176
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Flavonoid-induced conversion of catalase to its inactive form—Compound II

, &
Pages 1334-1341 | Received 29 Apr 2014, Accepted 04 Aug 2014, Published online: 04 Sep 2014

References

  • Yao LH, Jiang YM, Shi J, Tomas-Barberan FA, Datta N, Singanusong R, Chen SS. Flavonoids in food and their health benefits. Plant Foods Hum Nutr 2004;59:113–122.
  • Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63: 1035–1042.
  • Prochazkova D, Bousova I, Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82: 513–523.
  • Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 2004;37: 287–303.
  • Lee-Hilz YY, Boerboom AM, Westphal AH, van Berkel WJ, Aarts JM, Rietjens IM. Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem Res Toxicol 2006;19:1499–1505.
  • Zhao CR, Gao ZH, Qu XJ. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol 2010;34:523–533.
  • Rice-Evans C, Packer L (eds.). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker, Inc; 2003.
  • Dangles O, Dufour C. Flavonoid-protein interactions. In: Andersen ØM, Markham KR (eds.). Flavonoids. Chemistry, Biochemistry and Applications. Boca Raton, London, New York: CRC Taylor & Francis; 2006. pp. 443–470.
  • Krych J, Gebicka L. Catalase is inhibited by flavonoids. Int J Biol Macromol 2013;58:148–153.
  • Nicholls P, Fita I, Loewen PC. Enzymology and structure of catalases. Adv Inorg Chem 2000;51:51–106.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.
  • De Groot H, Auferkamp O, Bramey T, de Groot K, Kirch M, Korth HG, et al. Non-oxygen-forming pathways of hydrogen peroxide degradation by bovine liver catalase at low hydrogen peroxide fluxes. Free Radic Res 2006;40:67–74.
  • Kirkman HN, Gaetani GF. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 2007;32: 44–50.
  • Ivancich A, Jouve HM, Sartor B, Gaillard J. EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates. Biochemistry 1997;36:9356–9364.
  • Putnam CD, Arvai AS, Bourne Y, Tainer JA. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 2000;296:295–309.
  • Svistunenko DA, Cooper CE. A new method of identifying the site of tyrosyl radicals in proteins. Biophys J 2004;87: 582–595.
  • Alfonso-Prieto M, Vidossich P, Rovira C. The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics. Arch Biochem Biophys 2012; 525:121–130.
  • Kirkman HN, Gaetani GF. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci USA 1984;81:4343–4347.
  • Fita I, Rossmann MG. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci USA 1985;82:1604–1608.
  • Kirkman HN, Galiano S, Gaetani GF. The function of catalase-bound NADPH. J Biol Chem 1987;262:660–666.
  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 1999;274:13908–13914.
  • Sicking W, Korth H-G, de Groot H, Sustmann R. On the functional role of water molecule in clade 3 catalases: A proposal for the mechanism by which NADPH prevents the formation of Compound II. J Am Chem Soc 2008;130:7345–7356.
  • El Hajii H, Nkhili E, Tomao V, Dangles O. Interactions of quercetin with iron and copper ions. Complexation and autoxidation. Free Radic Res 2006;40:303–320.
  • Katalinic M, Rusak G, Domacinovic Barovic J, Sinko G, Jelic D, Antolovic R, Kovarik Z. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur J Med Chem 2010;45:186–192.
  • Hillar A, Nicholls P, Switala J, Loewen PC. NADPH binding and control of catalase compound II formation. Comparison of bovine, yeast and Escherichia coli enzymes. Biochem J 1994;300:531–539.
  • Samejima T, Yang JT. Reconstitution of acid-denaturated catalase. J Biol Chem 1963;238:3256–3261.
  • Ohlsson PI, Paul KG. The molar absorptivity of horseradish peroxidase. Acta Chem Scand B 1976;30:373–375.
  • McCord JM, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;244:6049–6055.
  • Fruscione F, Sturla L, Duncan G, van Etten JL, Valbuzzi P, de Flora A, et al. Differential role of NADP+ and NADPH in the activity and structure of GDP-D-mannose 4,6-dehydratase from two chlorella viruses. J Biol Chem 2008;283:184–193.
  • Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952;195:133–140.
  • Hildebrandt AG, Roots I. Reduced nicotiamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Acta Biochim Biophys 1975; 171:385–397.
  • Gay CA, Gebicki JM. Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem 2002;304:42–46.
  • Childs RE, Bardsley WG. The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 1975;145:93–103.
  • Jouve HM, Pelmont J, Gaillard J. Interaction between pyridine adenine dinucleotides and bovine liver catalase: A chromatographic and spectral study. Arch Biochem Biophys 1986; 248:71–79.
  • Korth H-G, Meier A-C, Auferkamp O, Sicking W, de Groot H, Sustmann R, Kirsch M. Ascorbic acid reduction of Compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket. Biochemistry 2012;51:4693–4703.
  • Roginsky V, Barsukova T. Kinetics of oxidation of hydroquinones by molecular oxygen. Effect of superoxide dismutase. J Chem Soc Perkin Trans 2000;2:575–1582.
  • Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 1989;18:1637–1755.
  • Alvarez-Diduk R, Ramirez-Silva MT, Galano A, Merkoci A. Deprotonation mechanism and acidity constants in aqueous solution of flavonols: a combined experimental and theoretical study. J Phys Chem B 2013;117:12347–12359.
  • Deeble DJ, Parsons BJ, Phillips GO, Schuchman H-P, von Sonntag C. Superoxide radical reactions in aqueous solutions of pyrogallol and N-propyl gallate: the involvement of phenoxyl radicals. A pulse radiolysis study. Int J Radiat Biol 1988;54:179–193.
  • Gebicka L, Metodiewa D, Gebicki JL. Pulse radiolysis of catalase in solution. I. reactions of O2•− with catalase and its Compound I. Int J Radiat Biol 1989;55:45–50.
  • Almarsson O, Sinha A, Gopinath E, Bruice TC. Mechanism of one-electron oxidation of NAD(P)H and function of NADPH bound to catalase. J Am Chem Soc 1993;115: 7093–7102.
  • Olson LP, Bruice TC. Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase. Biochemistry 1995;34:7335–7347.
  • Hillar A, Nicholls P. A mechanism for NADPH inhibition of catalase compound II formation. FEBS Lett 1992;314: 179–182.
  • Zhu J, Zhang X, Li D, Jin J. Probing the binding of flavonoids to catalase by molecular spectroscopy. J Mol Struct 2007; 843:38–44.
  • Andreoletti P, Gambarelli S, Sainy G, Stojanoff V, White C, Desfonds G, et al. Formation of tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity. Biochemistry 2001; 40:13734–13743.
  • Yang B, Hao F, Li J, Chen D, Liu RJ. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies. J Photochem Photobiol B 2013; 128:35–42.
  • Rice Evans C. Flavonoids and isoflavones: absorption, metabolism and bioactivity. Free Radic Biol Med 2004;36:827–828.
  • Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic Biol Med 2006; 41:1727–1746.
  • Fiorani M, Accorsi A, Cantoni O. Human red blood cells as a natural flavonoid reservoir. Free Radic Res 2003;37: 1331–1338.
  • Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 2010;21:397–404.
  • Silva DI, Gaspar J, da Costa GG, Rodrigues AS, Laires A, Rueff J. Chemical features of flavonols affecting their genotoxicity. Potential implications in their use as therapeutical agents. Chem Biol Interact 2000;124:29–51.
  • Kruidenier L, Kuiper I, van Duijn W, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Verspaget HW. Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol 2003;201:17–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.