366
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome

, , , , , , , , , , , & show all
Pages 1371-1385 | Received 03 Jul 2014, Accepted 19 Aug 2014, Published online: 23 Sep 2014

References

  • Bunn PA Jr. The expanding role of cisplatin in the treatment of non-small-cell lung cancer. Semin Oncol 1989;16:10–21.
  • Baruah H, Barry CG, Bierbach U. Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr Top Med Chem 2004;4:1537–1549.
  • Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M, et al. Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res 1995;55:4293–4296.
  • Bungo M, Fujiwara Y, Kasahara K, Nakagawa K, Ohe Y, Sasaki Y, et al. Decreased accumulation as a mechanism of resistance to cis-diamminedichloroplatinum (II) in human non-small cell lung cancer cell lines: relation to DNA damage and repair. Cancer Res 1990;50:2549–2553.
  • Owatari S, Akune S, Komatsu M, Ikeda R, Firth SD, Che XF, et al. Copper-transporting P-type ATPase, ATP7A, confers multidrug resistance and its expression is related to resistance to SN-38 in clinical colon cancer. Cancer Res 2007;67: 4860–4868.
  • Meijer C, Mulder NH, Hospers GA, Uges DR, de Vries EG. The role of glutathione in resistance to cisplatin in a human small cell lung cancer cell line. Br J Cancer 1990;62: 72–77.
  • Kasahara K, Fujiwara Y, Nishio K, Ohmori T, Sugimoto Y, Komiya K, et al. Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res 1991;51:3237–3242.
  • Chung YM, Yoo YD, Park JK, Kim YT, Kim HJ. Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 2001;21:1129–1133.
  • Anestål K, Arnér ES. Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. J Biol Chem 2003;278:15966–15972.
  • Matsunaga T, Wada Y, Endo S, Soda M, El-Kabbani O, Hara A. Aldo-keto reductase 1B10 and its role in proliferation capacity of drug-resistant cancers. Front Pharmacol 2012;3:5.
  • Cao D, Fan ST, Chung SS. Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem 1998;273:11429–11435.
  • Fukumoto S, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J, et al. Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non-small cell lung carcinomas. Clin Cancer Res 2005;11:1776–1785.
  • Heringlake S, Hofdmann M, Fiebeler A, Manns MP, Schmiegel W, Tannapfel A. Identification and expression analysis of the aldo-keto reductase1–B10 gene in primary malignant liver tumours. J Hepatol 2010;52:220–227.
  • Soda M, Hu D, Endo S, Takemura M, Li J, Wada R, et al. Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo-keto reductase 1B10. Eur J Med Chem 2012;48:321–329.
  • Yan R, Zu X, Ma J, Liu Z, Adeyanju M, Cao D. Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. Int J Cancer 2007;121:2301–2306.
  • Crosas B, Hyndman DJ, Gallego O, Martras S, Parés X, Flynn TG, Farrés J. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism. Biochem J 2003; 373:973–979.
  • Endo S, Matsunaga T, Mamiya H, Ohta C, Soda M, Kitade Y, et al. Kinetic studies of AKR1B10, human aldose reductase-like protein: Endogenous substrates and inhibition by steroids. Arch Biochem Biophys 2009;487:1–9.
  • Shen Y, Zhong L, Johnson S, Cao D. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem Biol Interact 2011;191:192–198.
  • Matsunaga T, Yamane Y, Iida K, Endo S, Banno Y, El-Kabbani O, Hara A. Involvement of the aldo-keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms. Anticancer Drugs 2011; 22:402–408.
  • Martin HJ, Maser E. Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes. Chem Biol Interact 2009;178:145–150.
  • Endo S, Matsunaga T, Ohta C, Soda M, Kanamori A, Kitade Y, et al. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol. Chem Biol Interact 2011;191:261–268.
  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6:3051–3064.
  • Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994;78:915–918.
  • Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994;78:927–930.
  • Förstermann U, Gath I, Schwarz P, Closs EI, Kleinert H. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol 1995;50: 1321–1332.
  • Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 2012;81:533–559.
  • Dawson TM, Dawson VL. Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annu Rev Med 1996;47:219–227.
  • Matsunaga T, Kotamraju S, Kalivendi SV, Dhanasekaran A, Joseph J, Kalyanaraman B. Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. J Biol Chem 2004;279:28614–28624.
  • Kotamraju S, Matalon S, Matsunaga T, Shang T, Hickman-Davis JM, Kalyanaraman B. Upregulation of immunoproteasomes by nitric oxide: potential antioxidative mechanism in endothelial cells. Free Radic Biol Med 2006;40:1034–1044.
  • Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Nitric oxide and cancer: the emerging role of S-nitrosylation. Curr Mol Med 2012;12:50–67.
  • Liu CY, Wang CH, Chen TC, Lin HC, Yu CT, Kuo HP. Increased level of exhaled nitric oxide and upregulation of inducible nitric oxide synthase in patients with primary lung cancer. Br J Cancer 1998;78:534–541.
  • Speranza L, De Lutiis MA, Shaik YB, Felaco M, Patruno A, Tetè S, et al. Localization and activity of iNOS in normal human lung tissue and lung cancer tissue. Int J Biol Markers 2007;22:226–231.
  • Srivastava AN, Gupta A, Srivastava S, Natu SM, Mittal B, Negi MP, Prasad R. Cisplatin combination chemotherapy induces oxidative stress in advance non-small cell lung cancer patients. Asian Pac J Cancer Prev 2010;11:465–471.
  • Chanvorachote P, Nimmannit U, Stehlik C, Wang L, Jiang BH, Ongpipatanakul B, Rojanasakul Y. Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 2006;66: 6353–6360.
  • Wongvaranon P, Pongrakhananon V, Chunhacha P, Chanvorachote P. Acquired resistance to chemotherapy in lung cancer cells mediated by prolonged nitric oxide exposure. Anticancer Res 2013;33:5433–5444.
  • Kaur H, Lyras L, Jenner P, Halliwell B. Artefacts in HPLC detection of 3-nitrotyrosine in human brain tissue. J Neurochem 1998;70:2220–2223.
  • Hughes MN, Nicklin HG. The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid. J Chem Soc A 1968;1968 450–452.
  • Esterbauer H, Weger W. Uber die Wirkungen von aldehyden auf gesunde und maligne zellen. 3. Mitt: Synthese von homologen 4-hydroxy-2-alkenalen. Monatsh Chem 1967;98: 1994–2000.
  • El-Kabbani O, Scammells PJ, Gosling J, Dhagat U, Endo S, Matsunaga T, et al. Structure-guided design, synthesis, and evaluation of salicylic acid-based inhibitors targeting a selectivity pocket in the active site of human 20α-hydroxysteroid dehydrogenase (AKR1C1). J Med Chem 2009;52:3259–3264.
  • Usui S, Matsunaga T, Ukai S, Kiho T. Growth suppressing activity for endothelial cells induced from macrophages by carboxymethylated curdlan. Biosci Biotechnol Biochem 1997;61:1924–1925.
  • Mohan S, Mohan N, Sprague EA. Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments. Am J Physiol 1997;273:C572–C578.
  • Endo S, Matsunaga T, Kuragano T, Ohno S, Kitade Y, Tajima K, et al. Properties and tissue distribution of a novel aldo-keto reductase encoding in a rat gene (Akr1b10). Arch Biochem Biophys 2010;503:230–237.
  • Iino T, Tabata M, Takikawa S, Sawada H, Shintaku H, Ishikura S, Hara A. Tetrahydrobiopterin is synthesized from 6-pyruvoyl-tetrahydropterin by the human aldo-keto reductase AKR1 family members. Arch Biochem Biophys 2003;416: 180–187.
  • Shiraishi H, Matsuura K, Kume T, Hara A. Expression of mRNAs for dihydrodiol dehydrogenase isoforms in human tissues. Adv Exp Med Biol 1999;463:539–544.
  • Matsunaga T, Hosogai M, Arakaki M, Endo S, El-Kabbani O, Hara A. 9,10-Phenanthrenequinone induces monocytic differentiation of U937 cells through regulating expression of aldo-keto reductase 1C3. Biol Pharm Bull 2012;35: 1598–1602.
  • Sanson M, Augé N, Vindis C, Muller C, Bando Y, Thiers JC, et al. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen- regulated protein 150 expression. Circ Res 2009;104: 328–336.
  • Takemura M, Endo S, Matsunaga T, Soda M, Zhao HT, El-Kabbani O, et al. Selective inhibition of the tumor marker aldo-keto reductase family member 1B10 by oleanolic acid. J Nat Prod 2011;74:1201–1206.
  • Matsunaga T, Hojo A, Yamane Y, Endo S, El-Kabbani O, Hara A. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chem Biol Interact 2013;202: 234–242.
  • Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994;269:4705–4708.
  • Song J, Liu D, Feng L, Zhang Z, Jia X, Xiao W. Protective Effect of Standardized Extract of Ginkgo biloba against Cisplatin-Induced Nephrotoxicity. Evid Based Complement Alternat Med 2013;2013:846126.
  • Sanlioglu S, Williams CM, Samavati L, Butler NS, Wang G, McCray PB Jr, et al. Lipopolysaccharide induces Rac1- dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B. J Biol Chem 2001;276:30188–30198.
  • Das J, Ghosh J, Manna P, Sil PC. Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via upregulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 2011;81:891–909.
  • Li Q, Engelhardt JF. Interleukin-1beta induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. J Biol Chem 2006;281:1495–1505.
  • Babbar N, Casero RA Jr. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 2006;66: 11125–11130.
  • Liu H, Baliga R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 2005;16:1985–1992.
  • Coling DE, Ding D, Young R, Lis M, Stofko E, Blumenthal KM, Salvi RJ. Proteomic analysis of cisplatin-induced cochlear damage: methods and early changes in protein expression. Hear Res 2007;226:140–156.
  • Lin Y, Wang Z, Liu L, Chen L. Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress- tolerant human lung cancer cells. Lung Cancer 2011;71: 291–297.
  • Hirst D, Robson T. Nitric oxide in cancer therapeutics: interaction with cytotoxic chemotherapy. Curr Pharm Des 2010;16:411–420.
  • Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S. Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. Am J Physiol Renal Physiol 2013;305:F881–F890.
  • Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mutat Res 2004;555:107–119.
  • Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2001; 2:149–156.
  • Wong JC, Bathina M, Fiscus RR. Cyclic GMP/protein kinase G type-Iα (PKG-Iα) signaling pathway promotes CREB phosphorylation and maintains higher c-IAP1, livin, survivin, and Mcl-1 expression and the inhibition of PKG-Iα kinase activity synergizes with cisplatin in non-small cell lung cancer cells. J Cell Biochem 2012;113:3587–3598.
  • Matsunaga T, Morikawa Y, Haga M, Endo S, Soda M, Yamamura K, et al. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through upregulation of aldo-keto reductase 1B10. Toxicol Appl Pharmacol 2014;278:180–189.
  • Antelmann H, Helmann JD. Thiol-based redox switches and gene regulation. Antioxid Redox Signal 2011;14:1049–1063.
  • Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 2003; 42:9906–9914.
  • Alvarez B, Ferrer-Sueta G, Freeman BA, Radi R. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 1999;274:842–848.
  • Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009;4: 161–177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.