597
Views
26
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Antioxidant and anti-inflammatory effects of exercise: role of redox signaling

&
Pages 3-11 | Received 26 Jul 2013, Accepted 09 Sep 2013, Published online: 14 Oct 2013

References

  • Jenkins RR. Exercise, oxidative stress and antioxidant: a review. Intl J Sports Nutr 1993;3:356–375.
  • Meyer M, Pahl HL, Baeuerle PA. Regulation of the transcription factors NF-kB and AP-1 by redox changes. J Chem Biol Interact 1994;91:91–100.
  • Allen RG, Tresini M. Oxidative stress and gene regulation. J Free Rad Biol Med 2000;28:463–499.
  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and function through the thermogenic coactivator PGC-1. Cell 1999;98:115–124.
  • Hawley JA, Zierath JR. Integration of metabolic and mitogenic signal transduction in skeletal muscle. J Exerc Sport Sci Rev 2004;32:4–8.
  • D’Autréaux B, Toledano1 MB. ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007;8:813–824.
  • Pourova J, Kottova M, Voprsalova M, Pour M. Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf) 2010;198:15–35.
  • Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP. Mitochondrial redox signaling at a glance. J Cell Sci 2012;125:801–806.
  • Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008;88:1243–1276.
  • Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol 2003;94:1917–1925.
  • Ji LL. Antioxidant signaling in skeletal muscle: a brief review. J Exp Gerontol 2007;42:582–593.
  • Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10:709–720.
  • Hollander J, Fiebig R, Ookawara T, Ohno H, Ji LL. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflug Arch (Eur J Physiol) 2001;442:426–434.
  • Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 2003;17:386–396.
  • Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J. Acute exercise activates nuclear factor (NF) κB signaling pathway in rat skeletal muscle. FASEB J 2004;18:1499–1506.
  • Gomez-Cabrera MC, Borras C, Pallardó FV, Sastre J, Ji LL, Vina J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol (London) 2005;567:113–120.
  • Ho YS, Howard A J, Crapo JD. Molecular structure of a functional rat gene for manganese containing superoxide dismutase. Am J Respir Cell Molec Biol 1991;4:278–286.
  • Flohé L, Brigelius-Flohé R, Saliou C, Traber M, Packer L. Redox regulation of NF-kappa B activation. J Free Rad Biol Med 1997;22:1115–1126.
  • Li Q, Engelhardt JF. Interlecukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB- inducing kinase. J Biol Chem 2006;281:1495–1505.
  • Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109:S81–S96.
  • Goodyear L, Chang P, Sherwood D, Dufresne S, Moller D. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol 1996;271:E403–E408.
  • Baar K, Esser K. Phosphorylation of P70S6K correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 1999;276:C120–C127.
  • Aronson D, Violan MA, Dufresne SD, Zangen D, Fielding RA, Goodyear LJ. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J Clin Invest 1997;99:1251–1257.
  • Ryder J, Fahlman R, Wallberg-Henriksson H, Alessi D, Krook A, Zierath J. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. J Biol Chem 2000;275:1457–1462.
  • Nader G, Esser K. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 2001;90:1936–1942.
  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 2006;20:190–192.
  • van Ginneken MM, de Graaf-Roelfsema E, Keizer HA, van Dam KG, Wijnberg ID, van der Kolk JH, van Breda E. Effect of exercise on activation of the p38 mitogen-activated protein kinase pathway, c-Jun NH2 terminal kinase, and heat shock protein 27 in equine skeletal muscle. Am J Vet Res 2006;67:837–844.
  • Sakamoto K, Goodyear LJ. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 2002;93:369–383.
  • Catani MV, Savini I, Duranti G, Caporossi D, Ceci R, Sabatini S, Avigliano L. Nuclear factor kappaB and activating protein 1 are involved in differentiation-related resistance to oxidative stress in skeletal muscle cells. J Free Radic Biol Med 2004;37:1024–1036.
  • Hoffmann E, Thiefes A, Buhrow D, Dittrich-Breiholz O, Schneider H, Resch K, Kracht M. MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors. J Biol Chem 2005;280:9706–9718.
  • Ji LL. Exercise and oxidative stress: role of the cellular antioxidant systems. J Exerc Sport Sci Rev 1995;23:135–166.
  • Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol 2001;90: 724–731.
  • Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol 1995;79:675–686.
  • Ramires P, Ji LL. Glutathione supplementation and training increases myocardial resistance to ischemia-reperfusion in vivo. Am J Physiol 2001;281:H679–H688.
  • Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. J Biochim Biophys Acta 2000;1517:19–26.
  • Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, et al. Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. J Cardiovasc Res 2002;54:95–104.
  • Balon TW. Integrative biology of nitric oxide and exercise. J Exerc Sport Sci Rev 1999;27:219–253.
  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998;92:829–839.
  • Lin J, Wu H, Tarr PT. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002;418:797–801.
  • Finck BN, Kelly DP. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Invest 2006;116:615–622.
  • Puigserver P, Spiegelman BM. Peroxisome proliferators- activated receptor gamma coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. J Endocr Rev 2003;24:78–90.
  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet 2003;34:267–273.
  • Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature 2008;454:463–469.
  • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88:611–638.
  • Knutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab 2001;12:360–365.
  • Russell AP. PGC-1α and exercise: Important partners in combating insulin resistance. J Curr Diabetes Rev 2005;1: 175–84.
  • Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. J Genes Dev 2007;18:357–368.
  • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. J Cell Metabol 2005;1:361–370.
  • Michael LF, Wu Z, Cheatham RB. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 2001;98:3820–3825.
  • Jagoe RT, Goldberg AL. What do we really know about the ubiquitin– proteasome pathway in muscle atrophy?J Curr Opin Clin Nutr Metab Care 2001;4:183–190.
  • Schreiber SN, Emter R, Hock MB. The estrogen-related receptor a (ERRα) functions in PPARgamma coactivator 1a (PGC-1α)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 2004;101:6472–6477.
  • Leick L, Wojtaszewski JF, Johansen ST. PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol 2008; 294:463–474.
  • Geng T, Li P, Okutsu M. PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 2010; 298:572–579.
  • Leick L, Lyngby SS, Wojtasewski JF, Pilegaard H. PGC-1α is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol 2010;45:336–342.
  • Wenz T, Rossi S, Rotundo RL. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc Nat Acad Sci 2009;106:20405–20410.
  • St-Pierre J, Drori S, Uldry M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397–408.
  • St-Pierre J, Lin J, Krauss S. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003;278:26597–26603.
  • Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLOSone 2010;5:e11707.
  • Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuindeacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005;280: 13560–13567.
  • Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. J Genomics 2005;85:258–263.
  • Arnold AS, Egger A, Handschin C. PGC-1αand myokines in the aging muscle—a mini-review. J Gerontol 2010;57:37–43.
  • Handschin C. Peroxisome proliferator-activated receptor-γ coactivator-1α in muscle linksmetabolism to inflammation. J Clin Exp Pharmacol Physiol 2009;36:1139–1143.
  • Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 2005; 66:562–573.
  • Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984;56:831–838.
  • Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002;16:1879–1886.
  • Handschin C. Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor γ coactivator 1α. J Recept Signal Transduct 2010;30:376–384.
  • Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, et al. p38 Mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. J Mol Cell Biol 2004;24:3057–3067.
  • Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol 2006;26:7409–7419.
  • Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. J Mol Cell 2001;8:971–982.
  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005;280:19587–19593.
  • Kang C, O’Moore KM, Dickman JR, Ji LL. Exercise activation of muscle peroxisome proliferator-activated receptor-γ coactivator-1α signaling is redox sensitive. Free Rad Biol Med 2009;47:1394–1400.
  • Feng H, Kang C, Dickman JR, Koenig R, Awoyinka I, Zhang Y, Ji LL. Training-induced mitochondrial adaptation: role of peroxisome proliferator-activated receptor γ coactivator-1α, nuclear factor-κB and β-blockade. Exp Physiol 2013; 98:784–795.
  • Hom J, Sheu SS. Morphological dynamics of mitochondria–a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 2009;46:811–820.
  • Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. J Mol Biol Cell 2009;20:3525–3532.
  • Grandemange S, Herzig S, Martinou JC. Mitochondrial dynamics and cancer. J Semin Cancer Biol 2009;19:50–56.
  • Breckenridge DG, Kang BH, Kokel D, Mitani S, Staehelin LA, Xue D. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. J Mol Cell 2008;31: 586–597.
  • Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 2008;1777:860–866.
  • Koopman WJ, Verkaart S, van Emst-de Vries SE, Grefte S, Smeitink JA, Nijtmans LG, Willems PH. Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. Biochim Biophys Acta 2008;1777:853–859.
  • Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 2006;103:2653–2658.
  • Jendrach M, Mai S, Pohl S, Vöth M, Bereiter-Hahn J. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008;8:293–304.
  • Liesa M, Borda-d’Agua B, Medina-Gómez G, Lelliott CJ, Paz JC, Rojo M, et al. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 2008; 3:e3613.
  • Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 2006;55:1783–1791.
  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 2008;3:e1487.
  • Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 2003;278:17190–17197.
  • Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 2001;114:867–874.
  • Bo H, Zhang Y, Ji LL. Redefining the role of mitochondria in exercise: a dynamic remodeling. J Ann N Y Acad Sci 2010; 1201:121–128.
  • Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, et al. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 2005;19:43–52.
  • Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, et al. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. J Biochim Biophys Acta 2009;1800:250–256.
  • Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, et al. Mitofusins 1/2 and ERR alpha expression are increased in human skeletal muscle after physical exercise. J Physiol 2005;567:349–358.
  • Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1999;1415:271–296.
  • Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 2005;6:248–261.
  • Ljubicic V, Adhihetty PJ, Hood DA. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis. J Appl Physiol 2004;97:976–983.
  • Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2000;279:622–629.
  • Cortright RN, Zheng D, Jones JP, Fluckey JD, DiCarlo SE, Grujic D, et al. Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation. Am J Physiol Endocrinol Metab 1999;276: E217–E221.
  • Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 2003;17:1585–1591.
  • Jiang N, Zhang G, Bo H, Qu J, Ma G, Cao D, et al. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function. Free Radic Biol Med 2009;46:138–145.
  • Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, et al. Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Biol Med 2008;44: 1373–1381.
  • Anderson EJ, Yamazaki H, Neufer PD. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J Biol Chem 2007;282:31257–31266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.