1,140
Views
96
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences

, , , , , & show all
Pages 347-373 | Received 30 Sep 2014, Accepted 09 Jan 2015, Published online: 27 Mar 2015

References

  • Aruoma OI, Halliwell B. Molecular biology of free radicals in human diseases. Saint Lucia: OICA International; 1998.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Bensasson RV, Land EJ, Truscott TG. Excited States and Free Radicals in Biology and Medicine. Oxford: Oxford University Press; 1993.
  • Bensasson RV, Land EJ, Truscott TG. Pulse Radiolysis and Flash Photolysis: Contributions to the Chemistry of Biology and Medicine. Oxford: Pergamon Press; 1983.
  • Davies MJ. Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 2004;3:17–25.
  • Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991;91:31S–38S.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82:291–295.
  • Forman HJ, Fukuto JM, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 2004;287:C246–256.
  • Kaya A, Lobanov AV, Gerashchenko MV, Koren A, Fomenko DE, Koc A, Gladyshev VN. Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae. Genetics 2014;198:905–917.
  • Spickett CM, Pitt AR. Protein oxidation: role in signalling and detection by mass spectrometry. Amino Acids 2012;42:5–21.
  • Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: Emerging roles in cell signaling. Biochem Pharmacol 2006;71:551–564.
  • Heinecke JW. Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J Lab Clin Med 1999;133:321–325.
  • Levine RL, Berlett BS, Moskovitz J, Mosoni L, Stadtman ER. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev 1999;107:323–332.
  • Jacob C. Redox signalling via the cellular thiolstat. Biochem Soc Trans 2011;39:1247–1253.
  • Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, et al. Biomarkers of oxidative stress study II. Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 2005;38:698–710.
  • Headlam HA, Gracanin M, Rodgers KJ, Davies MJ. Inhibition of cathepsins and related proteases by amino acid, peptide, and protein hydroperoxides. Free Radic Biol Med 2006;40:1539–1548.
  • Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003;25:207–218.
  • Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, et al. Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys 2000;380:360–366.
  • Barry BA, Chen J, Keough J, Jenson D, Offenbacher A, Pagba C. Proton-coupled electron transfer and redox-active tyrosines: Structure and function of the tyrosyl radicals in ribonucleotide reductase and photosystem II. J Phys Chem Lett 2012;3:543–554.
  • Minnihan EC, Nocera DG, Stubbe J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res 2013;46:2524–2535.
  • Stubbe J, van Der Donk WA. Protein radicals in enzyme catalysis. Chem Rev 1998;98:705–762.
  • Solar S, Solar W, Getoff N. Reactivity of OH with tyrosine in aqueous-solution studied by pulse-radiolysis. J Phys Chem A 1984;88:2091–2095.
  • Getoff N. Pulse radiolysis of aromatic amino acids - State of the art. Amino Acids 1992;2:195–214.
  • Chrysochoos J. Pulse radiolysis of phenylalanine and tyrosine. Radiat Res 1968;33:465–479.
  • Lynn KR, Purdie JW. Some pulse and gamma-radiolysis studies of tyrosine and its glycyl peptides. Int J Rad Phys Chem 1976;8:685–689.
  • Garrison WM. Reaction-mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 1987;87: 381–398.
  • Cudina I, Josimovic L. The effect of oxygen on the radiolysis of tyrosine in aqueous-solutions. Radiat Res 1987;109: 206–215.
  • Hunter EP, Desrosiers MF, Simic MG. The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization. Free Radic Biol Med 1989;6:581–585.
  • Cohen G, Yakushin S, Dembiec-Cohen D. Protein L-Dopa as an index of hydroxyl radical attack on protein tyrosine. Anal Biochem 1998;263:232–239.
  • Gieseg SP, Simpson JA, Charlton TS, Duncan MW, Dean RT. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 1993;32:4780–4786.
  • Boguta G, Dancewicz AM. Radiolytic dimerization of tyrosine in alkaline-solutions of poly-l-tyrosine, glycyl-l-tyrosine and tyrosine. Radiat Phys Chem 1982;20:359–363.
  • Boguta G, Dancewicz AM. Radiolytic and enzymatic dimerization of tyrosyl residues in insulin, ribonuclease, papain and collagen. Int J Rad Biol 1983;43:249–265.
  • Hashimoto SK, Kira A, Imamura M; Masuda T. Lysozyme dimer formation on lysozyme oxidation with Br2 radical as studied by fluorescence evolution. Int J Radiat Biol Relat Stud Phys Chem Med 1982;41:303–314.
  • Domazou AS, Koppenol WH, Gebicki JM. Efficient repair of protein radicals by ascorbate. Free Radic Biol Med 2009;46:1049–1057.
  • Jovanovic SV, Harriman A, Simic MG. Electron-transfer reactions of tryptophan and tyrosine derivatives. J Phys Chem A 1986;90:1935–1939.
  • Land EJ, Prutz WA. Reaction of azide radicals with amino acids and proteins. Int J Radiat Biol Relat Stud Phys Chem Med 1979;36:75–83.
  • Ionescu A, Grand D, Sicard-Roselli C, Houee-Levin C. Micellar effect on tyrosine one-electron oxidation by azide radicals. Radiat Phys Chem 2005;72:497–506.
  • Adams GE, Aldrich JE, Bisby RH, Willson RL, Cundall RB, Redpath JL. Selective free-radical reactions with proteins and enzymes - reactions of inorganic radical anions with amino-acids. Radiat Res 1972;49:278–289.
  • Napolitano MJ, Green BJ, Nicoson JS, Margerum DW. Chlorine dioxide oxidations of tyrosine, N-acetyltyrosine, and dopa. Chem Res Toxicol 2005;18:501–508.
  • Curtis MP, Hicks AJ, Neidigh JW. Kinetics of 3-chlorotyrosine formation and loss due to hypochlorous acid and chloramines. Chem Res Toxicol 2011;24:418–428.
  • Alfassi ZB. Selective oxidation of tyrosine oxidation by NO2 and ClO2 at basic pH. Radiat Phys Chem 1987;29:405–406.
  • Sharma V, Sohn M. Reactivity of chlorine dioxide with amino acids, peptides, and proteins. Environmental Chem Lett 2012;10:255–264.
  • Pattison DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 2001;14:1453–1464.
  • Navalon S, Alvaro M, Garcia H. Chlorine dioxide reaction with selected amino acids in water. J Hazard Mater 2009;164:1089–1097.
  • Ogata N. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 2007;46:4898–4911.
  • Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, De Menezes SL. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic Biol Med 2002;32:841–859.
  • Prütz WA. Tyrosine oxidation by NO2 in aqueous-solution. Z Naturforsch C 1984;39:725–727.
  • Clarke K, Edge R, Johnson V, Land EJ, Navaratnam S, Truscott TG. Direct observation of NH2* reactions with oxygen, amino acids, and melanins. J Phys Chem A 2008;112:1234–1237.
  • Alvarez B, Ferrer-Sueta G, Freeman BA, Radi R. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 1999;274:842–848.
  • Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003;25:295–311.
  • Gunaydin H, Houk KN. Mechanisms of peroxynitrite-mediated nitration of tyrosine. Chem Res Toxicol 2009;22: 894–898.
  • Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009;4: 161–177.
  • Goldstein S, Czapski G, Lind J, Merenyi G. Tyrosine nitration by simultaneous generation of •NO and O2 under physiological conditions. How the radicals do the job. J Biol Chem 2000;275:3031–3036.
  • Goldstein S, Lind J, Merenyi G. Chemistry of peroxynitrites as compared to peroxynitrates. Chem Rev 2005;105: 2457–2470.
  • Lymar SV, Jiang Q, Hurst JK. Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 1996;35:7855–7861.
  • Zhang H, Joseph J, Feix J, Hogg N, Kalyanaraman B. Nitration and oxidation of a hydrophobic tyrosine probe by peroxynitrite in membranes: comparison with nitration and oxidation of tyrosine by peroxynitrite in aqueous solution. Biochemistry 2001;40:7675–7686.
  • Kapoor SK, Gopinathan C. Reactions of halogenated organic peroxyl radicals with various purine derivatives, tyrosine, and thymine - a Pulse-Radiolysis study. Int J Chem Kinetics 1992;24:1035–1042.
  • Bartesaghi S, Wenzel J, Trujillo M, Lopez M, Joseph J, Kalyanaraman B, Radi R. Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes. Chem Res Toxicol 2010;23:821–835.
  • Folkes LK, Bartesaghi S, Trujillo M, Radi R, Wardman P. Kinetics of oxidation of tyrosine by a model alkoxyl radical. Free Radic Res 2012;46:1150–1156.
  • Lind J, Shen X, Eriksen TE, Merenyi G. The one-electron reduction potential of 4-substituted phenoxyl radicals in water. J Am Chem Soc 1990;112:479–482.
  • Davies MJ. Identification of a globin free radical in equine myoglobin treated with peroxides. Biochim Biophys Acta 1991;1077:86–90.
  • Pattison DI, Rahmanto AS, Davies MJ. Photo-oxidation of proteins. Photochem Photobiol Sci 2012;11:38–53.
  • Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 2003;305:761–770.
  • Straight RC, Spikes JD. Singlet O2. Frimer AA, editor. Boca Raton, USA: CRC Press; 1985.
  • Wilkinson F, Helman WP, Ross AB. Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular oxygen in solution - an expanded and revised compilation. J Phys Chem Ref Data 1995;24: 663–1021.
  • Criado S, Soltermann AT, Marioli JM, Garcia NA. Sensitized photooxidation of di- and tripeptides of tyrosine. Photochem Photobiol 1998;68:453–458.
  • Jin FM, Leitich J, von Sonntag C. The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron-transfer. J Chem Soc, Perkin Trans 1 1993:1583–1588.
  • Wright A, Bubb WA, Hawkins CL, Davies MJ. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol 2002;76:35–46.
  • Endo K, Seya K, Hikino H. Photo-oxidation of L-tyrosine, an efficient, 1,4-chirality transfer reaction. J Chem Soc Chem Commun 1998:934–935.
  • Wright A, Hawkins CL, Davies MJ. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive peroxides. Redox Rep 2000;5:159–161.
  • Pedersen JZ, Finazzi-Agro A. Protein-radical enzymes. FEBS Lett 1993;325:53–58.
  • Stubbe J, Riggs-Gelasco P. Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase. Trends Biochem Sci 1998;23:438–443.
  • Miller YI, Shaklai N. Oxidative crosslinking of LDL protein induced by hemin: involvement of tyrosines. Biochem Mol Biol Int 1994;34:1121–1129.
  • Miki Y, Pogni R, Acebes S, Lucas F, Fernandez-Fueyo E, Baratto MC, et al. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism. Biochem J 2013;452:575–584.
  • Heinecke JW, Li W, Daehnke HL, Goldstein JA. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem 1993;268:4069–4077.
  • Foerder CA, Shapiro BM. Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci U S A 1977;74: 4214–4218.
  • Burzio LA, Waite JH. Reactivity of peptidyl-tyrosine to hydroxylation and cross-linking. Protein Sci 2001;10: 735–740.
  • Mai K, Smith NC, Feng ZP, Katrib M, Slapeta J, Slapetova I, et al. Peroxidase catalysed cross-linking of an intrinsically unstructured protein via dityrosine bonds in the oocyst wall of the apicomplexan parasite, Eimeria maxima. Int J Parasitol 2011;41:1157–1164.
  • Cheng G, Li H, Cao Z, Qiu X, McCormick S, Thannickal VJ, Nauseef WM. Vascular peroxidase-1 is rapidly secreted, circulates in plasma, and supports dityrosine cross-linking reactions. Free Radic Biol Med 2011;51:1445–1453.
  • Nagano S, Huang X, Moir RD, Payton SM, Tanzi RE, Bush AI. Peroxidase activity of cyclooxygenase-2 (COX-2) cross-links beta-amyloid (Abeta) and generates Abeta-COX-2 hetero-oligomers that are increased in Alzheimer's disease. J Biol Chem 2004;279:14673–14678.
  • Abello N, Kerstjens HA, Postma DS, Bischoff R. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 2009;8:3222–3238.
  • Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, et al. Protein S-nitrosylation: What's going on in plants? Free Radic Biol Med 2012;53:1101–1110.
  • Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci U S A 1999;96:7809–7814.
  • van der Vliet A, Eiserich JP, Halliwell B, Cross CE. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 1997;272: 7617–7625.
  • Gao P, Song Y, Li H, Gao Z. Efficiency of methemoglobin, hemin and ferric citrate in catalyzing protein tyrosine nitration, protein oxidation and lipid peroxidation in a bovine serum albumin-liposome system: influence of pH. J Inorg Biochem 2009;103:783–790.
  • Kambayashi Y, Hitomi Y, Kodama N, Kubo M, Okuda J, Takemoto K, et al. pH profile of cytochrome c-catalyzed tyrosine nitration. Acta Biochim Pol 2006;53:577–584.
  • Castro L, Eiserich JP, Sweeney S, Radi R, Freeman BA. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch Biochem Biophys 2004;421:99–107.
  • Nicolis S, Monzani E, Roncone R, Gianelli L, Casella L. Metmyoglobin-catalyzed exogenous and endogenous tyrosine nitration by nitrite and hydrogen peroxide. Chemistry 2004;10:2281–2290.
  • Chavarria C, Souza JM. Oxidation and nitration of alpha-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys 2013;533:25–32.
  • Vlasova II, Sokolov AV, Arnhold J. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J Inorg Biochem 2012;106:76–83.
  • Kurita N, Mise N, Fujii A, Mori M, Sai K, Nishi T, et al. Myeloperoxidase-antineutrophil cytoplasmic antibody-associated crescentic glomerulonephritis with rheumatoid arthritis: a comparison of patients without rheumatoid arthritis. Clin Exp Nephrol 2010;14:325–332.
  • Son TG, Zou Y, Yu BP, Lee J, Chung HY. Aging effect on myeloperoxidase in rat kidney and its modulation by calorie restriction. Free Radic Res 2005;39:283–289.
  • Baldus S, Eiserich JP, Brennan ML, Jackson RM, Alexander CB, Freeman BA. Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases. Free Radic Biol Med 2002;33:1010.
  • Irwin JA, Ostdal H, Davies MJ. Myoglobin-induced oxidative damage: Evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants. Arch Biochem Biophys 1999;362:94–104.
  • Ostdal H, Skibsted LH, Andersen HJ. Formation of long-lived protein radicals in the reaction between H2O2-activated metmyoglobin and other proteins. Free Radic Biol Med 1997;23:754–761.
  • Ostdal H, Davies MJ, Andersen HJ. Reaction between protein radicals and other biomolecules. Free Radic Biol Med 2002;33:201–209.
  • DiMarco C, Giulivi C. Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples. Mass Spectrom Rev 2007;26: 108–120.
  • Eiserich JP, Butler J, van der Vliet A, Cross CE, Halliwell B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J 1995;310:745–749.
  • Goodwin DC, Gunther MR, Hsi LC, Crews BC, Eling TE, Mason RP, Marnett LJ. Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. J Biol Chem 1998;273:8903–8909.
  • Prütz WA, Mönig H, Butler J, Land EJ. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys 1985;243:125–134.
  • Kikugawa K, Kato T, Okamoto Y. Damage of amino-acids and proteins induced by nitrogen-dioxide, a free-radical toxin, in air. Free Radic Biol Med 1994;16:373–382.
  • Greenacre SAB, Ischiropoulos H. Tyrosine nitration: Localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 2001;34: 541–581.
  • Ischiropoulos H. Protein tyrosine nitration-An update. Arch Biochem Biophys 2009;484:117–121.
  • Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 2004;101:4003–4008.
  • Lepoivre M, Houee-Levin C, Coeytaux K, Decottignies P, Auger G, Lemaire G. Nitration of the tyrosyl radical in ribonucleotide reductase by nitrogen dioxide: a gamma radiolysis study. Free Radic Biol Med 2005;38:1511–1517.
  • Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J 2004;381:241–248.
  • Winterbourn CC, Pichorner H, Kettle AJ. Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils. Arch Biochem Biophys 1997;338:15–21.
  • Prütz WA, Butler J, Land EJ. Phenol coupling initiated by one-electron oxidation of tyrosine units in peptides and histone. Int J Radiat Biol Relat Stud Phys Chem Med 1983;44:183–196.
  • d’Alessandro N, Bianchi G, Fang XW, Jin FM, Schuchmann HP, von Sonntag C. Reaction of superoxide with phenoxyl-type radicals. J Chem Soc, Perkin Trans 2 2000: 1862–1867.
  • Das AB, Nagy P, Abbott HF, Winterbourn CC, Kettle AJ. Reactions of superoxide with the myoglobin tyrosyl radical. Free Radic Biol Med 2010;48:1540–1547.
  • Nagy P, Kettle AJ, Winterbourn CC. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer. J Biol Chem 2009;284:14723–14733.
  • Jin F, Leitich J, von Sonntag C. The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. J Chem Soc Perkin Trans 2 1993:1583–1588.
  • D’Alessandro N, Bianchi G, Fang X, Jin F, Schuchmann H-P, von Sonntag C. Reaction of superoxide with phenoxyl-type radicals. J Chem Soc Perkin Trans 2 2000:1862–1867.
  • Mozziconacci O, Mirkowski J, Rusconi F, Pernot P, Bobrowski K, Houee-Levin C. Superoxide radical anions protect enkephalin from oxidation if the amine group is blocked. Free Radic Biol Med 2007;43:229–240.
  • Shchepin R, Moller MN, Kim HY, Hatch DM, Bartesaghi S, Kalyanaraman B, et al. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization. J Am Chem Soc 2010;132:17490–17500.
  • Saeed S, Gillies D, Wagner G, Howell NK. ESR and NMR spectroscopy studies on protein oxidation and formation of dityrosine in emulsions containing oxidised methyl linoleate. Food Chem Toxicol 2006;44:1385–1392.
  • Gracanin M, Davies MJ. Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products. Free Radic Biol Med 2007;42:1543–1551.
  • Gracanin M, Lam MA, Morgan PE, Rodgers KJ, Hawkins CL, Davies MJ. Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26S proteasome. Free Radic Biol Med 2011;50: 389–399.
  • Dremina ES, Sharov VS, Davies MJ, Schoneich C. Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides. Chem Res Toxicol 2007;20:1462–1469.
  • Nagy P, Kettle AJ, Winterbourn CC. Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radic Biol Med 2010;49: 792–799.
  • Prütz WA. Free-radical transfer involving sulfur peptide functions. Sulfur-Centered Reactive Intermediates in Chemistry and Biology 1990;197:389–399.
  • Zhang H, Xu YK, Joseph J, Kalyanaraman B. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR spin trapping studies. J Biol Chem 2005;280:40684–40698.
  • Prütz WA, Butler J, Land EJ, Swallow AJ. Unpaired electron migration between aromatic and sulfur peptide units. Free Radic Res Commun 1986;2:69–75.
  • Ito N, Phillips SEV, Stevens C, Ogel ZB, Mcpherson MJ, Keen JN, et al. Novel thioether bond revealed by a 1.7-a crystal-structure of galactose-oxidase. Nature 1991;350: 87–90.
  • Ye S, Wu X, Wei L, Tang DM, Sun P, Bartlam M, Rao ZH. An insight into the mechanism of human cysteine dioxygenase - Key roles of the thioether-bonded tyrosine-cysteine cofactor. J Biol Chem 2007;282:3391–3402.
  • Lee Y, Lee DH, Sarjeant AA, Karlin KD. Thiol-copper(I) and disulfide-dicopper(I) complex O2-reactivity leading to sulfonate-copper(II) complex or the formation of a cross-linked thioether-phenol product with phenol addition. J Inorg Biochem 2007;101:1845–1858.
  • Rogers MS, Hurtado-Guerrero R, Firbank SJ, Halcrow MA, Dooley DM, Phillips SE, et al. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Biochemistry 2008;47: 10428–10439.
  • Nauser T, Casi G, Koppenol WH, Schoneich C. Intramolecular addition of cysteine thiyl radicals to phenylalanine in peptides: formation of cyclohexadienyl type radicals. Chem Commun (Camb) 2005;(27):3400–3402.
  • Firbank SJ, Rogers MS, Wilmot CM, Dooley DM, Halcrow MA, Knowles PF, et al. Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Proc Natl Acad Sci U S A 2001;98:12932–12937.
  • Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 2011;48:8–19.
  • Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 2008;10:1199–1234.
  • Pattison DI, Davies MJ. Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases. Curr Med Chem 2006;13:3271–3290.
  • Pattison DI, Davies MJ. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004;43:4799–4809.
  • Domigan NM, Charlton TS, Duncan MW, Winterbourn CC, Kettle AJ. Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem 1995;270:16542–16548.
  • Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML, Heinecke JW. Production of brominating intermediates by myeloperoxidase - A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem 2001;276:7867–7875.
  • Foote CS, Goyne TE, Lehrer RI. Assessment of chlorination by human neutrophils. Nature 1983;301:715–716.
  • Kettle AJ. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. Febs Lett 1996;379:103–106.
  • Wu W, Chen Y, d’Avignon A, Hazen SL. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry 1999;38:3538–3548.
  • Hazen SL, Hsu FF, Heinecke JW. p-hydroxyphenylacetaldehyde is the major product of L-tyrosine oxidation by activated human phagocytes - A chloride-dependent mechanism for the conversion of free amino acids into reactive aldehydes by myeloperoxidase. J Biol Chem 1996;271:1861–1867.
  • Aune TM, Thomas EL, Morrison M. Lactoperoxidase-catalyzed incorporation of thiocyanate ion into a protein substrate. Biochemistry 1977;16:4611–4615.
  • Hazen SL, Gaut JP, Crowley JR, Hsu FF, Heinecke JW. Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions. Biochem J 2000;352:693–699.
  • Hazen SL, Hsu FF, d’Avignon A, Heinecke JW. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: A pathway for aldehyde generation at sites of inflammation. Biochemistry 1998;37:6864–6873.
  • Fu S, Wang H, Davies M, Dean R. Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. J Biol Chem 2000;275:10851–10858.
  • Bobrowski K. Electron migration in peptides and proteins. In: Mayer J, editor. Properties and Reactions of Radiation Induced Transients. Selected topics Warszawa Poland: Polish Scientific Publishers PWN; 1999.
  • Bobrowski K. Radiation-induced radical reactions. In: Chatgilialoglu C, Studer A, editor. Encyclopedia of Radicals in Chemistry, Biology and Materials. Volume 1. New York USA: John Wiley & Sons Ltd; 2012.
  • Zhang H, Zielonka J, Sikora A, Joseph J, Xu Y, Kalyanaraman B. The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2(-) or peroxynitrite and bicarbonate: role of intramolecular electron transfer mechanism? Arch Biochem Biophys 2009;484:134–145.
  • DeFelippis MR, Murthy CP, Faraggi M, Klapper MH. Pulse radiolytic measurement of redox potentials - the tyrosine and tryptophan radicals. Biochemistry 1989;28:4847–4853.
  • Harriman A. Further comments on the redox potentials of tryptophan and tyrosine. J Phys Chem A 1987;91: 6102–6104.
  • DeFelippis MR, Murthy CP, Broitman F, Weinraub D, Faraggi M, Klapper MH. Electrochemical properties of tyrosine phenoxy and tryptophan indolyl radicals in peptides and amino-acid-analogs. J Phys Chem A 1991;95:3416–3419.
  • Song QH, Guo QX, Yao SD, Lin NY. Comparison of intermediates of tryptophan, tyrosine and their dipeptide induced by UV light and SO4•−. Res Chem Intermediat 2002;28: 329–335.
  • Tanner C, Navaratnam S, Parsons BJ. Intramolecular electron transfer in the dipeptide, histidyltyrosine: a pulse radiolysis study. Free Radic Biol Med 1998;24:671–678.
  • Morozova OB, Yurkovskaya AV. Intramolecular electron transfer in the photooxidized peptides tyrosine-histidine and histidine-tyrosine: a time-resolved CIDNP study. Angew Chem Int Ed Engl 2010;49:7996–7999.
  • Bobrowski K, Wierzchowski KL, Holcman J, Ciurak M. Intramolecular electron-transfer in peptides containing methionine, tryptophan and tyrosine - a pulse-radiolysis study. Int J Rad Biol 1990;57:919–932.
  • Bobrowski K, Wierzchowski KL, Holcman J, Ciurak M. Pulse-radiolysis studies of intramolecular electron-transfer in model peptides and proteins. 4. Met/S-Br-]Tyr/O radical transformation in aqueous-solution of H-Tyr-(Pro)N-Met-Oh peptides. Int J Rad Biol 1992;62:507–516.
  • Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta 1985;811:265–322.
  • Gray HB, Winkler JR. Long-range electron transfer. Proc Natl Acad Sci U S A 2005;102:3534–3539.
  • Barry BA, Einarsdottir O. Insights into the structure and function of redox-active tyrosines from model compounds. J Phys Chem B 2005;109:6972–6981.
  • Giese B, Wang M, Gao J, Stoltz M, Muller P, Graber M. Electron relay race in peptides. J Org Chem 2009;74: 3621–3625.
  • Hoganson CW, Tommos C. The function and characteristics of tyrosyl radical cofactors. Biochim Biophys Acta 2004;1655:116–122.
  • Smith WL, Eling TE, Kulmacz RJ, Marnett LJ, Tsai AL. Tyrosyl radicals and their role in hydroperoxide-dependent activation and inactivation of prostaglandin endoperoxide synthase. Biochemistry 1992;31:3–7.
  • Whittaker MM, Whittaker JW. A tyrosine-derived free radical in apogalactose oxidase. J Biol Chem 1990;265: 9610–9613.
  • Ostermeier C, Harrenga A, Ermler U, Michel H. Structure at 2.7 Ã resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A 1997;94: 10547–10553.
  • Stubbe J, Nocera DG, Yee CS, Chang MCY. Radical initiation in the class I ribonucleotide reductase: Long-range proton-coupled electron transfer? Chem Rev 2003;103: 2167–2201.
  • Barry BA, Babcock GT. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A 1987;84:7099–7103.
  • Aubert C, Mathis P, Eker APM, Brettel K. Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. Proc Natl Acad Sci U S A 1999;96:5423–5427.
  • Lee CY. A possible biological role of the electron transfer between tyrosine and tryptophan. Gating of ion channels. FEBS Lett 1992;299:119–123.
  • Nugent JH, Ball RJ, Evans MC. Photosynthetic water oxidation: the role of tyrosine radicals. Biochim Biophys Acta 2004;1655:217–221.
  • Szczepaniak M, Sugiura M, Holzwarth AR. The role of TyrD in the electron transfer kinetics in Photosystem II. Biochim Biophys Acta 2008;1777:1510–1517.
  • Boerner RJ, Bixby KA, Nguyen AP, Noren GH, Debus RJ, Barry BA. Removal of stable tyrosine radical D+ affects the structure or redox properties of tyrosine-Z in manganese-depleted photosystem-Ii particles from synechocystis 6803. J Biol Chem 1993;268:1817–1823.
  • Faller P, Goussias C, Rutherford AW, Un S. Resolving intermediates in biological proton-coupled electron transfer: a tyrosyl radical prior to proton movement. Proc Natl Acad Sci U S A 2003;100:8732–8735.
  • Pujols-Ayala I, Sacksteder CA, Barry BA. Redox-active tyrosine residues: role for the peptide bond in electron transfer. J Am Chem Soc 2003;125:7536–7538.
  • Pujols-Ayala I, Barry BA. Tyrosyl radicals in photosystem II. Biochim Biophys Acta 2004;1655:205–216.
  • Martinez A, Peluffo G, Petruk AA, Hugo M, Pineyro D, Demicheli V, et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. J Biol Chem 2014;289:12760–12778.
  • Petruk AA, Bartesaghi S, Trujillo M, Estrin DA, Murgida D, Kalyanaraman B, et al. Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: computer simulation studies in model tyrosine-cysteine peptides in solution. Arch Biochem Biophys 2012;525:82–91.
  • Wang M, Gao J, Muller P, Giese B. Electron transfer in peptides with cysteine and methionine as relay amino acids. Angew Chem Int Ed Engl 2009;48:4232–4234.
  • Cordes M, Kottgen A, Jasper C, Jacques O, Boudebous H, Giese B. Influence of amino acid side chains on long-distance electron transfer in peptides: Electron hopping via “Stepping Stones”. Angew Chem Int Ed Engl 2008;47:3461–3463.
  • Gao J, Muller P, Wang M, Eckhardt S, Lauz M, Fromm KM, Giese B. Electron transfer in peptides: the influence of charged amino acids. Angew Chem Int Ed Engl 2011;50: 1926–1930.
  • Houee-Levin C, Bobrowski K. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J Proteomics 2013;92:51–62.
  • Roffi G. In: Baxendale JH, Busi F, editors. Optical monitoring techniques. The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. Dordrecht: Reidel Publishing Company; 1982.
  • Janata E. Pulse-radiolysis conductivity measurements in aqueous-solutions with nanosecond time resolution. Radiat Phys Chem 1982;19:17–21.
  • Madden KP, McManus HJD, Fessenden RW. Computer-controlled in-situ radiolysis ESR spectrometer incorporating magnetic field-microwave frequency locking. Rev Sci Instrum 1994;65:49.
  • Tripathi GNR. In: Clark RHJ, Hester, R. E, editors. Time-resolved Raman spectroscopy of chemical intermediates in solution. Time-resolved Spectroscopy. Volume 18. New York (USA): John Wiley & Sons; 1989.
  • Warman J. In: Baxendale JH, Busi F, editors. The microwave absorption technique for studying ions and ionic processes. The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. Dordrecht: D. Reidel Publishing Company; 1982.
  • Warman JM, De Haas MP. In: Wishart JF, Rao B. S. M., editors. A history of pulse radiolysis time-resolved microwave conductivity (PR-TRMC) studies. Recent Trends in Radiation Chemistry. Singapore: World Scientific; 2010.
  • Connor DB. Pulse radiolysis with circular dichroism detection. Radiat Phys Chem 1994;44:371–376.
  • Le Caer S, Pin S, Renault JP, Vigneron G, Pommeret S. In: Wishart JF, Rao BSM, editors. Infrared spectroscopy and radiation chemistry. Recent Trends in Radiation Chemistry. Singapore: World Scientific; 2010.
  • Klug CA, Burzio LA, Waite JH, Schaefer J. In situ analysis of peptidyl DOPA in mussel byssus using rotational-echo double-resonance NMR. Arch Biochem Biophys 1996;333:221–224.
  • Ozawa K, Headlam MJ, Mouradov D, Watt SJ, Beck JL, Rodgers KJ, et al. Translational incorporation of L-3,4-dihydroxyphenylalanine into proteins. Febs Journal 2005;272:3162–3171.
  • Tommos C, Davidsson L, Svensson B, Madsen C, Vermaas W, Styring S. Modified EPR spectra of the tyrosineD radical in photosystem II in site-directed mutants of Synechocystis sp. PCC 6803: identification of side chains in the immediate vicinity of tyrosineD on the D2 protein. Biochemistry 1993;32:5436–5441.
  • Sealy RC, Harman L, West PR, Mason RP. The electron spin resonance spectrum of the tyrosyl radical. J Am Chem Soc 1985;107:3401–3406.
  • Hoganson CW, Babcock GT. Protein tyrosyl radical interactions in photosystem-Ii studied by electron-spin-resonance and electron nuclear double-resonance spectroscopy - Comparison with ribonucleotide reductase and invitro tyrosine. Biochemistry 1992;31:11874–11880.
  • Gunther MR, Sturgeon BE, Mason RP. A long-lived tyrosyl radical from the reaction between horse metmyoglobin and hydrogen peroxide. Free Radic Biol Med 2000;28:709–719.
  • Davies MJ. Detection of myoglobin-derived radicals on reaction of metmyoglobin with hydrogen peroxide and other peroxidic compounds. Free Radic Res Commun 1990;10:361–370.
  • Svistunenko DA, Dunne J, Fryer M, Nicholls P, Reeder BJ, Wilson MT, et al. Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide. Biophys J 2002;83:2845–2855.
  • McArthur KM, Davies MJ. Detection and reactions of the globin radical in haemoglobin. Biochim Biophys Acta 1993;1202:173–181.
  • Davies MJ, Puppo A. Direct detection of a globin-derived radical in leghaemoglobin treated with peroxides. Biochem J 1992;281:197–201.
  • Davies MJ, Puppo A. Identification of the site of the globin-derived radical in leghaemoglobins. Biochim Biophys Acta 1993;1202:182–188.
  • Chen YR, Gunther MR, Mason RP. An electron spin resonance spin-trapping investigation of the free radicals formed by the reaction of mitochondrial cytochrome c oxidase with H2O2. J Biol Chem 1999;274:3308–3314.
  • DeGray JA, Lassmann G, Curtis JF, Kennedy TA, Marnett LJ, Eling TE, Mason RP. Spectral analysis of the protein-derived tyrosyl radicals from prostaglandin H synthase. J Biol Chem 1992;267:23583–23588.
  • Lassmann G, Curtis J, Liermann B, Mason RP, Eling TE. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase. Arch Biochem Biophys 1993;300:132–136.
  • Lassmann G, Odenwaller R, Curtis JF, DeGray JA, Mason RP, Marnett LJ, Eling TE. Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase. Relation to enzyme catalysis. J Biol Chem 1991;266:20045–20055.
  • Babcock GT, Espe M, Hoganson C, LydakisSimantiris N, McCracken J, Shi WJ, et al. Tyrosyl radicals in enzyme catalysis: Some properties and a focus on photosynthetic water oxidation. Acta Chem Scand 1997;51:533–540.
  • Barry BA. Tyrosyl Radicals in Photosystem-II. Redox-Active Amino Acids in Biology 1995;258:303–319.
  • Bender CJ, Sahlin M, Babcock GT, Barry BA, Chandrashekar TK, Salowe SP, et al. An ENDOR study of the tyrosyl free radical in ribonucleotide reductase from Escherichia coli. J Am Chem Soc 1989;111:8076–8083.
  • Gunther MR, Tschirret-Guth RA, Witkowska HE, Fann YC, Barr DP, Ortiz De Montellano PR, Mason RP. Site-specific spin trapping of tyrosine radicals in the oxidation of metmyoglobin by hydrogen peroxide. Biochem J 1998;330: 1293–1299.
  • Barr DP, Gunther MR, Deterding LJ, Tomer KB, Mason RP. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem 1996;271:15498–15503.
  • Ayala I, Range K, York D, Barry BA. Spectroscopic properties of tyrosyl radicals in dipeptides. J Am Chem Soc 2002;124:5496–5505.
  • Bernard MT, Macdonald GM, Nguyen AP, Debus RJ, Barry BA. A difference infrared study of hydrogen-bonding to the Z-center-dot tyrosyl radical of photosystem-Ii. J Biol Chem 1995;270:1589–1594.
  • Berthomieu C, Hienerwadel R. Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins. Biochim Biophys Acta 2005;1707: 51–66.
  • Zabelin AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photooxidation of the primary electron donor. Biochemistry (Mosc) 2012;77:157–164.
  • Zhang H, Razeghifard MR, Fischer G, Wydrzynski T. A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in photosystem II. Biochemistry 1997;36:11762–11768.
  • Kadlcik V, Sicard-Roselli U, Mattioli TA, Kodicek M, Houee-Levin C. One-electron oxidation of beta-amyloid peptide: Sequence modulation of reactivity. Free Radic Biol Med 2004;37:881–891.
  • Barreto WJ, Barreto SRG, Ando RA, Santos PS, DiMauro E, Jorge T. Raman, IR, UV-vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine. Spectrochim Acta A Mol Biomol Spectrosc 2008;71:1419–1424.
  • Paz MA, Fluckiger R, Boak A, Kagan HM, Gallop PM. Specific detection of quinoproteins by redox-cycling staining. J Biol Chem 1991;266:689–692.
  • Paz MA, Gallop PM, Torrelio BM, Fluckiger R. The amplified detection of free and bound methoxatin (Pqq) with nitroblue tetrazolium redox reactions - Insights into the Pqq-Locus. Biochem Biophys Res Commun 1988;154:1330–1337.
  • Rodgers KJ, Hume PM, Dunlop RA, Dean RT. Biosynthesis and turnover of DOPA-containing proteins by human cells. Free Radic Biol Med 2004;37:1756–1764.
  • Gay C, Collins J, Gebicki JM. Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 1999;273: 149–155.
  • Winterbourn CC, Kettle AJ. Radical-radical reactions of superoxide: a potential route to toxicity. Biochem Biophys Res Commun 2003;305:729–736.
  • Jessup W, Dean RT, Gebicki JM, Lester P.Iodometric determination of hydroperoxides in lipids and proteins. Methods Enzymol 1994; 233:289–303.
  • Gay CA, Gebicki JM. Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method. Anal Biochem 2003;315:29–35.
  • Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J 1998;332: 807–808.
  • ter Steege JCA, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA. Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 1998;25:953–963.
  • Franze T, Weller MG, Niessner R, Poschl U. Enzyme immunoassays for the investigation of protein nitration by air pollutants. Analyst 2003;128:824–831.
  • Banks BA, Ischiropoulos H, McClelland M, Ballard PL, Ballard RA. Plasma 3-nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia. Pediatrics 1998;101:870–874.
  • Thom SR, Xu YA, Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure. Chem Res Toxicol 1997;10:1023–1031.
  • Jin HJ, Webb-Robertson BJ, Peterson ES, Tan RM, Bigelow DJ, Scholand MB, et al. Smoking, COPD, and 3-Nitrotyrosine Levels of Plasma Proteins. Environmental Health Perspectives 2011;119:1314–1320.
  • Griffiths HR, Aldred S, Dale C, Nakano E, Kitas GD, Grant MG, et al. Homocysteine from endothelial cells promotes LDL nitration and scavenger receptor uptake. Free Radic Biol Med 2006;40:488–500.
  • He K, Nukada H, McMorran PD, Murphy MP. Protein carbonyl formation and tyrosine nitration as markers of oxidative damage during ischaemia-reperfusion injury to rat sciatic nerve. Neuroscience 1999;94:909–916.
  • Sultana R, Butterfield DA. Proteomics identification of carbonylated and HNE-bound brain proteins in Alzheimer's disease. Methods Mol Biol 2009;566:123–135.
  • Soderling AS, Hultman L, Delbro D, Hojrup P, Caidahl K. Reduction of the nitro group during sample preparation may cause underestimation of the nitration level in 3-nitrotyrosine immunoblotting. J Chromatogr B 2007;851:277–286.
  • Dragusanu M, Petre BA, Przybylski M. Epitope motif of an anti-nitrotyrosine antibody specific for tyrosine-nitrated peptides revealed by a combination of affinity approaches and mass spectrometry. J Pept Sci 2011;17:184–191.
  • Kato Y, Wu X, Naito M, Nomura H, Kitamoto N, Osawa T. Immunochemical detection of protein dityrosine in atherosclerotic lesion of apo-E-deficient mice using a novel monoclonal antibody. Biochem Biophys Res Commun 2000;275:11–15.
  • Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, et al. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-beta. Biochemistry 2004;43:560–568.
  • MacGregor HJ, Kato Y, Marshall LJ, Nevell TG, Shute JK. A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation. Cytokine 2011;56:669–675.
  • Kambayashi Y, Ogino K, Takemoto K, Imagama T, Takigawa T, Kimura S, et al. Preparation and characterization of a polyclonal antibody against brominated protein. J Clin Biochem Nutr 2009;44:95–103.
  • Kato Y, Kawai Y, Morinaga H, Kondo H, Dozaki N, Kitamoto N, Osawa T. Immunogenicity of a brominated protein and successive establishment of a monoclonal antibody to dihalogenated tyrosine. Free Radic Biol Med 2005;38: 24–31.
  • Tsumoto H, Taguchi R, Kohda K. Efficient identification and quantification of peptides containing nitrotyrosine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after derivatization. Chem Pharm Bull (Tokyo) 2010;58:488–494.
  • Khor HK, Fisher MT, Schoneich C. Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J Biol Chem 2004;279:19486–19493.
  • Reyes JF, Fu Y, Vana L, Kanaan NM, Binder LI. Tyrosine nitration within the proline-rich region of Tau in Alzheimer's disease. Am J Pathol 2011;178:2275–2285.
  • Reyes JF, Geula C, Vana L, Binder LI. Selective tau tyrosine nitration in non-AD tauopathies. Acta Neuropathol 2012;123:119–132.
  • Vana L, Kanaan NM, Hakala K, Weintraub ST, Binder LI. Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 2011;50: 1203–1212.
  • Lozano-Juste J, Colom-Moreno R, Leon J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 2011;62:3501–3517.
  • Lee S, Chen Y, Luo H, Wu AA, Wilde M, Schumacker PT, Zhao Y. The first global screening of protein substrates bearing protein-bound 3,4-Dihydroxyphenylalanine in Escherichia coli and human mitochondria. J Proteome Res 2010;9: 5705–5714.
  • Zhang X, Monroe ME, Chen B, Chin MH, Heibeck TH, Schepmoes AA, et al. Endogenous 3,4-dihydroxyphenylalanine and dopaquinone modifications on protein tyrosine: links to mitochondrially derived oxidative stress via hydroxyl radical. Mol Cell Proteomics 2010;9:1199–1208.
  • Bergt C, Fu X, Huq NP, Kao J, Heinecke JW. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem 2004;279:7856–7866.
  • Pennathur S, Bergt C, Shao B, Byun J, Kassim SY, Singh P, et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem 2004;279:42977–42983.
  • Chen Y, Chen W, Cobb MH, Zhao Y. PTMap - a sequence alignment software for unrestricted, accurate, and full- spectrum identification of post-translational modification sites. Proc Natl Acad Sci U S A 2009;106:761–766.
  • Lee JR, Lee SJ, Kim TW, Kim JK, Park HS, Kim DE, et al. Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal Chem 2009;81:6620–6626.
  • Ghesquiere B, Colaert N, Helsens K, Dejager L, Vanhaute C, Verleysen K, et al. In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography. Mol Cell Proteomics 2009;8:2642–2652.
  • Petersson AS, Steen H, Kalume DE, Caidahl K, Roepstorff P. Investigation of tyrosine nitration in proteins by mass spectrometry. J Mass Spectrom 2001;36:616–625.
  • Stevens SM Jr., Prokai-Tatrai K, Prokai L. Factors that contribute to the misidentification of tyrosine nitration by shotgun proteomics. Mol Cell Proteomics 2008;7:2442–2451.
  • Mouls L, Silajdzic E, Haroune N, Spickett CM, Pitt AR. Development of novel mass spectrometric methods for identifying HOCl-induced modifications to proteins. Proteomics 2009;9:1617–1631.
  • Tveen-Jensen K, Reis A, Mouls L, Pitt AR, Spickett CM. Reporter ion-based mass spectrometry approaches for the detection of non-enzymatic protein modifications in biological samples. J Proteomics 2013;92:71–79.
  • Ghesquiere B, Helsens K, Vandekerckhove J, Gevaert K. A stringent approach to improve the quality of nitrotyrosine peptide identifications. Proteomics 2011;11:1094–1098.
  • Helsens K, Timmerman E, Vandekerckhove J, Gevaert K, Martens L. Peptizer, a tool for assessing false positive peptide identifications and manually validating selected results. Mol Cell Proteomics 2008;7:2364–2372.
  • Li B, Held JM, Schilling B, Danielson SR, Gibson BW. Confident identification of 3-nitrotyrosine modifications in mass spectral data across multiple mass spectrometry platforms. J Proteomics 2011;74:2510–2521.
  • Jones AW, Mikhailov VA, Iniesta J, Cooper HJ. Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. J Am Soc Mass Spectrom 2010;21:268–277.
  • Mikhailov VA, Iniesta J, Cooper HJ. Top-down mass analysis of protein tyrosine nitration: comparison of electron capture dissociation with “slow-heating” tandem mass spectrometry methods. Anal Chem 2010;82:7283–7292.
  • Kim JK, Lee JR, Kang JW, Lee SJ, Shin GC, Yeo WS, et al. Selective enrichment and mass spectrometric identification of nitrated peptides using fluorinated carbon tags. Anal Chem 2011;83:157–163.
  • Abello N, Barroso B, Kerstjens HA, Postma DS, Bischoff R. Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta 2010;80:1503–1512.
  • Zhang Q, Qian WJ, Knyushko TV, Clauss TR, Purvine SO, Moore RJ, et al. A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. J Proteome Res 2007;6:2257–2268.
  • Amoresano A, Chiappetta G, Pucci P, D’Ischia M, Marino G. Bidimensional tandem mass spectrometry for selective identification of nitration sites in proteins. Anal Chem 2007;79:2109–2117.
  • Chiappetta G, Corbo C, Palmese A, Galli F, Piroddi M, Marino G, Amoresano A. Quantitative identification of protein nitration sites. Proteomics 2009;9:1524–1537.
  • Dremina ES, Li X, Galeva NA, Sharov VS, Stobaugh JF, Schoneich C. A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides. Anal Biochem 2011;418:184–196.
  • Basso M, Samengo G, Nardo G, Massignan T, D’Alessandro G, Tartari S, et al. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One 2009;4:e8130.
  • Nardo G, Pozzi S, Mantovani S, Garbelli S, Marinou K, Basso M, et al. Nitroproteomics of peripheral blood mononuclear cells from patients and a rat model of ALS. Antioxid Redox Signal 2009;11:1559–1567.
  • Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR, He G. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim Biophys Acta 2009;1794: 476–485.
  • Parastatidis I, Thomson L, Fries DM, Moore RE, Tohyama J, Fu X, et al. Increased protein nitration burden in the atherosclerotic lesions and plasma of apolipoprotein A-I deficient mice. Circ Res 2007;101:368–376.
  • Zhan X, Wang X, Desiderio DM. Pituitary adenoma nitroproteomics: current status and perspectives. Oxid Med Cell Longev 2013;2013:580710.
  • Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. Mass Spectrom Rev 2013 DOI: 10.1002/mas.21413.
  • De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, et al. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 2014;5:69.
  • Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 2011;208:1949–1962.
  • Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem Res Toxicol 2010;23:447–454.
  • Folkes LK, Trujillo M, Bartesaghi S, Radi R, Wardman P. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch Biochem Biophys 2011;506:242–249.
  • Hoey BM, Butler J. The repair of oxidized amino-acids by antioxidants. Biochim Biophys Acta 1984;791:212–218.
  • Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995;80: 225–236.
  • Domazou AS ZH Koppenol WH. Fast repair of protein radicals by urate. Free Rad Biol Med 2012;52:1929–1936.
  • Steinmann D, Nauser T, Beld J, Tanner M, Gunther D, Bounds PL, Koppenol WH. Kinetics of tyrosyl radical reduction by selenocysteine. Biochemistry 2008;47:9602–9607.
  • Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJ. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 1998;273:10857–10862.
  • Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 1996;385: 63–66.
  • Chen HJ, Chang CM, Lin WP, Cheng DL, Leong MI. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants. Chembiochem 2008;9:312–323.
  • Kuo WN, Kocis JM, Webb JK. Protein denitration/modification by Escherichia coli nitrate reductase and mammalian cytochrome P-450 reductase. Front Biosci 2002;7:a9–14.
  • Koeck T, Fu X, Hazen SL, Crabb JW, Stuehr DJ, Aulak KS. Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria. J Biol Chem 2004;279:27257–27262.
  • Leger CL, Torres-Rasgado E, Fouret G, Carbonneau MA. First evidence for an LDL- and HDL-associated nitratase activity that denitrates albumin-bound nitrotyrosine—physiological consequences. IUBMB Life 2008;60:73–78.
  • Smallwood HS, Lourette NM, Boschek CB, Bigelow DJ, Smith RD, Pasa-Tolic L, Squier TC. Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography—FTICR mass spectrometry. Biochemistry 2007;46:10498–10505.
  • Kang M, Akbarali HI. Denitration of L-type calcium channel. FEBS Lett 2008;582:3033–3036.
  • Mani AR, Ippolito S, Moreno JC, Visser TJ, Moore KP. The metabolism and dechlorination of chlorotyrosine in vivo. J Biol Chem 2007;282:29114–29121.
  • Feeney MB, Schoneich C. Tyrosine modifications in aging. Antioxid Redox Signal 2012;17:1571–1579.
  • Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN. Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Free Radic Biol Med 2006;40:453–458.
  • Savvides SN, Scheiwein M, Bohme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH. Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 2002;277:2779–2784.
  • Amorati R, Catarzi F, Menichetti S, Pedulli GF, Viglianisi C. Effect of ortho-SR groups on O-H bond strength and H-atom donating ability of phenols: A possible role for the tyr-cys link in galactose oxidase active site? J Am Chem Soc 2008;130:237–244.
  • Itoh S, Takayama S, Arakawa R, Furuta A, Komatsu M, Ishida A, et al. Active site models for galactose oxidase. Electronic effect of the thioether group in the novel organic cofactor Inorg Chem 1997;36:1407–1416.
  • Rokhsana D, Howells AE, Dooley DM, Szilagyi RK. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase. Inorg Chem 2012;51:3513–3524.
  • Inesi G, Hua S, Xu C, Ma H, Seth M, Prasad AM, Sumbilla C. Studies of Ca2 + ATPase (SERCA) inhibition. J Bioenerg Biomembr 2005;37:365–368.
  • Tong X, Evangelista A, Cohen RA. Targeting the redox regulation of SERCA in vascular physiology and disease. Curr Opin Pharmacol 2010;10:133–138.
  • Cohen RA, Adachi T. Nitric-oxide-induced vasodilatation: Regulation by physiologic S-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 2006;16:109–114.
  • Viner RI, Ferrington DA, Williams TD, Bigelow DJ, Schoneich C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J 1999;340:657–669.
  • Gutierrez-Martin Y, Martin-Romero FJ, Inesta-Vaquera FA, Gutierrez-Merino C, Henao F. Modulation of sarcoplasmic reticulum Ca(2+)-ATPase by chronic and acute exposure to peroxynitrite. Eur J Biochem 2004;271:2647–2657.
  • Sharov VS, Galeva NA, Knyushko TV, Bigelow DJ, Williams TD, Schoneich C. Two-dimensional separation of the membrane protein sarcoplasmic reticulum Ca-ATPase for high-performance liquid chromatography-tandem mass spectrometry analysis of posttranslational protein modifications. Anal Biochem 2002;308:328–335.
  • Bigelow DJ. Nitrotyrosine-modified SERCA2: a cellular sensor of reactive nitrogen species. Pflugers Arch 2009;457: 701–710.
  • Zhang H, Bhargava K, Keszler A, Feix J, Hogg N, Joseph J, Kalyanaraman B. Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem 2003;278:8969–8978.
  • Sacksteder CA, Qian WJ, Knyushko TV, Wang H, Chin MH, Lacan G, et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 2006;45:8009–8022.
  • Marla SS, Lee J, Groves JT. Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci U S A 1997;94:14243–14248.
  • MacMillan-Crow LA, Greendorfer JS, Vickers SM, Thompson JA. Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys 2000;377:350–356.
  • Kong SK, Yim MB, Stadtman ER, Chock PB. Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6–20)NH2 peptide. Proc Natl Acad Sci U S A 1996;93:3377–3382.
  • Esposito F, Chirico G, Gesualdi NM, Posadas I, Ammendola R, Russo T, et al. Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires Src activity. J Biol Chem 2003;278:20828–20834.
  • Klotz LO, Schieke SM, Sies H, Holbrook NJ. Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem J 2000;352:219–225.
  • Ridefelt P, Siegbahn A. Tyr1009 and Tyr1021 in the platelet-derived growth factor beta-receptor mediate agonist triggered calcium signalling. Anticancer Res 1998;18: 1819–1825.
  • van der Vliet A, Hristova M, Cross CE, Eiserich JP, Goldkorn T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. J Biol Chem 1998;273:31860–31866.
  • Drew B, Leeuwenburgh C. Aging and the role of reactive nitrogen species. Ann N Y Acad Sci 2002;959:66–81.
  • Mallozzi C, Di Stasi AM, Minetti M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett 2001;503:189–195.
  • Moskovitz J. Roles of methionine sulfoxide reductases in antioxidant defense, protein regulation and survival. Curr Pharm Des 2005;11:1451–1457.
  • Vogt W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 1995;18:93–105.
  • Go YM, Jones DP. Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal 2010;13:489–509.
  • Puig A, Gilbert HF. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J Biol Chem 1994;269:7764–7771.
  • Vazquez-Torres A. Redox active thiol sensors of oxidative and nitrosative stress. Antioxid Redox Signal 2012;17: 1201–1214.
  • Micevski D, Dougan DA. Proteolytic regulation of stress response pathways in Escherichia coli. Subcell Biochem 2013;66:105–128.
  • Bohley P, Seglen PO. Proteases and proteolysis in the lysosome. Experientia 1992;48:151–157.
  • Kopitar-Jerala N. The role of cysteine proteinases and their inhibitors in the host-pathogen cross talk. Curr Protein Pept Sci 2012;13:767–775.
  • Lamark T, Johansen T. Autophagy: links with the proteasome. Curr Opin Cell Biol 2010;22:192–198.
  • Yamaguchi O, Taneike M, Otsu K. Cooperation between proteolytic systems in cardiomyocyte recycling. Cardiovasc Res 2012;96:46–52.
  • Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013;92:181–194.
  • Davies KJA, Lin SW, Pacifici RE. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein.J Biol Chem 1987;262:9914–9920.
  • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002;11: 1107–1117.
  • Ravikumar B, Stewart A, Kita H, Kato K, Duden R, Rubinsztein DC. Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 2003;12:985–994.
  • Geng F, Wenzel S, Tansey WP. Ubiquitin and proteasomes in transcription. Annu Rev Biochem 2012;81:177–201.
  • Grimm S, Hohn A, Grune T. Oxidative protein damage and the proteasome. Amino Acids 2012;42:23–38.
  • Grune T, Merker K, Sandig G, Davies KJ. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 2003;305:709–718.
  • Jung T, Catalgol B, Grune T. The proteasomal system. Mol Aspects Med 2009;30:191–296.
  • Diaz-Moreno I, Garcia-Heredia JM, Diaz-Quintana A, Teixeira M, De la Rosa MA. Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin. Biochim Biophys Acta 2011;1807:1616–1623.
  • Giulivi C, Davies KJ. Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteasome. J Biol Chem 1993;268:8752–8759.
  • Du C, Anderson A, Lortie M, Parsons R, Bodnar A. Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med 2013;63: 254–263.
  • Yin D. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med 1996;21: 871–888.
  • Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan JY. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 1999;22:623–633.
  • Binder CJ. Natural IgM antibodies against oxidation-specific epitopes. J Clin Immunol 2010;30:S56–S60.
  • Doyle H, Mamula MJ.Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001;22:443–449.
  • Morgan PE, Sturgess AD, Davies MJ. Increased levels of serum protein oxidation and correlation with disease activity in systemic lupus erythematosus. Arthritis Rheum 2005;52:2069–2079.
  • Gauba V, Grunewald J, Gorney V, Deaton LM, Kang M, Bursulaya B, et al. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc Natl Acad Sci U S A 2011;108:12821–12826.
  • Birnboim HC, Lemay AM, Lam DKY, Goldstein R, Webb JR. Cutting edge: MHC class II-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response. J Immunol 2003;171:528–532.
  • Khan MA, Dixit K, Jabeen S, Moinuddin, Alam K. Impact of peroxynitrite modification on structure and immunogenicity of H2A histone. Scand J Immunol 2009;69:99–109.
  • Ohmori H, Oka M, Nishikawa Y, Shigemitsu H, Takeuchi M, Magari M, Kanayama N. Immunogenicity of autologous IgG bearing the inflammation-associated marker 3-nitrotyrosine. Immunol Lett 2005;96:47–54.
  • Eilat D, Naparstek Y. Anti-DNA autoantibodies: a puzzle of autoimmune phenomena. Immunol Today 1999;20: 339–342.
  • Ohmori H, Kanayama N. Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun Rev 2005;4:224–229.
  • Untersmayr E, Diesner SC, Oostingh GJ, Selzle K, Pfaller T, Schultz C, et al. Nitration of the egg-allergen ovalbumin enhances protein allergenicity but reduces the risk for oral sensitization in a murine model of food allergy. PLoS One 2010;5:e14210.
  • Thomson L, Christie J, Vadseth C, Lanken PN, Fu X, Hazen SL, Ischiropoulos H. Identification of immunoglobulins that recognize 3-nitrotyrosine in patients with acute lung injury after major trauma. Am J Respir Cell Mol Biol 2007;36: 152–157.
  • Thomson L, Tenopoulou M, Lightfoot R, Tsika E, Parastatidis I, Martinez M, et al. Immunoglobulins against tyrosine-nitrated epitopes in coronary artery disease. Circulation 2012;126:2392–2401.
  • El-Remessy AB, Khalil IE, Matragoon S, Abou-Mohamed G, Tsai NJ, Roon P, et al. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 2003;163:1997–2008.
  • Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, Kamata K. Insulin-induced impairment via peroxynitrite production of endothelium-dependent relaxation and sarco/endoplasmic reticulum Ca2+-ATPase function in aortas from diabetic rats. Free Radic Biol Med 2007;43:431–443.
  • Ling X, Cota-Gomez A, Flores NC, Hernandez-Saavedra D, McCord JM, Marecki JC, et al. Alterations in redox homeostasis and prostaglandins impair endothelial-dependent vasodilation in euglycemic autoimmune nonobese diabetic mice. Free Radic Biol Med 2005;39:1089–1098.
  • Adachi T, Matsui R, Xu S, Kirber M, Lazar HL, Sharov VS, et al. Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation. Circ Res 2002;90:1114–1121.
  • Thomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT. Cardiac calcium pump inactivation and nitrosylation in senescent rat myocardium are not attenuated by long-term treadmill training. Exp Gerontol 2011;46:803–810.
  • Bosio G, Criado S, Massad W, Nieto FJR, Gonzalez MC, Garcia NA, Martire DO. Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan. Photochem Photobiol Sci 2005;4:840–846.
  • Criado S, Marioli JM, Allegretti PE, Furlong J, Nieto FJR, Martire DO, Garcia NA. Oxidation of di- and tripeptides of tyrosine and valine mediated by singlet molecular oxygen, phosphate radicals and sulfate radicals. J Photochem Photobiol B 2001;65:74–84.
  • Chen SN, Hoffman MZ. Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat Res 1973;56: 40–47.
  • Chen SN, Z. HM. Effect of pH on the reactivity of the carbonate radical in aqueous solution. Radiat Res 1975;62: 18–27.
  • Clarke K, Edge R, Johnson V, Land EJ, Navaratnam S, Truscott TG. The carbonate radical: its reactivity with oxygen, ammonia, amino acids, and melanins. J Phys Chem A 2008;112:10147–10151.
  • Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 2010;67:360–368.
  • Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med 2012;186:434–441.
  • Dong YF, Kataoka K, Tokutomi Y, Nako H, Nakamura T, Toyama K, et al. Beneficial effects of combination of valsartan and amlodipine on salt-induced brain injury in hypertensive rats. J Pharmacol Exp Ther 2011;339: 358–366.
  • Drel VR, Lupachyk S, Shevalye H, Vareniuk I, Xu W, Zhang J, et al. New therapeutic and biomarker discovery for peripheral diabetic neuropathy: PARP inhibitor, nitrotyrosine, and tumor necrosis factor-{alpha}. Endocrinology 2010;151: 2547–2555.
  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer's disease brain. J Neurochem 2003;85:1394–1401.
  • Reed TT, Owen J, Pierce WM, Sebastian A, Sullivan PG, Butterfield DA. Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma-glutamylcysteine ethyl ester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury. J Neurosci Res 2009;87:408–417.
  • MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 1996;93:11853–11858.
  • Sharov VS, Pal R, Dremina ES, Michaelis EK, Schoneich C. Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: a useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration. Free Radic Biol Med 2012;53:1877–1885.
  • Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, et al. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail 2014;7:500–509.
  • Hu S, Liu H, Ha Y, Luo X, Motamedi M, Gupta MP, et al. Posttranslational Modification of Sirt6 Activity by Peroxynitrite. Free Radic Biol Med 2014.
  • Prokai-Tatrai K, Guo J, Prokai L. Selective chemoprecipitation and subsequent release of tagged species for the analysis of nitropeptides by liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2011;10:M110 002923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.