–612.
  • Ito Y, Kosuge Y, Sakikubo T, Horie K, Ishikawa N, Obokata N, Yokoyama E, Yamashina K, Yamamoto M, Saito H, Arakawa M, Ishige K. Protective effect of S-allyl-L-cysteine, a garlic compound, on amyloid beta-protein-induced cell death in nerve growth factor-differentiated PC12 cells. Neurosci Res 2003;46:119–125.
  • Glei M, Hofmann T, Kuster K, Hollmann J, Lindhauer MG, Pool-Zobel BL. Both wheat (Triticum aestivum) bran arabinoxylans and gut flora-mediated fermentation products protect human colon cells from genotoxic activities of 4-hydroxynonenal and hydrogen peroxide. J Agric Food Chem 2006;54:2088–2095.
  • Siems WG, Brenke R, Beier A, Grune T. Oxidative stress in chronic lymphoedema. QJM 2002;95:803–809.
  • Esterbauer H, Zollner H, Lang J. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions. Biochem J 1985; 228:363–373.
  • Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, Butterfield DA. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem 1997;69:1161–1169.
  • Nair J, Barbin A, Velic I, Bartsch H. Etheno DNA-base adducts from endogenous reactive species. Mutat Res 1999;424:59–69.
  • Nath RG, Chung FL. Detection of exocyclic 1,N2-propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. Proc Natl Acad Sci U S A 1994; 91:7491–7495.
  • Singh SP, Chen T, Chen L, Mei N, McLain E, Samokyszyn V, Thaden JJ, Moore MM, Zimniak P. Mutagenic effects of 4-hydroxynonenal triacetate, a chemically protected form of the lipid peroxidation product 4-hydroxynonenal, as assayed in L5178Y/Tk+/− mouse lymphoma cells. J Pharmacol Exp Ther 2005;313:855–861.
  • Drake J, Petroze R, Castegna A, Ding Q, Keller JN, Markesbery WR, Lovell MA, Butterfield DA. 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer’s disease. Neurosci Lett 2004;356:155–158.
  • Raza H, John A, Brown EM, Benedict S, Kambal A. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 2008;226:161–168.
  • Chen JJ, Bertrand H, Yu BP. Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med 1995;19:583–590.
  • Bertram KM, Baglole CJ, Phipps RP, Libby RT. Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration. Am J Physiol Cell Physiol 2009;297:C1200–1210.
  • Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911.
  • Jacobs AT, Marnett LJ. Heat shock factor 1 attenuates 4-Hydroxynonenal-mediated apoptosis: critical role for heat shock protein 70 induction and stabilization of Bcl-XL. J Biol Chem 2007;282:33412–33420.
  • Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 2009;284:9176–9183.
  • Helton ES, Chen X. p53 modulation of the DNA damage response. J Cell Biochem 2007;100:883–896.
  • Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008;9:402–412.
  • Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003;22:9030–9040.
  • Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, Awasthi S. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med 2008;45:111–118.
  • Sharma R, Sharma A, Dwivedi S, Zimniak P, Awasthi S, Awasthi YC. 4-Hydroxynonenal self-limits fas-mediated DISC-independent apoptosis by promoting export of Daxx from the nucleus to the cytosol and its binding to Fas. Biochemistry 2008;47:143–156.
  • Lee HP, Zhu X, Skidmore SC, Perry G, Sayre LM, Smith MA, Lee HG. The essential role of ERK in 4-oxo-2-nonenal-mediated cytotoxicity in SH-SY5Y human neuroblastoma cells. J Neurochem 2009;108:1434–1441.
  • Jang YJ, Kim JE, Kang NJ, Lee KW, Lee HJ. Piceatannol attenuates 4-hydroxynonenal-induced apoptosis of PC12 cells by blocking activation of c-Jun N-terminal kinase. Ann N Y Acad Sci 2009;1171:176–182.
  • Vaillancourt F, Fahmi H, Shi Q, Lavigne P, Ranger P, Fernandes JC, Benderdour M. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 2008;10:R107.
  • Sharma A, Sharma R, Chaudhary P, Vatsyayan R, Pearce V, Jeyabal PV, Zimniak P, Awasthi S, Awasthi YC. 4-Hydroxynonenal induces p53-mediated apoptosis in retinal pigment epithelial cells. Arch Biochem Biophys 2008;480:85–94.
  • Zarkovic K. 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 2003;24:293–303.
  • Cenini G, Sultana R, Memo M, Butterfield DA. Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med 2008;12:987–994.
  • Braga M, Sinha Hikim AP, Datta S, Ferrini MG, Brown D, Kovacheva EL, Gonzalez-Cadavid NF, Sinha-Hikim I. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 2008;13:822–832.
  • Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, Lee HJ. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med 2009;46:1319–1327.
  • Bresgen N, Jaksch H, Lacher H, Ohlenschlager I, Uchida K, Eckl PM. Iron mediated oxidative stress plays an essential role in ferritin induced cell death. Free Radic Biol Med 2010;48:1347–1357.
  • Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 2010;12:503–535.
  • Wallach D, Kang TB, Kovalenko A. The extrinsic cell death pathway and the elan mortel. Cell Death Differ 2008;15: 1533–1541.
  • Li J, Sharma R, Patrick B, Sharma A, Jeyabal PV, Reddy PM, Saini MK, Dwivedi S, Dhanani S, Ansari NH, Zimniak P, Awasthi S, Awasthi YC. Regulation of CD95 (Fas) expression and Fas-mediated apoptotic signaling in HLE B-3 cells by 4-hydroxynonenal. Biochemistry 2006;45:12253–12264.
  • Salaun B, Romero P, Lebecque S. Toll-like receptors' two-edged sword: when immunity meets apoptosis. Eur J Immunol 2007;37:3311–3318.
  • Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008;213:114–121.
  • Zhang W, He Q, Chan LL, Zhou F, El Naghy M, Thompson EB, Ansari NH. Involvement of caspases in 4-hydroxy-alkenal-induced apoptosis in human leukemic cells. Free Radic Biol Med 2001;30:699–706.
  • Kumar S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 2009;9:897–903.
  • Uchida K, Stadtman ER. Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal. Proc Natl Acad Sci U S A 1992;89:5611–5615.
  • Negre-Salvayre A, Vieira O, Escargueil-Blanc I, Salvayre R. Oxidized LDL and 4-hydroxynonenal modulate tyrosine kinase receptor activity. Mol Aspects Med 2003;24:251–261.
  • Auge N, Garcia V, Maupas-Schwalm F, Levade T, Salvayre R, Negre-Salvayre A. Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways. Arterioscler Thromb Vasc Biol 2002;22:1990–1995.
  • Hannan RD, Jenkins A, Jenkins AK, Brandenburger Y. Cardiac hypertrophy: a matter of translation. Clin Exp Pharmacol Physiol 2003;30:517–527.
  • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006;441:424–430.
  • Dolinsky VW, Chan AY, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JR. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 2009;119:1643–1652.
  • Wagner TM, Mullally JE, Fitzpatrick FA. Reactive lipid species from cyclooxygenase-2 inactivate tumor suppressor LKB1/STK11: cyclopentenone prostaglandins and 4-hydroxy-2-nonenal covalently modify and inhibit the AMP-kinase kinase that modulates cellular energy homeostasis and protein translation. J Biol Chem 2006;281:2598–2604.
  • Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006;116:1202–1209.
  • Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 2007;282:27298–27305.
  • Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem 2009;284:27438–27448.
  • Limpert AS, Karlo JC, Landreth GE. Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein. Mol Cell Biol 2007; 27:5686–5698.
  • Zarate J, Goicoechea E, Pascual J, Echevarria E, Guillen MD. A study of the toxic effect of oxidized sunflower oil containing 4-hydroperoxy-2-nonenal and 4-hydroxy-2-nonenal on cortical TrkA receptor expression in rats. Nutr Neurosci 2009;12:249–259.
  • Salomoni P, Khelifi AF. Daxx: death or survival protein? Trends Cell Biol 2006;16:97–104.
  • Tohda S, Nara N. Expression of Notch1 and Jagged1 proteins in acute myeloid leukemia cells. Leuk Lymphoma 2001;42:467–472.
  • Pizzimenti S, Barrera G, Calzavara E, Mirandola L, Toaldo C, Dianzani MU, Comi P, Chiaramonte R. Down-regulation of Notch1 expression is involved in HL-60 cell growth inhibition induced by 4-hydroxynonenal, a product of lipid peroxidation. Med Chem 2008;4:551–557.
  • Qiao L, Wong BC. Role of Notch signaling in colorectal cancer. Carcinogenesis 2009;30:1979–1986.
  • Zanotti S, Canalis E. Notch and the skeleton. Mol Cell Biol 2010;30:886–896.
  • Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG. Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 2009;390:1093–1097.
  • Mizushima N. Autophagy: process and function. Genes Dev 2007;21:2861–2873.
  • Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998;273:3963–3966.
  • Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GR. Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond) 2009;116: 697–712.
  • Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J 2008;410:525–534.
  • Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005;80:595–606.
  • Kaemmerer E, Schutt F, Krohne TU, Holz FG, Kopitz J. Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis. Invest Ophthalmol Vis Sci 2007;48:1342–1347.
  • Krohne TU, Stratmann NK, Kopitz J, Holz FG. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 2010;90:465–471.
  • Sharma R, Brown D, Awasthi S, Yang Y, Sharma A, Patrick B, Saini MK, Singh SP, Zimniak P, Singh SV, Awasthi YC. Transfection with 4-hydroxynonenal-metabolizing glutathione S-transferase isozymes leads to phenotypic transformation and immortalization of adherent cells. Eur J Biochem 2004;271:1690–1701.
  • Yang Y, Xu Y, Lick SD, Awasthi YC, Boor PJ. Endothelial glutathione-S-transferase A4–4 protects against oxidative stress and modulates iNOS expression through NF-kappaB translocation. Toxicol Appl Pharmacol 2008;230:187–196.
  • Murakami Y, Ohsawa I, Kasahara T, Ohta S. Cytoprotective role of mitochondrial amyloid beta peptide-binding alcohol dehydrogenase against a cytotoxic aldehyde. Neurobiol Aging 2009;30:325–329.
  • Forman HJ, Dickinson DA, Iles KE. HNE—signaling pathways leading to its elimination. Mol Aspects Med 2003;24:189–194.
  • Singhal SS, Awasthi YC, Awasthi S. Regression of melanoma in a murine model by RLIP76 depletion. Cancer Res 2006;66:2354–2360.
  • Singhal SS, Roth C, Leake K, Singhal J, Yadav S, Awasthi S. Regression of prostate cancer xenografts by RLIP76 depletion. Biochem Pharmacol 2009;77:1074–1083.
  • Singhal SS, Singhal J, Yadav S, Dwivedi S, Boor PJ, Awasthi YC, Awasthi S. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1). Cancer Res 2007;67:4382–4389.
  • Poli G, Biasi F, Leonarduzzi G. 4-Hydroxynonenal-protein adducts: A reliable biomarker of lipid oxidation in liver diseases. Mol Aspects Med 2008;29:67–71.
  • Carini M, Aldini G, Facino RM. Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins. Mass Spectrom Rev 2004;23: 281–305.
  • Esterbauer H, Zollner H. Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med 1989;7:197–203.
  • Spiteller P, Kern W, Reiner J, Spiteller G. Measurement of n-alkanals and hydroxyalkenals in biological samples. Biochim Biophys Acta 2001;1531:188–208.
  • Fenaille F, Guy PA, Tabet JC. Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 2003;14:215–226.
  • Ishino K, Shibata T, Ishii T, Liu YT, Toyokuni S, Zhu X, Sayre LM, Uchida K. Protein N-acylation: H2O2-mediated covalent modification of protein by lipid peroxidation-derived saturated aldehydes. Chem Res Toxicol 2008; 21:1261–1270.
  • Dry cleaning, some chlorinated solvents and other industrial chemicals. Lyon, France, 7–14 February 1995. IARC Monogr Eval Carcinog Risks Hum 1995;63:33–477.
  • Ichihashi K, Osawa T, Toyokuni S, Uchida K. Endogenous formation of protein adducts with carcinogenic aldehydes: implications for oxidative stress. J Biol Chem 2001;276: 23903–23913.
  • Kondo M, Oya-Ito T, Kumagai T, Osawa T, Uchida K. Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress. J Biol Chem 2001;276: 12076–12083.
  • Uchida K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki E. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem 1998;273:16058–16066.
  • Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, Suzuki D, Miyata T, Noguchi N, Niki E, Osawa T. Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 1998;95:4882–4887.
  • Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 1999;72:751–756.
  • Furuhata A, Nakamura M, Osawa T, Uchida K. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols. J Biol Chem 2002;277:27919–27926.
  • Furuhata A, Ishii T, Kumazawa S, Yamada T, Nakayama T, Uchida K. N(epsilon)-(3-methylpyridinium)lysine, a major antigenic adduct generated in acrolein-modified protein. J Biol Chem 2003;278:48658–48665.
  • Nagai R, Hayashi CM, Xia L, Takeya M, Horiuchi S. Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins. J Biol Chem 2002;277:48905–48912.
  • Toyokuni S, Luo XP, Tanaka T, Uchida K, Hiai H, Lehotay DC. Induction of a wide range of C(2–12) aldehydes and C(7–12) acyloins in the kidney of Wistar rats after treatment with a renal carcinogen, ferric nitrilotriacetate. Free Radic Biol Med 1997;22:1019–1027.
  • Haze S, Gozu Y, Nakamura S, Kohno Y, Sawano K, Ohta H, Yamazaki K. 2-Nonenal newly found in human body odor tends to increase with aging. J Invest Dermatol 2001;116:520–524.
  • Esterbauer H, Jurgens G, Quehenberger O, Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987;28:495–509.
  • Frankel EN, German JB, Davis PA. Headspace gas chromatography to determine human low density lipoprotein oxidation. Lipids 1992;27:1047–1051.
  • Frankel EN, Hu ML, Tappel AL. Rapid headspace gas chromatography of hexanal as a measure of lipid peroxidation in biological samples. Lipids 1989;24:976–981.
  • Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993;341:454–457.
  • Luo X, Pitkanen S, Kassovska-Bratinova S, Robinson BH, Lehotay DC. Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency. J Clin Invest 1997;99:2877–2882.
  • Cordis GA, Bagchi D, Maulik N, Das DK. High-performance liquid chromatographic method for the simultaneous detection of malonaldehyde, acetaldehyde, formaldehyde, acetone and propionaldehyde to monitor the oxidative stress in heart. J Chromatogr A 1994;661:181–191.
  • Leung CH, Voutchkova AM, Crabtree RH, Balcells D, Eisenstein O. Atom economic synthesis of amides via transition metal catalyzed rearrangement of oxaziridines. Green Chemistry 2007;9:976–979.
  • Ceruti M, Viola F, Grosa G, Balliano G, Delprino L, Cattel L. Synthesis of Squalenoid Acetylenes and Allenes, as Inhibitors of Squalene Epoxidase. J Chem Res-S 1988:18–19.
  • Kato Y, Mori Y, Makino Y, Morimitsu Y, Hiroi S, Ishikawa T, Osawa T. Formation of Nepsilon-(hexanonyl)lysine in protein exposed to lipid hydroperoxide. A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 1999;274:20406–20414.
  • Metz TO, Alderson NL, Chachich ME, Thorpe SR, Baynes JW. Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. J Biol Chem 2003;278:42012–42019.
  • Kato Y, Yoshida A, Naito M, Kawai Y, Tsuji K, Kitamura M, Kitamoto N, Osawa T. Identification and quantification of N(epsilon)-(Hexanoyl)lysine in human urine by liquid chromatography/tandem mass spectrometry. Free Radic Biol Med 2004;37:1864–1874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.