591
Views
62
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health

&
Pages 695-710 | Received 06 Oct 2014, Accepted 28 Dec 2014, Published online: 28 Jan 2015

References

  • Westley J. Rhodanese. Adv Enzymol Relat Subj 1973; 39:327–368.
  • Oram JD, Reiter B. The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. The effect of the inhibitory system on susceptible and resistant strains of group N streptococci. Biochem J 1966;100:373–381.
  • Nagy P, Alguindigue SS, Ashby MT. Lactoperoxidase- catalyzed oxidation of thiocyanate by hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance and optical spectroscopy. Biochemistry 2006; 45:12610–12616.
  • Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol 2005;77:598–625.
  • Pattison DI, Davies MJ. Reactions of myeloperoxidase- derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 2006;13:3271–3290.
  • Pattison DI, Davies MJ, Hawkins CL. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 2012;46:975–995.
  • Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006;445:199–213.
  • van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 1997;327:487–492.
  • Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 1999;274:25933–25944.
  • Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 2012;84:1381–1387.
  • Wijkstrom-Frei C, El-Chemaly S, Ali-Rachedi R, Gerson C, Cobas MA, Forteza R, et al. Lactoperoxidase and human airway host defense. Am J Respir Cell Mol Biol 2003; 29:206–212.
  • Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB Jr, Nauseef WM, Dupuy C, Banfi B. A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 2007;175:174–183.
  • Conner GE, Wijkstrom-Frei C, Randell SH, Fernandez VE, Salathe M. The lactoperoxidase system links anion transport to host defense in cystic fibrosis. FEBS J Lett 2007; 581:271–278.
  • Chandler JD, Min E, Huang J, Nichols DP, Day BJ. Nebulized thiocyanate improves lung infection outcomes in mice. Br J Pharmacol 2013;169:1166–1177.
  • Chandler JD, Min E, Huang J, McElroy CS, Dickerhof N, Mocatta T, et al. Anti-inflammatory and anti-microbial effects of thiocyanate in a cystic fibrosis mouse model. Am J Respir Cell Mol Biol 2014;141209083429009.
  • Morgan PE, Maki RA, Reynolds WF, Davies MJ. Thiocyanate supplementation decreases atherosclerosis in LDLR-/- mice transgenic for human myeloperoxidase. The International Human Peroxidase Meeting 2013.
  • Lorentzen D, Durairaj L, Pezzulo AA, Nakano Y, Launspach J, Stoltz DA, et al. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radic Biol Med 2011;50:1144–1150.
  • Nedoboy PE, Morgan PE, Mocatta TJ, Richards AM, Winterbourn CC, Davies MJ. High plasma thiocyanate levels are associated with enhanced myeloperoxidase-induced thiol oxidation and long-term survival in subjects following a first myocardial infarction. Free Radic Res 2014;48:1256–1266.
  • Skaff O, Pattison DI, Davies MJ. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance. Biochem J 2009;422:111–117.
  • Nagy P, Jameson GNL, Winterbourn CC. Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chem Res Toxicol 2009;22:1833–1840.
  • Skaff O, Pattison DI, Morgan PE, Bachana R, Jain VK, Priyadarsini KI, Davies MJ. Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage. Biochem J 2012;441:305–316.
  • Kemp M, Go Y-M, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology. Free Radic Biol Med 2008;44: 921–937.
  • Schultz CP, Ahmed MK, Dawes C, Mantsch HH. Thiocyanate levels in human saliva: quantitation by Fourier transform infrared spectroscopy. Anal Biochem 1996;240:7–12.
  • Vesey CJ, Saloojee Y, Cole PV, Russell MA. Blood carboxyhaemoglobin, plasma thiocyanate, and cigarette consumption: implications for epidemiological studies in smokers. Br Med J (Clin Res Ed) 1982;284:1516–1518.
  • La Vieja De A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev 2000;80: 1083–1105.
  • Fragoso MA, Fernandez V, Forteza R, Randell SH, Salathe M, Conner GE. Transcellular thiocyanate transport by human airway epithelia. J Physiol 2004;561:183–194.
  • Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, et al. Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 2007;178:5144–5153.
  • Thomson E, Brennan S, Senthilmohan R, Gangell CL, Chapman ALP, Sly PD, Kettle AJ. Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radic Biol Med 2010;49:1354–1360.
  • Gould NS, Gauthier S, Kariya CT, Min E, Huang J, Day BJ. Hypertonic saline increases lung epithelial lining fluid glutathione and thiocyanate: two protective CFTR-dependent thiols against oxidative injury. Respir Res 2010;11:119.
  • Pruitt KM, Tenovuo J, Mansson-Rahemtulla B, Harrington P, Baldone DC. Is thiocyanate peroxidation at equilibrium in vivo? Biochim Biophys Acta 1986;870:385–391.
  • Tenovuo J, Mansson-Rahemtulla B, Pruitt KM, Arnold R. Inhibition of dental plaque acid production by the salivary lactoperoxidase antimicrobial system. Infect Immun 1981;34:208–214.
  • Minarowski Ł, Sands D, Minarowska A, Karwowska A, Sulewska A, Gacko M, Chyczewska E. Thiocyanate concentration in saliva of cystic fibrosis patients. Folia Histochem Cytobiol 2008;46:245–246.
  • Chen ZF, Darvell BW, Leung VWH. Human salivary anionic analysis using ion chromatography. Arch Oral Biol 2004; 49:863–869.
  • van Haeringen NJ, Ensink FTE, Glasius E. The peroxidase-thiocyanate-hydrogen peroxide system in tear fluid and saliva of different species. Exp Eye Res 1979;28:343–347.
  • Das D, De PK, Banerjee RK. Thiocyanate, a plausible physiological electron donor of gastric peroxidase. Biochem J 1995;305:59–64.
  • Li H, Cao Z, Zhang G, Thannickal VJ, Cheng G. Vascular peroxidase 1 catalyzes the formation of hypohalous acids: characterization of its substrate specificity and enzymatic properties. Free Radic Biol Med 2012;53:1954–1959.
  • Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med 2009;47:1239–1253.
  • Segal BH, Grimm MJ, Khan ANH, Han W, Blackwell TS. Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 2012;53:72–80.
  • Schulz V. Clinical pharmacokinetics of nitroprusside, cyanide, thiosulphate and thiocyanate. Clin Pharmacokinet 1984;9:239–251.
  • Leung AM, Braverman LE, He X, Schuller KE, Roussilhes A, Jahreis KA, Pearce EN. Environmental perchlorate and thiocyanate exposures and infant serum thyroid function. Thyroid 2012;22:938–943.
  • Leung AM, LaMar A, He X, Braverman LE, Pearce EN. Iodine status and thyroid function of Boston-area vegetarians and vegans. J Clin Endocrinol Metab 2011;96: E1303–E1307.
  • Schulz V, Bonn R, Kindler J. Kinetics of elimination of thiocyanate in 7 healthy subjects and in 8 subjects with renal failure. Klin Wochenschr 1979;57:243–247.
  • Nagahara N, Okazaki T, Nishino T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J Biol Chem 1995;270:16230–16235.
  • Aminlari M, Malekhusseini A, Akrami F, Ebrahimnejad H. Cyanide-metabolizing enzyme rhodanese in human tissues: comparison with domestic animals. Comp Clin Pathol 2007;16:47–51.
  • Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 2011;51:169–187.
  • Aminlari M, Gilanpour H. Comparative studies on the distribution of rhodanese in different tissues of domestic animals. Comp Biochem Physiol B 1991;99:673–677.
  • Vaughn SF, Berhow MA. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crops Prod 2005;21:193–202.
  • Han H, Kwon H. Estimated dietary intake of thiocyanate from Brassicaceae family in Korean diet. J Toxicol Environ Health A 2009;72:1380–1387.
  • Suh M, Abraham L, Hixon JG, Proctor DM. The effects of perchlorate, nitrate, and thiocyanate on free thyroxine for potentially sensitive subpopulations of the 2001–2002 and 2007–2008 National Health and Nutrition Examination Surveys. J Expo Sci Environ Epidemiol 2014;24:579–587.
  • Dahlberg P-A, Bergmark A, Eltom M, Björck L, Claesson O. Effect of thiocyanate levels in milk on thyroid function in iodine deficient. Am J Clin Nutr 1985;41:1010–1014.
  • Moir D, Rickert WS, Levasseur G, Larose Y, Maertens R, White P, Desjardins S. A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions. Chem Res Toxicol 2008;21:494–502.
  • Bogusz M, Moroz J, Karski J, Gierz J, Regieli A, Witkowska R, Gołabek. Blood cyanide and thiocyanate concentrations after administration of sodium nitroprusside as hypotensive agent in neurosurgery. Clin Chem 1979;25:60–63.
  • Vesey CJ, Cole PV. Blood cyanide and thiocyanate concentrations produced by long-term therapy with sodium nitroprusside. Br J Anaesth 1985;57:148–155.
  • Scanlon CEO, Berger B, Malcom G, Wissler RW, Group PR. Evidence for more extensive deposits of epitopes of oxidized low density lipoprotein in aortas of young people with elevated serum thiocyanate levels. Atherosclerosis 1996; 121:23–33.
  • Botti TP, Amin H, Hiltscher L, Wissler RW, Group PR. A comparison of the quantitation of macrophage foam cell populations and the extent of apolipoprotein E deposition in developing atherosclerotic lesions in young people: high and low serum thiocyanate groups as an indication of smoking. Atherosclerosis 1996;124:191–202.
  • Malisoff WM, Marine D. Prevention of atherosclerosis in rabbits. I. Administration of potassium thiocyanate. Proc Soc Exp Biol Med 1936;35:356–358.
  • Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nature Med 2007;13:1176–1184.
  • Morgan PE, Pattison DI, Talib J, Summers FA, Harmer JA, Celermajer DS, et al. High plasma thiocyanate levels in smokers are a key determinant of thiol oxidation induced by myeloperoxidase. Free Radic Biol Med 2011;51: 1815–1822.
  • Mocatta TJ, Pilbrow AP, Cameron VA, Senthilmohan R, Frampton CM, Richards AM, Winterbourn CC. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol 2007;49:1993–2000.
  • Estes JE, Keith NM. Hypothyroidism and mild myxedema from thiocyanate intoxication. Am J Med 1946;1:45–52.
  • Barnett HJM, Jackson MV. Thiocyanate psychosis. JAMA 1951;147:1554–1558.
  • Del Solar AV, Dussaillant G, Brodsky M, Rodriguez G. Fatal poisoning from potassium thiocyanate in treatment of hypertension. Arch Intern Med 1945;75:241–247.
  • Askeland RA, Morrison SM. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol 1983;45:1802–1807.
  • Crowell TI, Hankins MG. The hydrolysis of thiocyanic acid. J Phys Chem A 2001;73:1380–1383.
  • Aune TM, Thomas EL. Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion. Eur J Biochem 1977;80:209–214.
  • Thomas EL. Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate. Biochemistry 1981;20:3273–3280.
  • Klebanoff SJ, Luebke RG. The antilactobacillus system of saliva. Role of salivary peroxidase. Proc Soc Exp Biol Med 1965;118:483–486.
  • Klebanoff SJ, Clem WH, Luebke RG. The peroxidase- thiocyanate-hydrogen peroxide antimicrobial system. Biochim Biophys Acta 1966;117:63–72.
  • Ashby MT, Carlson AC, Scott MJ. Redox buffering of hypochlorous acid by thiocyanate in physiologic fluids. J Am Chem Soc 2004;126:15976–15977.
  • Nagy P, Beal JL, Ashby MT. Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid. Chem Res Toxicol 2006;19:587–593.
  • Nagy P, Lemma K, Ashby MT. Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution. Inorg Chem 2007;46:285–292.
  • Ihalin R, Loimaranta V, Tenovuo J. Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 2006;445:261–268.
  • van Dalen CJ, Kettle AJ. Substrates and products of eosinophil peroxidase. Biochem J 2001;358:233–239.
  • Xu Y, Szép S, Lu Z. The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases. Proc Natl Acad Sci U S A 2009;106: 20515–20519.
  • Chandler JD, Nichols DP, Nick JA, Hondal RJ, Day BJ. Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J Biol Chem 2013;288: 18421–18428.
  • Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 2011;24:434–450.
  • Conte Lo M, Carroll KS. The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 2013;288: 26480–26488.
  • Aune TM, Thomas EL. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. Biochemistry 1978;17:1005–1010.
  • Ashby MT, Aneetha H. Reactive sulfur species: aqueous chemistry of sulfenyl thiocyanates. J Am Chem Soc 2004;126:10216–10217.
  • Arnhold J, Monzani E, Furtmüller PG, Zederbauer M, Casella L, Obinger C. Kinetics and thermodynamics of halide and nitrite oxidation by mammalian heme peroxidases. Eur J Inorg Chem 2006;2006:3801–3811.
  • Storkey C, Davies MJ, Pattison DI. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic Biol Med 2014;73:60–66.
  • Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 1999;27:322–328.
  • Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 2001;30: 572–579.
  • Pattison DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 2001;14:1453–1464.
  • Pattison DI, Davies MJ. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004;43:4799–4809.
  • Lu J, Holmgren A. Selenoproteins. J Biol Chem 2009;284: 723–727.
  • Huber RE, Criddle RS. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 1967;122:164–173.
  • Wada M, Nobuki S-I, Tenkyuu Y, Natsume S, Asahara M, Erabi T. Bis (2, 6-dimethoxyphenyl) sulfide, selenide and telluride, and their derivatives. J Organomet Chem 1999;580:282–289.
  • Arnér ESJ. Selenoproteins—What unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 2010;316:1296–1303.
  • Hondal RJ, Ruggles EL. Differing views of the role of selenium in thioredoxin reductase. Amino Acids 2010; 41:73–89.
  • Hondal RJ, Marino SM, Gladyshev VN. Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid Redox Signal 2013;18:1675–1689.
  • Hirt RP, Müller S, Embley TM, Coombs GH. The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol 2002;18:302–308.
  • Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000; 267:6102–6109.
  • Snider GW, Ruggles EL, Khan N, Hondal RJ. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: Comparison of selenium and sulfur enzymes. Biochemistry 2013;52:130718144650007.
  • Ashby MT. Hypothiocyanite. Adv Inorg Chem 2012;64: 263–303.
  • Lemma K, Ashby MT. Reactive sulfur species: kinetics and mechanism of the reaction of hypothiocyanous acid with cyanide to give dicyanosulfide in aqueous solution. Chem Res Toxicol 2009;22:1622–1628.
  • Hawkins CL, Pattison DI, Stanley NR, Davies MJ. Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochem J 2008;416:441.
  • Bonifay V, Barrett TJ, Pattison DI, Davies MJ, Hawkins CL, Ashby MT. Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants. Arch Biochem Biophys 2014.
  • Exner M, Hermann M, Hofbauer R, Hartmann B, Kapiotis S, Gmeiner B. Thiocyanate catalyzes myeloperoxidase- initiated lipid oxidation in LDL. Free Radic Biol Med 2004;37:146–155.
  • Nord G, Pedersen B, Farver O. Outer-sphere oxidation of iodide and thiocyanate by tris (2, 2’-bipyridyl)-and tris (1, 10-phenanthroline) osmium (III) in aqueous solutions. Inorg Chem 1978;17:2233–2238.
  • Wang J-G, Slungaard A. Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 2006;445:256–260.
  • Gould NS, Min E, Day BJ. Macropinocytosis of extracellular glutathione ameliorates tumor necrosis factor α release in activated macrophages. PLoS ONE 2011;6:e25704.
  • Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 2013;35:1050–1055.
  • Kokura S, Wolf RE, Yoshikawa T, Granger DN, Aw TY. Molecular mechanisms of neutrophil-endothelial cell adhesion induced by redox imbalance. Circ Res 1999;84: 516–524.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008;45: 549–561.
  • Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 2007;282:11885–11892.
  • Holmgren A, Luthman M. Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 1978;17:4071–4077.
  • Thomas EL, Milligan TW, Joyner RE, Jefferson MM. Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci. Infect Immun 1994;62:529–535.
  • Marshall VME, Reiter B. Comparison of the antibacterial activity of the hypothiocyanite anion towards Streptococcus and Escherichia coli. J Gen Microbiol 1980;120:513–516.
  • De Spiegeleer P, Sermon J, Vanoirbeek K, Aertsen A, Michiels CW. Role of porins in sensitivity of Escherichia coli to antibacterial activity of the lactoperoxidase enzyme system. Appl Environ Microbiol 2005;71:3512–3518.
  • Mickelson MN. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate- hydrogen peroxide. J Bacteriol 1977;132:541–548.
  • Shin K, Yamauchi K, Teraguchi S, Hayasawa H, Imoto I. Susceptibility of Helicobacter pylori and its urease activity to the peroxidase-hydrogen peroxide-thiocyanate antimicrobial system. J Med Microbiol 2002;51:231–237.
  • Tenovuo J, Mäkinen KK, Sievers G. Antibacterial effect of lactoperoxidase and myeloperoxidase against Bacillus cereus. Antimicrob Agents Chemother 1985;27:96–101.
  • Courtois P, Majerus P, Labbé M, Vanden Abbeele A, Yourassowsky E, Pourtois M. Susceptibility of anaerobic microorganisms to hypothiocyanite produced by lactoperoxidase. Acta Stomatol Belg 1992;89:155–162.
  • Fadel M, Courtois P. Inhibitory effect of lactoperoxidase-generated hypothiocyanite upon black pigmented anaerobe growth. Int J Mol Med 2001;8:59–62.
  • Wang J-G, Mahmud SA, Nguyen J, Slungaard A. Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: a novel HOSCN- specific oxidant mechanism to amplify inflammation. J Immunol 2006;177:8714–8722.
  • Sengupta R, Holmgren A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J Biol Chem 2014;5:68–74.
  • Zamocky M, Jakopitsch C, Furtmüller PG, Dunand C, Obinger C. The peroxidase-cyclooxygenase superfamily: Reconstructed evolution of critical enzymes of the innate immune system. Proteins 2008;72:589–605.
  • Chapman ALP, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, et al. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 2013;288: 6465–6477.
  • Sokolov AV, Zakahrova ET, Kostevich VA, Samygina VR, Vasilyev VB. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes. Biometals 2014.
  • Courtois P, Pourtois M. Purification of NADH: hypothiocyanite oxidoreductase in Streptococcus sanguis. Biochem Mol Med 1996;57:134–138.
  • Majerus PM, Courtois PA. Susceptibility of Candida albicans to peroxidase-catalyzed oxidation products of thiocyanate, iodide and bromide. J Biol Buccale 1992;20:241–245.
  • Lenander-Lumikari M. Inhibition of Candida albicans by the peroxidase/SCN/H2O2 System. Oral Microbiol Immunol 1992;7:315–320.
  • Mikola H, Waris M, Tenovuo J. Inhibition of herpes simplex virus type 1, respiratory syncytial virus and echovirus type 11 by peroxidase-generated hypothiocyanite. Antiviral Res 1995;26:161–171.
  • Pourtois M, Binet C, Van Tieghem N, Courtois P, Vandenabbeele A, Thiry L. Inhibition of HIV infectivity by lactoperoxidase-produced hypothiocyanite. J Biol Buccale 1990;18:251–253.
  • Arlandson M, Decker T, Roongta VA, Bonilla L, Mayo KH, MacPherson JC, et al. Eosinophil peroxidase oxidation of thiocyanate. Characterization of major reaction products and a potential sulfhydryl-targeted cytotoxicity system. J Biol Chem 2001;276:215–224.
  • Gerson C, Sabater J, Scuri M, Torbati A, Coffey R, Abraham JW, et al. The lactoperoxidase system functions in bacterial clearance of airways. Am J Respir Cell Mol Biol 2000;22:665–671.
  • Gattas MV, Forteza R, Fragoso MA, Fregien N, Salas P, Salathe M, Conner GE. Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli. Free Radic Biol Med 2009;47:1450–1458.
  • Xulu BA, Ashby MT. Small molecular, macromolecular, and cellular chloramines react with thiocyanate to give the human defense factor hypothiocyanite. Biochemistry 2010; 49:2068–2074.
  • Hawkins CL, Davies MJ. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem J 1998;332:617–625.
  • Albrich JM, McCarthy CA, Hurst JK. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A 1981;78:210–214.
  • Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 1985;840:204–210.
  • Folkes LK, Candeias LP, Wardman P. Kinetics and mechanisms of hypochlorous acid reactions. Arch Biochem Biophys 1995;323:120–126.
  • Talib J, Pattison DI, Harmer JA, Celermajer DS, Davies MJ. High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine. Free Radic Biol Med 2012;53:20–29.
  • Meotti FC, Jameson GNL, Turner R, Harwood DT, Stockwell S, Rees MD, et al. Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem 2011;286:12901–12911.
  • Rees MD, Maiocchi SL, Kettle AJ, Thomas SR. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: Critical protective actions of ascorbate and thiocyanate. Free Radic Biol Med 2014;72:91–103.
  • Thomas EL, Fishman M. Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem 1986;261: 9694–9702.
  • Slungaard A, Mahoney JR Jr. Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids. J Biol Chem 1991;266:4903–4910.
  • Wagner BA, Reszka KJ, McCormick ML, Britigan BE, Evig CB, Patrick Burns C. Role of thiocyanate, bromide and hypobromous acid in hydrogen peroxide-induced apoptosis. Free Radic Res 2004;38:167–175.
  • Rees MD, Dang L, Thai T, Owen DM, Malle E, Thomas SR. Targeted subendothelial matrix oxidation by myeloperoxidase triggers myosin II-dependent de-adhesion and alters signaling in endothelial cells. Free Radic Biol Med 2012; 53:2344–2356.
  • Mathson K, Rehani T, Slungaard A. Thiocyanate Blocks Peroxidase-Dependent Extracellular Trap Formation By PMN and Eosinophils In Response To Physiologic Agonists. The International Human Peroxidase Meeting, Sydney Australia, September 2015.
  • Kaplan MJ, Radic M. Neutrophil extracellular traps: Double-edged swords of innate immunity. J Immunol 2012;189: 2689–2695.
  • Fabrini R, Bocedi A, Camerini S, Fusetti M, Ottaviani F, Passali FM, et al. Inactivation of human salivary glutathione transferase p1-1 by hypothiocyanite: a post-translational control system in search of a role. PLoS ONE 2014;9:e112797.
  • Lane AE, Tan JTM, Hawkins CL, Heather AK, Davies MJ. The myeloperoxidase-derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Biochem J 2010;430:161–169.
  • Talib J, Witting PK, Davies MJ. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochem J 2013;457:89–97.
  • Wang J-G, Mahmud SA, Thompson JA, Geng J-G, Key NS, Slungaard A. The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: a potential mechanism for thrombosis in eosinophilic inflammatory states. Blood 2006;107:558–565.
  • Lloyd MM, van Reyk DM, Davies MJ, Hawkins CL. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Biochem J 2008;414:271.
  • Bozonet SM, Scott-Thomas AP, Nagy P, Vissers MCM. Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells. Free Radic Biol Med 2010;49:1054–1063.
  • Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radic Biol Med 2013;65:1352–1362.
  • Forman HJ. Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic Biol Med 2007;42: 926–932.
  • Quinton PM. Chloride impermeability in cystic fibrosis. Nature 1983;301:421–422.
  • Gao L, Kim KJ, Yankaskas JR, Forman HJ. Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 1999;277:113–118.
  • Velsor LW, van Heeckeren AM, Day BJ. Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Physiol Cell Physiol 2001;281:L31–L38.
  • Garcia MAS, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator–dependent bicarbonate secretion. J Clin Invest 2009; 119:2613–2622.
  • Lyczak JB, Cannon CL, Pier GB. Lung infections asso- ciated with cystic fibrosis. Clin Microbiol Rev 2002;15: 194–222.
  • Walker TS, Tomlin KL, Worthen GS, Lieber JG, Saavedra MT, Fessler MB, Nick JA. Enhanced pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 2005;73:3693–3701.
  • Henke MO, John G, Rheineck C, Chillappagari S, Naehrlich L, Rubin BK. Serine proteases degrade airway mucins in cystic fibrosis. Infect Immun 2011;79:3438–3444.
  • Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006;354:241–250.
  • Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, et al, National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006;354:229–240.
  • Wark P, McDonald VM. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev 2009;1–43.
  • Eng PA, Morton J, Douglass JA, Riedler J, Wilson J, Robertson CF. Short-term efficacy of ultrasonically nebulized hypertonicsaline in cystic fibrosis. Pediatr Pulmonol 1996;21:77–83.
  • Rennard SI, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG, Crystal RG. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986;60:532–538.
  • Ruskin A, McKinley WF. Comparative study of potassium thiocyanate and other drugs in the treatment of essential hypertension. Am Heart J 1947;34:691–701.
  • Alstad KS. The effects of thiocyanate on basal and supplemental blood pressures. Br Heart J 1949;11:249–256.
  • Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nature Med 2004; 10:487–493.
  • Kettle AJ, Turner R, Gangell CL, Harwood DT, Khalilova IS, Chapman AL, et al, on behalf of AREST CF. Oxidation contributes to low glutathione in the airways of children with cystic fibrosis. Eur Respir J 2014;erj01702–2013.
  • Anathy V, Aesif SW, Hoffman SM, Bement JL, Guala AS, Lahue KG, et al. Glutaredoxin-1 attenuates S-glutathionylation of the death receptor fas and decreases resolution of Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2014;189:463–474.
  • Castellani LW, Chang JJ, Wang X, Lusis AJ, Reynolds WF. Transgenic mice express human MPO -463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in -463G males. J Lipid Res 2006;47:1366–1377.
  • Harwood DT, Kettle AJ, Winterbourn CC. Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC–MS/MS method. Biochem J 2006;399:161.
  • Tam J, Nash EF, Ratjen F, Tullis E, Stephenson A. Nebulized and oral thiol derivatives for pulmonary disease in cystic fibrosis (Review). Cochrane Database of Syst Rev 2013;12:1–58.
  • Griese M, Kappler M, Rietschel E, Hartl D, Hector A. Inhalation treatment with glutathione in patients with cystic fibrosis. A randomized clinical trial. Am J Respir Crit Care Med 2013;188:83–89.
  • Kajer TB, Fairfull-Smith KE, Yamasaki T, Yamada K-I, Fu S, Bottle SE, et al. Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides. Free Radic Biol Med 2014;70:96–105.
  • Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 2013; 93:185–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.