761
Views
95
CrossRef citations to date
0
Altmetric
Review Article

Damage of DNA and proteins by major lipid peroxidation products in genome stability

, &
Pages 442-459 | Received 12 Dec 2011, Accepted 14 Jan 2012, Published online: 22 Feb 2012

References

  • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993;362:709–715.
  • Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. Repair of alkylated DNA: recent advances. DNA Repair (Amst) 2007;6:429–442.
  • Tudek B, Winczura A, Janik J, Siomek A, Foksinski M, Olinski R, . Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am J Transl Res 2010;2:254–284.
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40.
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J, . Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84.
  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004;266:37–56.
  • Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003;42:318–343.
  • Burcham PC. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 1998;13:287–305.
  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999;424:83–95.
  • Schaur RJ. Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 2003;24:149–159.
  • Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 2006;387: 1329–1335.
  • Yoo MH, Gu X, Xu XM, Kim JY, Carlson BA, Patterson AD, . Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer's disease. Antioxid Redox Signal 2010;12: 819–827.
  • Vieira FG, Di Pietro PF, Boaventura BC, Ambrosi C, Rockenbach G, Fausto MA, . Factors associated with oxidative stress in women with breast cancer. Nutr Hosp 2011;26:528–536.
  • Krzystek-Korpacka M, Salmonowicz B, Boehm D, Berdowska I, Zielinski B, Patryn E, . Diagnostic potential of oxidative stress markers in children and adolescents with type 1 diabetes. Clin Biochem 2008;41:48–55.
  • Katalinic V, Salamunic I, Pazanin S, Mulic R, Milisic M, Ropac D, . The antioxidant power and level of lipid peroxidation products in the sera of apparently healthy adult males. Coll Antropol 2007;31:165–171.
  • Gautam N, Das S, Mahapatra SK, Chakraborty SP, Kundu PK, Roy S, . Age associated oxidative damage in lymphocytes. Oxid Med Cell Longev 2010;3:275–282.
  • Schneider C, Tallman KA, Porter NA, Brash AR. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9-and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem 2001;276:20831–20838.
  • Schneider C, Pratt DA, Porter NA, Brash AR. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 2007;14:473–488.
  • Noguchi N, Yamashita H, Hamahara J, Nakamura A, Kuhn H, Niki E, . The specificity of lipoxygenase-catalyzed lipid peroxidation and the effects of radical-scavenging antioxidants. Biol Chem 2002;383:619–626.
  • Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev 2008;28:569–631.
  • Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC. Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 2003;50:319–336.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128.
  • Siems WG, Zollner H, Grune T, Esterbauer H. Metabolic fate of 4-hydroxynonenal in hepatocytes: 1,4-dihydroxynonene is not the main product. J Lipid Res 1997;38: 612–622.
  • Jung T, Engels M, Kaiser B, Grune T. Distribution of oxidized and HNE-modified proteins in U87 cells. Biofactors 2005;24:165–170.
  • Parola M, Robino G, Marra F, Pinzani M, Bellomo G, Leonarduzzi G, . HNE interacts directly with JNK isoforms in human hepatic stellate cells. J Clin Invest 1998; 102:1942–1950.
  • Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T, . Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999;274:2234–2242.
  • Suc I, Meilhac O, Lajoie-Mazenc I, Vandaele J, Jurgens G, Salvayre R, . Activation of EGF receptor by oxidized LDL. Faseb J 1998;12:665–671.
  • Robino G, Parola M, Marra F, Caligiuri A, De Franco RM, Zamara E, . Interaction between 4-hydroxy-2,3-alkenals and the platelet-derived growth factor-beta receptor. Reduced tyrosine phosphorylation and downstream signaling in hepatic stellate cells. J Biol Chem 2000;275: 40561–40567.
  • Chiarpotto E, Domenicotti C, Paola D, Vitali A, Nitti M, Pronzato MA, . Regulation of rat hepatocyte protein kinase C beta isoenzymes by the lipid peroxidation product 4-hydroxy-2,3-nonenal: A signaling pathway to modulate vesicular transport of glycoproteins. Hepatology 1999;29: 1565–1572.
  • Grune T, Davies KJ. The proteasomal system and HNE-modified proteins. Mol Aspects Med 2003;24:195–204.
  • Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K, . 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 1999;274:23787–23793.
  • Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, . Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med 2008;45:111–118.
  • Liu W, Akhand AA, Kato M, Yokoyama I, Miyata T, Kurokawa K, . 4-hydroxynonenal triggers an epidermal growth factor receptor-linked signal pathway for growth inhibition. J Cell Sci 1999;112 (Pt 14):2409–2417.
  • West JD, Marnett LJ. Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem Res Toxicol 2005;18:1642–1653.
  • Chenna A, Iden CR. Characterization of 2′-deoxycytidine and 2′-deoxyuridine adducts formed in reactions with acrolein and 2-bromoacrolein. Chem Res Toxicol 1993;6: 261–268.
  • Chenna A, Rieger RA, Iden CR. Characterization of thymidine adducts formed by acrolein and 2-bromoacrolein. Carcinogenesis 1992;13:2361–2365.
  • Barbin A, Bartsch H, Leconte P, Radman M. Studies on the miscoding properties of 1,N6-ethenoadenine and 3, N4-ethenocytosine, DNA reaction products of vinyl chloride metabolites, during in vitro DNA synthesis. Nucleic Acids Res 1981;9:375–387.
  • Janowska B, Komisarski M, Prorok P, Sokolowska B, Kusmierek J, Janion C, . Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli. Int J Biol Sci 2009;5:611–620.
  • Kowalczyk P, Ciesla JM, Komisarski M, Kusmierek JT, Tudek B. Long-chain adducts of trans-4-hydroxy-2-nonenal to DNA bases cause recombination, base substitutions and frameshift mutations in M13 phage. Mutat Res 2004;550: 33–48.
  • Choudhury S, Pan J, Amin S, Chung FL, Roy R. Repair kinetics of trans-4-hydroxynonenal-induced cyclic 1, N2-propanodeoxyguanine DNA adducts by human cell nuclear extracts. Biochemistry 2004;43:7514–7521.
  • Sodum RS, Chung FL. Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res 1991;51:137–143.
  • Fernandes PH, Wang H, Rizzo CJ, Lloyd RS. Site-specific mutagenicity of stereochemically defined 1,N2-deoxyguanosine adducts of trans-4-hydroxynonenal in mammalian cells. Environ Mol Mutagen 2003;42:68–74.
  • Zhang S, Balbo S, Wang M, Hecht SS. Analysis of acrolein-derived 1,N2-propanodeoxyguanosine adducts in human leukocyte DNA from smokers and nonsmokers. Chem Res Toxicol 2011;24:119–124.
  • Stein S, Lao Y, Yang IY, Hecht SS, Moriya M. Genotoxicity of acetaldehyde-and crotonaldehyde-induced 1,N2-propanodeoxyguanosine DNA adducts in human cells. Mutat Res 2006;608:1–7.
  • Chen HJ, Chung FL. Formation of etheno adducts in reactions of enals via autoxidation. Chem Res Toxicol 1994; 7:857–860.
  • Nair J, Nair UJ, Sun X, Wang Y, Arab K, Bartsch H, . Quantifying etheno-DNA adducts in human tissues, white blood cells, and urine by ultrasensitive (32)P-postlabeling and immunohistochemistry. Methods Mol Biol 2011;682: 189–205.
  • Bartsch H, Nair J. Accumulation of lipid peroxidation-derived DNA lesions: potential lead markers for chemoprevention of inflammation-driven malignancies. Mutat Res 2005;591:34–44.
  • Lee SH, Arora JA, Oe T, Blair IA. 4-Hydroperoxy-2-nonenal-induced formation of 1,N2-etheno-2′-deoxyguanosine adducts. Chem Res Toxicol 2005;18: 780–786.
  • Chung FL, Pan J, Choudhury S, Roy R, Hu W, Tang MS, . Formation of trans-4-hydroxy-2-nonenal-and other enal-derived cyclic DNA adducts from omega-3 and omega-6 polyunsaturated fatty acids and their roles in DNA repair and human p53 gene mutation. Mutat Res 2003;531:25–36.
  • Tudek B, Kowalczyk P, Ciesla JM. Localization of chloroacetaldehyde-induced DNA damage in human p53 gene by DNA polymerase fingerprint analysis. IARC Sci Publ 1999;279–293.
  • Kowalczyk P, Ciesla JM, Saparbaev M, Laval J, Tudek B. Sequence-specific p53 gene damage by chloroacetaldehyde and its repair kinetics in Escherichia coli. Acta Biochim Pol 2006;53:337–347.
  • Goodman MF. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 2002; 71:17–50.
  • Hang B, Chenna A, Guliaev AB, Singer B. Miscoding properties of 1,N6-ethanoadenine, a DNA adduct derived from reaction with the antitumor agent 1,3-bis (2-chloroethyl)-1-nitrosourea. Mutat Res 2003;531: 191–203.
  • Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L, . Replication past a trans-4-hydroxynonenal minor-groove adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 2006; 26:381–386.
  • Basu AK, Wood ML, Niedernhofer LJ, Ramos LA, Essigmann JM. Mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino-5-(imidazol-2-yl)imidazole. Biochemistry 1993;32:12793–12801.
  • Pandya GA, Moriya M. 1,N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 1996;35:11487–11492.
  • Levine RL, Yang IY, Hossain M, Pandya GA, Grollman AP, Moriya M, . Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Cancer Res 2000;60:4098–4104.
  • Moriya M, Zhang W, Johnson F, Grollman AP. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A 1994;91:11899–11903.
  • Palejwala VA, Simha D, Humayun MZ. Mechanisms of mutagenesis by exocyclic DNA adducts. Transfection of M13 viral DNA bearing a site-specific adduct shows that ethenocytosine is a highly efficient RecA-independent mutagenic noninstructional lesion. Biochemistry 1991;30: 8736–8743.
  • Singer B, Kusmierek JT, Folkman W, Chavez F, Dosanjh MK. Evidence for the mutagenic potential of the vinyl chloride induced adduct, N2, 3-etheno-deoxyguanosine, using a site-directed kinetic assay. Carcinogenesis 1991; 12:745–747.
  • Langouet S, Mican AN, Muller M, Fink SP, Marnett LJ, Muhle SA, . Misincorporation of nucleotides opposite five-membered exocyclic ring guanine derivatives by escherichia coli polymerases in vitro and in vivo: 1,N2-ethenoguanine, 5,6,7,9-tetrahydro-9-oxoimidazo[1, 2-a]purine, and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1, 2-a]purine. Biochemistry 1998;37:5184–5193.
  • Cheng KC, Preston BD, Cahill DS, Dosanjh MK, Singer B, Loeb LA, . The vinyl chloride DNA derivative N2, 3-ethenoguanine produces G–A transitions in Escherichia coli. Proc Natl Acad Sci U S A 1991;88:9974–9978.
  • Langouet S, Muller M, Guengerich FP. Misincorporation of dNTPs opposite 1,N2-ethenoguanine and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in oligonucleotides by Escherichia coli polymerases I exo-and II exo-, T7 polymerase exo-, human immunodeficiency virus-1 reverse transcriptase, and rat polymerase beta. Biochemistry 1997;36:6069–6079.
  • Bartsch H, Barbin A, Marion MJ, Nair J, Guichard Y. Formation, detection, and role in carcinogenesis of ethenobases in DNA. Drug Metab Rev 1994;26:349–371.
  • Sabourin M, Osheroff N. Sensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesions. Nucleic Acids Res 2000;28:1947–1954.
  • Benamira M, Marnett LJ. The lipid peroxidation product 4-hydroxynonenal is a potent inducer of the SOS response. Mutat Res 1992;293:1–10.
  • Janowska B, Kurpios-Piec D, Prorok P, Szparecki G, Komisarski M, Kowalczyk P, Janion C, Tudek B. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal. Mutat Res 2011; 729:41–51.
  • Nair J, Barbin A, Velic I, Bartsch H. Etheno DNA-base adducts from endogenous reactive species. Mutat Res 1999; 424:59–69.
  • Nair J, Sone H, Nagao M, Barbin A, Bartsch H. Copper-dependent formation of miscoding etheno-DNA adducts in the liver of Long Evans cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res 1996;56:1267–1271.
  • Nair J, Sinitsina O, Vasunina EA, Nevinsky GA, Laval J, Bartsch H, . Age-dependent increase of etheno-DNA-adducts in liver and brain of ROS overproducing OXYS rats. Biochem Biophys Res Commun 2005;336:478–482.
  • Nair J, Carmichael PL, Fernando RC, Phillips DH, Strain AJ, Bartsch H, . Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson's disease and primary hemochromatosis. Cancer Epidemiol Biomarkers Prev 1998;7: 435–440.
  • Pang B, Zhou X, Yu H, Dong M, Taghizadeh K, Wishnok JS, . Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation. Carcinogenesis 2007;28:1807–1813.
  • Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 2007;43:1109–1120.
  • Nair J, Furstenberger G, Burger F, Marks F, Bartsch H. Promutagenic etheno-DNA adducts in multistage mouse skin carcinogenesis: correlation with lipoxygenase-catalyzed arachidonic acid metabolism. Chem Res Toxicol 2000; 13:703–709.
  • Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 2006;391:499–510.
  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 2007;121:2381–2386.
  • Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 2008;18:64–72.
  • Pardo B, Gomez-Gonzalez B, Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 2009;66: 1039–1056.
  • Eker AP, Quayle C, Chaves I, van der Horst GT. DNA repair in mammalian cells: Direct DNA damage reversal: elegant solutions for nasty problems. Cell Mol Life Sci 2009;66: 968–980.
  • Fortini P, Dogliotti E. Base damage and single-strand break repair: mechanisms and functional significance of short-and long-patch repair subpathways. DNA Repair (Amst) 2007; 6:398–409.
  • Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007; 6:695–711.
  • Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008;18:27–47.
  • Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci 2009;66:981–993.
  • Saparbaev M, Kleibl K, Laval J. Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA. Nucleic Acids Res 1995;23:3750–3755.
  • Saparbaev M, Laval J. 3,N4-ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase. Proc Natl Acad Sci U S A 1998;95:8508–8513.
  • Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, . hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 2002;277:39926–39936.
  • Bellacosa A. Role of MED1 (MBD4) Gene in DNA repair and human cancer. J Cell Physiol 2001;187:137–144.
  • Jiricny J, Menigatti M. DNA Cytosine demethylation: are we getting close? Cell 2008;135:1167–1169.
  • Saparbaev M, Langouet S, Privezentzev CV, Guengerich FP, Cai H, Elder RH, . 1,N(2)-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkylpurine-DNA-N-glycosylase. J Biol Chem 2002;277: 26987–26993.
  • Privezentzev CV, Saparbaev M, Laval J. The HAP1 protein stimulates the turnover of human mismatch-specific thymine-DNA-glycosylase to process 3,N(4)-ethenocytosine residues. Mutat Res 2001;480-481:277–284.
  • Demple B, Sung JS. Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair (Amst) 2005;4:1442–1449.
  • Um S, Harbers M, Benecke A, Pierrat B, Losson R, Chambon P, . Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J Biol Chem 1998;273:20728–20736.
  • Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P, . Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 2002;9:265–277.
  • Missero C, Pirro MT, Simeone S, Pischetola M, Di Lauro R. The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J Biol Chem 2001;276:33569–33575.
  • Gros L, Maksimenko AV, Privezentzev CV, Laval J, Saparbaev MK. Hijacking of the human alkyl-N-purine-DNA glycosylase by 3,N4-ethenocytosine, a lipid peroxidation-induced DNA adduct. J Biol Chem 2004;279:17723–17730.
  • Bartsch H, Nair J. Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect Prev 2004;28:385–391.
  • Speina E, Zielinska M, Barbin A, Gackowski D, Kowalewski J, Graziewicz MA, . Decreased repair activities of 1,N(6)-ethenoadenine and 3,N(4)-ethenocytosine in lung adenocarcinoma patients. Cancer Res 2003;63:4351–4357.
  • Gackowski D, Speina E, Zielinska M, Kowalewski J, Rozalski R, Siomek A, . Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res 2003;63:4899–4902.
  • Obtulowicz T, Winczura A, Speina E, Swoboda M, Janik J, Janowska B, . Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients. Free Radic Biol Med 2010;49:1064–1071.
  • Liu BQ, Wu YD, Li PH, Wei JX, Zhang T, Liu RL, . Prostate cancer antigen-1 as a potential novel marker for prostate cancer. Asian J Androl 2007;9:821–826.
  • Konishi N, Nakamura M, Ishida E, Shimada K, Mitsui E, Yoshikawa R, . High expression of a new marker PCA-1 in human prostate carcinoma. Clin Cancer Res 2005;11: 5090–5097.
  • Aravind L, Koonin EV. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol 2001;2: research 7.1–7.8.
  • Delaney JC, Smeester L, Wong C, Frick LE, Taghizadeh K, Wishnok JS, . AlkB reverses etheno DNA lesions caused by lipid oxidation in vitro and in vivo. Nat Struct Mol Biol 2005;12:855–860.
  • Mishina Y, Yang CG, He C. Direct repair of the exocyclic DNA adduct 1,N6-ethenoadenine by the DNA repair AlkB proteins. J Am Chem Soc 2005;127:14594–14595.
  • Maciejewska AM, Ruszel KP, Nieminuszczy J, Lewicka J, Sokolowska B, Grzesiuk E, . Chloroacetaldehyde-induced mutagenesis in Escherichia coli: the role of AlkB protein in repair of 3,N(4)-ethenocytosine and 3,N(4)-alpha-hydroxyethanocytosine. Mutat Res 684:24–34.
  • Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, . Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 2003;421:859–863.
  • Begley TJ, Samson LD. AlkB mystery solved: oxidative demethylation of N1-methyladenine and N3-methylcytosine adducts by a direct reversal mechanism. Trends Biochem Sci 2003;28:2–5.
  • Falnes PO. Repair of 3-methylthymine and 1-methylguanine lesions by bacterial and human AlkB proteins. Nucleic Acids Res 2004;32:6260–6267.
  • Koivisto P, Duncan T, Lindahl T, Sedgwick B. Minimal methylated substrate and extended substrate range of Escherichia coli AlkB protein, a 1-methyladenine-DNA dioxygenase. J Biol Chem 2003;278:44348–44354.
  • Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, . AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 2004;16:107–116.
  • Kurowski MA, Bhagwat AS, Papaj G, Bujnicki JM. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics 2003;4:48
  • Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, . The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007;318:1469–1472.
  • Yi C, Yang CG, He C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc Chem Res 2009; 42:519–529.
  • Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B, . Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci U S A 2002;99: 16660–16665.
  • Falnes PO, Bjoras M, Aas PA, Sundheim O, Seeberg E. Substrate specificities of bacterial and human AlkB proteins. Nucleic Acids Res 2004;32:3456–3461.
  • Mishina Y, Lee CH, He C. Interaction of human and bacterial AlkB proteins with DNA as probed through chemical cross-linking studies. Nucleic Acids Res 2004;32: 1548–1554.
  • Ringvoll J, Moen MN, Nordstrand LM, Meira LB, Pang B, Bekkelund A, . AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res 2008;68:4142–4149.
  • Fu D, Samson LD. Direct repair of 3,N(4)-ethenocytosine by the human ALKBH2 dioxygenase is blocked by the AAG/MPG glycosylase. DNA Repair 2012;11:46–52.
  • Gilljam KM, Feyzi E, Aas PA, Sousa MM, Muller R, Vagbo CB, . Identification of a novel, widespread, and functionally important PCNA-binding motif. J Cell Biol 2009;186:645–654.
  • Ringvoll J, Nordstrand LM, Vagbo CB, Talstad V, Reite K, Aas PA, . Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA. Embo J 2006;25:2189–2198.
  • Westbye MP, Feyzi E, Aas PA, Vagbo CB, Talstad VA, Kavli B, . Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J Biol Chem 2008;283:25046–25056.
  • Muller TA, Meek K, Hausinger RP. Human AlkB homologue 1 (ABH1) exhibits DNA lyase activity at abasic sites. DNA Repair (Amst) 9:58–65.
  • Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z, . Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008;582:3313–3319.
  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, . N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011;7:885–887.
  • Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, . Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 30: 1814–1827.
  • Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, . Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 2007;28:860–870.
  • Leihne V, Kirpekar F, Vagbo CB, van den Born E, Krokan HE, Grini PE, . Roles of Trm9-and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA. Nucleic Acids Res 39:7688–7701.
  • Pan Z, Sikandar S, Witherspoon M, Dizon D, Nguyen T, Benirschke K, . Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dyn 2008;237: 316–327.
  • Shimada K, Nakamura M, Ishida E, Higuchi T, Yamamoto H, Tsujikawa K, . Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Sci 2008;99:39–45.
  • Tsujikawa K, Koike K, Kitae K, Shinkawa A, Arima H, Suzuki T, . Expression and sub-cellular localization of human ABH family molecules. J Cell Mol Med 2007;11: 1105–1116.
  • Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, . The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 2002;23:1781–1789.
  • Feng Z, Hu W, Amin S, Tang MS. Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry 2003;42:7848–7854.
  • Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res 1990;238: 223–233.
  • Eckl PM, Ortner A, Esterbauer H. Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes. Mutat Res 1993;290:183–192.
  • Karlhuber GM, Bauer HC, Eckl PM. Cytotoxic and genotoxic effects of 4-hydroxynonenal in cerebral endothelial cells. Mutat Res 1997;381:209–216.
  • Huang H, Wang H, Kozekova A, Rizzo CJ, Stone MP. Formation of a N2-dG:N2-dG carbinolamine DNA cross-link by the trans-4-hydroxynonenal-derived (6S,8R,11S) 1,N2-dG adduct. J Am Chem Soc 133:16101–16110.
  • Maddukuri L, Speina E, Christiansen M, Dudzinska D, Zaim J, Obtulowicz T, . Cockayne syndrome group B protein is engaged in processing of DNA adducts of lipid peroxidation product trans-4-hydroxy-2-nonenal. Mutat Res 2009;666:23–31.
  • Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005;577:131–145.
  • Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 2003;73:1217–1239.
  • Zarkovic K. 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 2003;24:293–303.
  • Hayashi M, Itoh M, Araki S, Kumada S, Shioda K, Tamagawa K, . Oxidative stress and disturbed glutamate transport in hereditary nucleotide repair disorders. J Neuropathol Exp Neurol 2001;60:350–356.
  • Feng Z, Hu W, Tang MS. Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proc Natl Acad Sci U S A 2004;101:8598–8602.
  • Kumar S, Kokate RA, Sahu M, Chaudhary P, Sharma R, Awasthi S, . Inhibition of mercapturic acid pathway-mediated disposal of 4-hydroxynonenal causes complete and sustained remission of human cancer xenografts in nude mice. Indian J Exp Biol 49:817–825.
  • Pizzimenti S, Menegatti E, Berardi D, Toaldo C, Pettazzoni P, Minelli R, . 4-hydroxynonenal, a lipid peroxidation product of dietary polyunsaturated fatty acids, has anticarcinogenic properties in colon carcinoma cell lines through the inhibition of telomerase activity. J Nutr Biochem 2010; 21:818–826.
  • Pizzimenti S, Briatore F, Laurora S, Toaldo C, Maggio M, De Grandi M, . 4-Hydroxynonenal inhibits telomerase activity and hTERT expression in human leukemic cell lines. Free Radic Biol Med 2006;40:1578–1591.
  • Schmid K, Nair J, Winde G, Velic I, Bartsch H. Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int J Cancer 2000;87:1–4.
  • Nair J, Gansauge F, Beger H, Dolara P, Winde G, Bartsch H, . Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn's disease, ulcerative colitis, and chronic pancreatitis. Antioxid Redox Signal 2006;8:1003–1010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.