1,115
Views
74
CrossRef citations to date
0
Altmetric
Review Article

Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases

, , , , , & show all
Pages 451-462 | Received 04 Oct 2012, Accepted 10 Apr 2013, Published online: 13 May 2013

References

  • Butterfield DA, Sultana R. Methionine-35 of aβ (1–42): importance for oxidative stress in Alzheimer disease. J Amino Acids 2011;2011:198430. Epub 2011 Jun 4.
  • Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, et al. Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson's disease brains. Neurochem Res 2011;36:1452–1463.
  • Farooqui AA, Horrocks LA. Lipid peroxides in the free radical pathophysiology of brain diseases. Cell Mol Neurobiol 1998;18:599–608.
  • Harman D. Aging: overview. Ann N Y Acad Sci 2001;928: 1–21.
  • Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007;1:18–36.
  • Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 1990;65:375–398.
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.
  • Stadtman ER. Protein oxidation and aging. Science 1992;257:1220–1224.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;1181–128.
  • Head E, Liu J, Hagen TM, Muggenburg BA, Milgram NW, Ames BN, Cotman CW. Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 2002;82:375–381.
  • Dei R, Takeda A, Niwa H, Li M, Nakagomi Y, Watanabe M, et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer's disease. Acta Neuropathologica 2002;104:113–122.
  • Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002;23:795–807.
  • Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, et al. Does oxidative damage to DNA increase with age?Proc Natl Acad Sci U S A 2001;98:10469–10474.
  • Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S Am 1988;85:6465–6467.
  • Agarwal S, Sohal RS. Aging and protein oxidative damage. Mechanisms of Ageingand Dev 1994;75:11–19.
  • Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993;34:609–616.
  • Hagen TM. Oxidative stress, redox imbalance, and the aging process. Antioxid Redox Signal 2003;5:503–506.
  • Ashok BT, Ali R. The aging paradox: free radical theory of aging. Exp Gerontol 1999;34:293–303.
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, aging. Cell 2005;120:483–495.
  • Love S. Oxidative stress in brain ischemia. Brain Pathol 1999;9:119–131.
  • Davis JB, Mahe P. Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res 1994;652:169–173.
  • McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 1995;21: 195–218.
  • Chabrier PE, Demerle-Pallardy C, Auguet M. Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 1999;55:1029–1035.
  • Hof PR, Morrison JH. The aging brain: morphomolecular senescence of cortical circuits. Trends Neuroscie 2004; 27:607–613.
  • Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 2003;69:143–179.
  • Wei EP, Kontos HA, Dietrich WD, Povlishock JT, Ellis EF. Inhibition of free radical scanvengers and by ciclooxigenase inhibitors of pial arteriolar abnormalities from concussive head injury in cats. Circ Res 1981;48:95–103.
  • Hu HL, Forsey RJ, Blades TJ, Barratt ME, Parmar P, Powell JR. Antioxidants may contribute in the fight against ageing: an in vitro model. Mech Ageing Dev 2001;121:217–230.
  • Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53:S26–S36; discussion S36–S38.
  • Singh M, Dang TN, Arseneault M, Ramassamy C. Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. J Alzheimer's Dis 2010;21:741–756.
  • Rodrigues R, Smith MA, Wang X, Perry G, Lee HG, Zhu X, Petersen RB. Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurol 2012;7:287–305.
  • Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 2006;8:2007–2019.
  • Dumas JA, Newhouse PA. The cholinergic hypothesis of cognitive aging revisited again: cholinergic functional compensation. Pharmacol Biochem Behav 2011;99:254–261.
  • Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 2012;1822:639–649.
  • Xiang Z, Ho L, Yemul S, Zhao Z, Qing W, Pompl P, et al. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr 2002;10:271–278.
  • Sonnen JA, Breitner JC, Lovell MA, Markesbery WR, Quinn JF, Montine TJ. Free radical-mediated damage to brain in Alzheimer's disease and its transgenic mouse models. Free Radic Biol Med 2008;45:219–30.
  • Perfeito R, Cunha-Oliveira T, Rego AC. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease–resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2012;53:1791–806.
  • Abe T, Isobe C, Murata T, Sato C, Tohgi H. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease. Neurosci Lett 2003;336:105–108.
  • Seet RC, Lee CY, Lim EC, Tan JJ, Quek AM, Chong WL, et al. Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 2010;48: 560–566.
  • Danielson SR, Andersen JK. Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med 2008;44:1787–1794.
  • Nakamura T, Cho DH, Lipton SA. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 2012;238:12–21.
  • Navarro A, Boveris A. Brain mitochondrialdysfunction and oxidative damage in Parkinson's disease. J Bioenerg Biomembr 2009;41:517–521.
  • Kluger A, Gianutsos JG, Golomb J, Ferris SH, George AE, Franssen E, Reisberg B. Patterns of motor impairment in normal aging, mild cognitive decline, and early Alzheimer's disease. J Gerontol 1997;52:P28–39.
  • Van Dyk K, Sano M. The impact of nutrition on cognition in the elderly. Neurochem Res 2007;32:893–904.
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence?Nat Med 2004;10:S18–S25.
  • Ames BN, Shigena MK, Hagen TM. Oxidants, antioxidants and anticarcinogens: oxygen radicals and degenerative disease. Proc Natl Acad Sci U S Am 1993;90:7915–7922.
  • Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006;8:2021–2037.
  • Ulmann L, Mimouni V, Roux S, Porsolt R, Poisson JP. Brain and hippocampus fatty acid composition in phospholipid classes of aged-relative cognitive deficit rats. Prostaglandins Leukot Essent Fatty Acids 2001;64:189–195.
  • Lopez GH, Ilincheta de Boschero MG, Castagnet PI, Giusto NM. Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comp Biochem Physiol B Biochem Mol Biol 1995;112:331–343.
  • Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging 2002;23:843–853.
  • Youdim A, Martin A, Joseph JA. Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci 2000;18:383–399.
  • Mora F, Segovia G, del Arco A. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 2007;55:78–88.
  • Wofford JL, Loehr LR, Schwartz E. Acute cognitive impairment in elderly ED patients: etiologies and outcomes. Am J Emerg Med 1996;14:649–653.
  • Chiovenda P, Vincentelli GM, Alegiani F. Cognitive impairment in elderly ED patients: need for multidimensional assessment for better management after discharge. Am J Emerg Med 2002;20:332–335.
  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008;9:46–56.
  • Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 2005; 19:1329–1331.
  • Streit WJ, Sparks DL. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med 1997;75:130–138.
  • Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007;7:161–167.
  • Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun 2008;22:301–311.
  • Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O’ Connor J, et al. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 2008;33:2341–2351.
  • Combrinck MI, Perry VH, Cunningham C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 2002;112:7–11.
  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005;25:9275–9284.
  • Jang S, Johnson RW. Can consuming flavonoids restore old microglia to their youthful state?Nutr Rev 2010;68: 719–728.
  • Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet 1985;1:1313–1315.
  • Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003;74:788–789.
  • Huell M, Strauss S, Volk B, Berger M, Bauer J. Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer's disease patients. Acta Neuropathol 1995;89:544–551.
  • Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: Mac-Arthur studies of successful aging. Neurology 2002;59: 371–378.
  • Campbell IL. Structural and functional impact of the transgenic expression of cytokines in the CNS. Ann N Y Acad Sci 1998;840:83–96.
  • Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci U S A 1997;94:1500–1505.
  • Joseph JA. The putative role of free radicals in the loss of neuronal functioning in senescence. Integ Physiol Behav Sci 1992;27:216–227.
  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S Am 1996;93:4765–4769.
  • Dean RL, Scozzafava J, Goas JA, Regan B, Beer B, Bartus RT. Age-related differences in behavior across the life span of the C57BL/6J mouse. Exp Aging Res 1981;7:427–451.
  • Joseph JA, Bartus RT, Clody D, Morgan D, Finch C, Beer B, et al. Psychomotor performance in the senescent rodent: reduction of deficits via striatal dopamine receptor up-regulation. Neurobiol Aging 1983;4:313–319.
  • Joseph JA, Lippa AS. Reduction of motor behavioral deficits in senescent animals via chronic prolactin administration-II. Non-stereotypic behaviors. Neurobiol Aging 1986;7: 37–40.
  • Ingram DK, Joseph JA, Spangler EL, Roberts D, Hengemihle J, Fanelli RJ. Chronic nimodipine treatment in aged rats: analysis of motor and cognitive effects and muscarinic-induced striatal dopamine release. Neurobiol Aging 1994;15: 55–61.
  • Shukitt-Hale B, Mouzakis G, Joseph JA. Psychomotor and spatial memory performance in aging male Fischer 344 rats. Exp Gerontol 1998;33:615–624.
  • Joseph JA, Roth GS. Altered striatal dopaminergic and cholinergic reciprocal inhibitory control and motor behavioral decrements in senescence. Ann N Y Acad Sci 1988;521: 110–122.
  • Jankovic J. Pathophysiology and clinical assessment of parkinsonian symptoms and signs. In: Pahwa R, Lyons K, Koller WC (ed.). Handbook of Parkinson's Disease, 3rd ed. London: Informa Health Care, 2003. pp. 71–98.
  • Fearnley M, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114: 2283–2301.
  • Chinta SJ, Andersen JK. Redox imbalance in Parkinson's disease. Biochim Biophys Acta 2008;1780:1362–1367.
  • Benjamin W. Book review: iron and Parkinson's disease. Neuroscientist 2002;8:22–32.
  • Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53:S26–S38.
  • Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B. A generalized increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 1997;69:1326–1329.
  • Halliwell B. Drug antioxidant effects. A basis for drug selection?. Drugs 1991;42:569–605.
  • Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001;18:685–716.
  • Singh I, Gulati S, Orak JK, Singh AK. Expression of antioxidant enzymes in rat kidney during ischemia-reperfusion injury. Mol Cell Biochem 1993;125:97–104.
  • Demopoulos HB, Flamm ES, Seligman ML, Pietronigro DD, Tomasula J, DeCrescito V. Further studies on free-radical pathology in the major central nervous system disorders: effect of very high doses of methylprednisolone on the functional outcome, morphology and chemistry of experimental spinal cord impact injury. Can J Physiol Pharmacol 1982; 60:1415–1424.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–247.
  • Toescu EC. Normal brain ageing: models and mechanisms. Philoso Trans R Soc B Biol Sci 2005;360:2347–2354.
  • Barja G. Free radicals and aging. Trends Neurosci 2004; 27:595–600.
  • Orr WC, Mockett RJ, Benes JJ, Sohal RS. Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J Biol Chem 2003; 278:26418–26422.
  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11:376–381.
  • Dudas SP, Arking R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol A Biol Sci Med Sci 1995;50:B117–127.
  • Sinha R, Block G, Taylor PR. Determinants of plasma ascorbic acid in a healthy male population. Cancer Epidemiol Biomarkers Prev 1992;1:297–302.
  • Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 2001; 30:583–594.
  • Paganga G, Miller N, Rice-Evans CA. The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute?. Free Radic Res 1999;30: 153–162.
  • Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002;96):67–202.
  • Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001;49:3106–3112.
  • Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63:1035–1042.
  • Brown JP. A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat Res 1980;75:243–277.
  • Duarte J, Pérez-Vizcaíno F, Zarzuelo A, Jiménez J, Tamargo J. Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur J Pharmacol 1993;239:1–7.
  • Mercer LD, Kelly BL, Horne MK, Beart PM. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 2005;69:339–345.
  • Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T, Kato Y, et al. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med 2011;51:1329–1336.
  • Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001;74:418–425.
  • Georgetti SR, Casagrande R, Di Mambro VM, Azzolini AECS, Fonseca MJV. Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence method. AAPS Pharmac Sci 2003;5:E20.
  • Rice-Evans CPL. Flavonoids in Health and Diseases. Boca Raton, Fla.: CRC Press; 2003. pp. 329–395.
  • Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, et al. Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res 2003;5:425–432.
  • Chow JM, Shen SC, Huan SK, Lin HY, Chen YC. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol 2005;69:1839–1851.
  • Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules?Free Radic Biol Med 2004; 36:838–849.
  • Slikker W, Youdim MB, Palmer GC, Hall E, Williams C, Trembley B. The future of neuroprotection. Ann N Y Acad Sci 1999;890:135–172.
  • Singh A, Naidu PS, Kulkarni SK. Reversal of aging and chronic ethanol-induced cognitive dysfunction by quercetin a bioflavonoid. Free Radic Res 2003;37:1245–1252.
  • Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol. 2007;165: 1364–1371.
  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF. Intake of flavonoids and risk of dementia. Eur J Epidemiol. 2000;16:357–363.
  • Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci U S A 2008; 105:7534–7539.
  • Chen JC, Ho FM, Pei-Dawn Lee C, Chen CP, Jeng KC, et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 2005;521:9–20.
  • Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999;19:8114–8121.
  • Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, et al. Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 1998;18:8047–8055.
  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radic Res 1995; 22:375–383.
  • Heo HJ, Lee CY. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem. 2004;52:7514–7517.
  • Vinson JA, Hao Y, Su X, Zubik L. Phenol Antioxidant Quantity and Quality in Foods Vegetables. J. Agric. Food Chem 1998;46:3630–3634.
  • Bate C, Salmona M, Williams A. Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1–42. J Neuroinflammation 2004;1:4.
  • Yagyu K, Kitagawa K, Wu B, Zhang NY, Irie T, Hattori N, Inagaki C. Protective effects of estradiol against amyloid beta protein-induced inhibition of neuronal Cl−-ATPase activity. Neuropharmacology 2002;43:1297–1304.
  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ. Flavonoids protect neurons from oxidized lowdensity- lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J. 2001;358:547–557.
  • Patil CS, Singh VP, Satyanarayan PS, Jain NK, Singh A, Kulkarni SK. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology 2003;69:59–67.
  • Kumar A, Sehgal N, Kumar P, Padi SS, Naidu PS. Protective effect of quercetin against ICV colchicine-induced cognitive dysfunctions and oxidative damage in rats. Phytother Res. 2008;22:1563–1569.
  • Galea L, McEwen BS, Tanapat P, Deak T, Spencer RL, Dhabhar FS. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 1997;81:689–697.
  • Sousa N, Cerqueira JJ, Almeida OF. Corticosteroid receptors and neuroplasticity. Brain Res Rev 2008;57:561–570.
  • Williamson G, Barron D, Shimoi K, Terao J. In vitro biological properties of flavonoid conjugates found in vivo. Free Radic Res 2005;39:457–469.
  • Kawabata K, Kawai Y, Terao J. Suppressive effect of quercetin on acute stress induced hypothalamic–pituitary–adrenal axis response in Wistar rats. J Nutr Biochem 2010;21:374–380.
  • Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O. Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 2006;136:1043–1047.
  • Rezai-Zadeh K, Ehrhart J, Bai Y, Sanberg PR, Bickford P, Tan J, Shytle RD. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation 2008;5:41.
  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic Res 2005;39:1119–1125.
  • Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett 2011;500:139–143.
  • Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, et al. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3- methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res. 2003;965:130–136.
  • Lv C, Hong T, Yang Z, Zhang Y, Wang L, Dong M, et al. Effect of Quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-Induced Mouse Model of Parkinson's Disease. Evid Based Complement Alternat Med: eCAM 2012;928643.
  • Singh M, Areseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer's disease. J Agric Food Chem 2008;56: 4855–4873.
  • Martínez AL, Domínguez F, Orozco S, Chávez M, Salgado H, González M, et al. Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J Ethnopharmacol 2006;106:250–255.
  • Watanabe K, Watanabe H, Goto Y, Yamaguchi M, Yamamoto N, Hagino K. Pharmacological properties of magnolol and honokiol extracted from Magnolia officinalis: central depressant effects. Planta Med 1983;49:103–108.
  • Lin YR, Chen HH, Ko CH, Chan MH. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur J Pharmacol. 2006;537:64–69.
  • Matsui N, Takahashi K, Takeichi M, Kuroshita T, Noguchi K, Yamazaki K, et al. Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Res. 2009;1305:108–117.
  • Lin YR, Chen HH, Ko CH, Chan MH. Differential inhibitory effects of honokiol and magnolol on excitatory amino acid-evoked cation signals and NMDA-induced seizures. Neuropharmacology 2005;49:542–550.
  • Hoi CP, Ho YP, Baum L, Chow AH. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother Res 2010;24:1538–1542.
  • Fried LE, Arbiser JL. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 2009;11:1139–1148.
  • Ai J, Wang X, Nielsen M. Honokiol and magnolol selectively interact with GABAA receptor subtypes in vitro. Pharmacology 2001;63:34–41.
  • Fukuyama Y, Nakade K, Minoshima Y, Yokoyama R, Zhai H, Mitsumoto Y. Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorg Med Chem Lett 2002;12:1163–1166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.