416
Views
28
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Covalent modification of DNA by α, β-unsaturated aldehydes derived from lipid peroxidation: Recent progress and challenges

&
Pages 905-917 | Received 25 Jan 2015, Accepted 06 Apr 2015, Published online: 12 Jun 2015

References

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 2007; 39:44–84.
  • Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 2005;12:2601–2623.
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ros-induced ros release. Physiol Rev 2014;94:909–950.
  • Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 2008; 45:1340–1351.
  • Decoursey TE, Ligeti E. Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 2005;62: 2173–2193.
  • Li WG, Miller FJ, Jr., Zhang HJ, Spitz DR, Oberley LW, Weintraub NL. H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 2001;276:29251–29256.
  • Sakellariou GK, Jackson MJ, Vasilaki A. Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic Res 2014;48:12–29.
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40.
  • Halliwell B, Gutteridge JMC. Free-radicals, lipid-peroxidation, and cell-damage. Lancet 1984;2:1095–1095.
  • Yin H, Xu L, Porter NA. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem Rev 2011;111:5944–5972.
  • Gu XD, Salomon RG. Fragmentation of a linoleate-derived gamma-hydroperoxy-alpha,beta-unsaturated epoxide to gamma-hydroxy- and gamma-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical. Free Radic Biol Med 2012;52:601–606.
  • Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A. DNA damage induced by endogenous aldehydes: Current state of knowledge. Mutat Res-Fund Mol M 2011;711:13–27.
  • Domingues RM, Domingues P, Melo T, Perez-Sala D, Reis A, Spickett CM. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 2013;92:110–131.
  • Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995;30: 277–290.
  • Laneuville O, Breuer DK, Xu NX, Huang ZH, Gage DA, Watson JT, et al. Fatty-acid substrate specificities of human prostaglandin endoperoxide-h synthase-1 and synthase-2- formation of 12-hydroxy-(9Z,13E/Z,15Z)-octadecatrienoic acids from alpha-linolenic acid. J Biol Chem 1995;270: 19330–19336.
  • Brash AR. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 1999;274: 23679–23682.
  • Lee SH, Oe T, Blair IA. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 2001;292:2083–2086.
  • Kawai Y, Takeda S, Terao J. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem Res Toxicol 2007;20:99–107.
  • Winczura A, Zdzalik D, Tudek B. Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 2012;46:442–459.
  • Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002;181–182:219–222.
  • VanderVeen LA, Hashim MF, Shyr Y, Marnett LJ. Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. Proc Natl Acad Sci USA 2003;100: 14247–14252.
  • Munnia A, Amasio ME, Peluso M. Exocyclic malondialdehyde and aromatic DNA adducts in larynx tissues. Free Radic Biol Med 2004;37:850–858.
  • Peluso M, Munnia A, Risso GG, Catarzi S, Piro S, Ceppi M, et al.Breast fine-needle aspiration malondialdehyde deoxyguanosine adduct in breast cancer. Free Radic Res 2011;45:477–482.
  • Vaca CE, Vodicka P, Hemminki K. Determination of malonaldehyde-modified 2′-deoxyguanosine-3′-monophosphate and DNA by 32P-postlabelling. Carcinogenesis 1992;13:593–599.
  • Chaudhary AK, Nokubo M, Reddy GR, Yeola SN, Morrow JD, Blair IA, Marnett LJ. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 1994;265:1580–1582.
  • Stevens JF, Maier CS. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008;52:7–25.
  • Pan J, Keffer J, Emami A, Ma X, Lan R, Goldman R, Chung F-L. Acrolein-Derived DNA Adduct Formation in Human Colon Cancer Cells: Its Role in Apoptosis Induction by Docosahexaenoic Acid. Chem Res Toxicol 2009;22: 798–806.
  • Chung FL, Young R, Hecht SS. A study of chemical carcinogenesis .61.Formation of cyclic 1,N2-propanodeoxyguanosine adducts in dna upon reaction with acrolein or crotonaldehyde. Cancer Res 1984;44:990–995.
  • Kanuri M, Minko IG, Nechev LV, Harris TM, Harris CM, Lloyd RS. Error prone translesion synthesis past gamma-hydroxypropano deoxyguanosine, the primary acrolein-derived adduct in mammalian cells. J Biol Chem 2002;277:18257–18265.
  • Minko IG, Washington MT, Kanuri M, Prakash L, Prakash S, Lloyd RS. Translesion synthesis past acrolein-derived DNA adduct, gamma-hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. J Biol Chem 2003;278: 784–790.
  • Sanchez AM, Minko IG, Kurtz AJ, Kanuri M, Moriya M, Lloyd RS. Comparative evaluation of the bioreactivity and mutagenic spectra of acrolein-derived alpha-HOPdG and gamma-HOPdG regioisomeric deoxyguanosine adducts. Chem Res Toxicol 2003;16:1019–1028.
  • Yang IY, Chan G, Miller H, Huang Y, Torres MC, Johnson F, Moriya M. Mutagenesis by acrolein-derived propanodeoxyguanosine adducts in human cells. Biochemistry 2002; 41:13826–13832.
  • Feng Z, Hu W, Hu Y, Tang MS. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA 2006;103:15404–15409.
  • Lee HW, Wang HT, Weng MW, Hu Y, Chen WS, Chou D, et al. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget 2014;5: 3526–3540.
  • Liu XL, Lovell MA, Lynn BC. Development of a method for quantification of acrolein-deoxyguanosine adducts in DNA using isotope dilution-capillary LC/MS/MS and its application to human brain tissue. Anal Chem 2005;77:5982–5989.
  • Wang HT, Weng MW, Chen WC, Yobin M, Pan J, Chung FL, et al. Effect of CpG methylation at different sequence context on acrolein- and BPDE-DNA binding and mutagenesis. Carcinogenesis 2013;34:220–227.
  • Chung FL, Nath RG, Ocando J, Nishikawa A, Zhang L. Deoxyguanosine adducts of t-4-hydroxy-2-nonenal are endogenous DNA lesions in rodents and humans: Detection and potential sources. Cancer Res 2000;60:1507–1511.
  • Klaassen CD, Plaa GL. Comparison of biochemical alterations elicited in livers from rats treated with carbon tetrachloride, chloroform, 1,2,2-trichloroethane and 1,1,1-trichloroethane. Biochem Pharmacol 1969;18:2019–2027.
  • Wacker M, Wanek P, Eder E. Detection of 1,N-2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal after gavage of trans-4-hydroxy-2-nonenal or induction of lipid peroxidation with carbon tetrachloride in F344 rats. Chem-Biol Interact 2001;137:269–283.
  • Feng Z, Hu W, Amin S, Tang MS. Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry 2003;42:7848–7854.
  • Fernandes PH, Wang H, Rizzo CJ, Lloyd RS. Site-specific mutagenicity of stereochemically defined 1,N-2-deoxyguanosine adducts of trans-4-hydroxynonenal in mammalian cells. Environ Mol Mutagen 2003;42:68–74.
  • Gotz ME, Wacker M, Luckhaus C, Wanek P, Tatschner T, Jellinger K, et al. Unaltered brain levels of 1,N-2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal in Alzheimer's disease. Neurosci Lett 2002;324:49–52.
  • McGrath LT, McGleenon BM, Brennan S, McColl D, McILory S, Passmore AP. Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 2001;94:485–490.
  • Liu XL, Lovell MA, Lynn BC. Detection and quantification of endogenous cyclic DNA adducts derived from trans-4-hydroxy-2-nonenal in human brain tissue by isotope dilution capillary liquid chromatography nanoelectrospray tandem mass spectrometry. Chem Res Toxicol 2006;19: 710–718.
  • Choudhury S, Dyba M, Pan J, Roy R, Chung FL. Repair kinetics of acrolein- and (E)-4-hydroxy-2-nonenal-derived DNA adducts in human colon cell extracts. Mutat Res 2013;751–752:15–23.
  • Sodum RS, Chung FL. Structural characterization of adducts formed in the reaction of 2,3-epoxy-4-hydroxynonanal with deoxyguanosine. Chem Res Toxicol 1989;2:23–28.
  • Chen HJ, Chung FL. Epoxidation of trans-4-hydroxy-2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem Res Toxicol 1996;9:306–312.
  • Chen HJ, Chung FL. Formation of etheno adducts in reactions of enals via autoxidation. Chem Res Toxicol 1994; 7:857–860.
  • Sodum RS, Chung FL. Stereoselective formation of invitro nucleic-acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res 1991;51:137–143.
  • Chung FL, Chen HJ, Guttenplan JB, Nishikawa A, Hard GC. 2,3-Epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid-peroxidation. Carcinogenesis 1993;14:2073–2077.
  • Fu Y, Nath RG, Dyba M, Cruz IM, Pondicherry SR, Fernandez A, et al. In vivo detection of a novel endogenous etheno-DNA adduct derived from arachidonic acid and the effects of antioxidants on its formation. Free Radic Biol Med 2014;73:12–20.
  • Rindgen D, Nakajima M, Wehrli S, Xu K, Blair IA. Covalent modifications to 2′-deoxyguanosine by 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem Res Toxicol 1999;12:1195–1204.
  • Rindgen D, Lee SH, Nakajima M, Blair IA. Formation of a substituted 1,N-6-etheno-2′-deoxyadenosine adduct by lipid hydroperoxide-mediated generation of 4-oxo-2-nonenal. Chem Res Toxicol 2000;13:846–852.
  • Pollack M, Oe T, Lee SH, Silva Elipe MV, Arison BH, Blair IA. Characterization of 2′-deoxycytidine adducts derived from 4-oxo-2-nonenal, a novel lipid peroxidation product. Chem Res Toxicol 2003;16:893–900.
  • Lee SH, Williams MV, DuBois RN, Blair IA. Cyclooxygenase-2-mediated DNA damage. J Biol Chem 2005;280: 28337–28346.
  • Chou PH, Kageyama S, Matsuda S, Kanemoto K, Sasada Y, Oka M, et al. Detection of Lipid Peroxidation-Induced DNA Adducts Caused by 4-Oxo-2(E)-nonenal and 4-Oxo-2(E)-hexenal in Human Autopsy Tissues. Chem Res Toxicol 2010; 23:1442–1448.
  • Matsuda T, Tao H, Goto M, Yamada H, Suzuki M, Wu YJ, et al. Lipid peroxidation-induced DNA adducts in human gastric mucosa. Carcinogenesis 2013;34:121–127.
  • Kawai Y, Uchida K, Osawa T. 2′-deoxycytidine in free nucleosides and double-stranded DNA, as the major target of lipid peroxidation products. Free Radic Biol Med 2004; 36:529–541.
  • Lee SH, Silva Elipe MV, Arora JS, Blair IA. Dioxododecenoic acid: A lipid hydroperoxide-derived bifunctional electrophile responsible for etheno DNA adduct formation. Chem Res Toxicol 2005;18:566–578.
  • Maekawa M, Kawai K, Takahashi Y, Nakamura H, Watanabe T, Sawa R, et al. Identification of 4-oxo-2-hexenal and other direct mutagens formed in model lipid peroxidation reactions as dGuo adducts. Chem Res Toxicol 2006;19: 130–138.
  • Kawai K, Chou PH, Matsuda T, Inoue M, Aaltonen K, Savela K, et al. DNA Modifications by the omega-3 Lipid Peroxidation-Derived Mutagen 4-Oxo-2-hexenal in Vitro and Their Analysis in Mouse and Human DNA. Chem Res Toxicol 2010;23:630–636.
  • Kawai K, Kawasaki Y, Kubota Y, Kimura T, Sawa R, Matsuda T, Kasai H. Identification of octenal-related dA and dC adducts formed by reactions with a hemin-omega-6-fat peroxidation model system. Chem Res Toxicol 2013;26: 1554–1560.
  • Petrova KV, Jalluri RS, Kozekov ID, Rizzo CJ. Mechanism of 1,N-2 -etheno-2′-deoxyguanosine formation from epoxyaldehydes. Chem Res Toxicol 2007;20:1685–1692.
  • Carvalho VM, Asahara F, Di Mascio P, de Arruda Campos IP, Cadet J, Medeiros MH. Novel 1,N(6)-etheno-2′-deoxyadenosine adducts from lipid peroxidation products. Chem Res Toxicol 2000;13:397–405.
  • Lee SH, Arora JA, Oe T, Blair IA. 4-hydroperoxy-2-nonenal-induced formation of 1,N(2)-etheno-2′-deoxyguanosine adducts. Chem Res Toxicol 2005;18:780–786.
  • Lee SH, Oe T, Blair IA. 4,5-Epoxy-2(E)-decenal-induced formation of 1,N-6-etheno-2′-deoxyadenosine and 1,N-2-etheno-2′-deoxyguanosine adducts. Chem Res Toxicol 2002;15:300–304.
  • Loureiro AP, Di Mascio P, Gomes OF, Medeiros MH. trans,trans-2,4-decadienal-induced 1,N(2)-etheno-2′-deoxyguanosine adduct formation. Chem Res Toxicol 2000;13:601–609.
  • Lee SH, Oe T, Arora JS, Blair IA. Analysis of Fe(II)-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry. J Mass Spectrom 2005;40:661–668.
  • Blair IA. DNA adducts with lipid peroxidation products. J Biol Chem 2008;283:15545–15549.
  • Nair J, Barbin A, Guichard Y, Bartsch H. 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabeling. Carcinogenesis 1995;16:613–617.
  • Yen TY, Christova-Gueoguieva NI, Scheller N, Holt S, Swenberg JA, Charles MJ. Quantitative analysis of the DNA adduct N2,3-ethenoguanine using liquid chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 1996;31:1271–1276.
  • Loureiro AP, Marques SA, Garcia CC, Di Mascio P, Medeiros MH. Development of an on-line liquid chromatography-electrospray tandem mass spectrometry assay to quantitatively determine 1,N(2)-etheno-2′-deoxyguanosine in DNA. Chem Res Toxicol 2002;15:1302–1308.
  • Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic Biol Med 2007;43:1109–1120.
  • Barbin A. Formation of DNA etheno adducts in rodents and humans and their role in carcinogenesis. Acta Biochim Pol 1998;45:145–161.
  • Hussain SP, Raja K, Amstad PA, Sawyer M, Trudel LJ, Wogan GN, et al. Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: Oxyradical overload diseases. Proc Natl Acad Sci USA 2000;97:12770–12775.
  • Moriya M, Zhang W, Johnson F, Grollman AP. Mutagenic potency of exocyclic dna-adducts - marked differences between escherichia-coli and simian kidney-cells. P Natl Acad Sci USA 1994;91:11899–11903.
  • Pandya GA, Moriya M. 1,N-6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 1996;35:11487–11492.
  • Levine RL, Yang IY, Hossain M, Pandya GA, Grollman AP, Moriya M. Mutagenesis induced by a single 1,N-6-ethenodeoxyadenosine adduct in human cells. Cancer Res 2000;60:4098–4104.
  • Cheng KC, Preston BD, Cahill DS, Dosanjh MK, Singer B, Loeb LA. The vinyl chloride DNA derivative N2,3-ethenoguanine produces G-A transitions in Escherichia coli. Proc Natl Acad Sci USA 1991;88:9974–9978.
  • Langouet S, Muller M, Guengerich FP. Misincorporation of dNTPs opposite 1,N2-ethenoguanine and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in oligonucleotides by Escherichia coli polymerases I exo- and II exo-, T7 polymerase exo-, human immunodeficiency virus-1 reverse transcriptase, and rat polymerase beta. Biochemistry 1997; 36:6069–6079.
  • Akasaka S, Guengerich FP. Mutagenicity of site-specifically located 1,N-2-ethenoguanine in Chinese hamster ovary cell chromosomal DNA. Chem Res Toxicol 1999;12:501–507.
  • Nair J, Sone H, Nagao M, Barbin A, Bartsch H. Copper-dependent formation of miscoding etheno-DNA adducts in the liver of Long Evans cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res 1996;56:1267–1271.
  • Zhou L, Yang YZ, Tian DA, Wang Y. Oxidative stress-induced 1, N-6-ethenodeoxyadenosine adduct formation contributes to hepatocarcinogenesis. Oncol Rep 2013;29: 875–884.
  • Nair J, Carmichael PL, Fernando RC, Phillips DH, Strain AJ, Bartsch H. Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson's disease and primary hemochromatosis. Cancer Epidem Biomar 1998;7:435–440.
  • Naira J, De Flora S, Izzottib A, Bartsch H. Lipid peroxidation-derived etheno-DNA adducts in human atherosclerotic lesions. Mutat Res-Fund Mol M 2007;621:95–105.
  • Schmid K, Nair J, Winde G, Velic I, Bartsch H. Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int J Cancer 2000;87:1–4.
  • Meerang M, Nair J, Sirankapracha P, Thephinlap C, Srichairatanakool S, Fucharoen S, Bartsch H. Increased urinary 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine excretion in thalassemia patients: markers for lipid peroxidation-induced DNA damage. Free Radic Biol Med 2008;44: 1863–1868.
  • Nair J, Gansauge F, Beger H, Dolara P, Winde G, Bartsch H. Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn's disease, ulcerative colitis, and chronic pancreatitis. Antioxid Redox Sign 2006;8:1003–1010.
  • Nair J, Sinitsina O, Vasunina EA, Nevinsky GA, Laval J, Bartsch H. Age-dependent increase of etheno-DNA-adducts in liver and brain of ROS overproducing OXYS rats. Biochem Biophys Res Commun 2005;336:478–482.
  • Navasumrit P, Ward TH, O’Connor PJ, Nair J, Frank N, Bartsch H. Ethanol enhances the formation of endogenously and exogenously derived adducts in rat hepatic DNA. Mutat Res-Fund Mol M 2001;479:81–94.
  • Nair J, Furstenberger G, Burger F, Marks F, Bartsch H. Promutagenic etheno-DNA adducts in multistage mouse skin carcinogenesis: Correlation with lipoxygenase-catalyzed arachidonic acid metabolism. Chem Res Toxicol 2000;13: 703–709.
  • Pratico D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 1998;4:1189–1192.
  • Godschalk RWL, Albrecht C, Curfs DMJ, Schins RR, Bartsch H, van Schooten FJ, Nair J. Decreased levels of lipid peroxidation-induced DNA damage in the onset of atherogenesis in apolipoprotein E deficient mice. Mutat Res-Fund Mol M 2007;621:87–94.
  • Godschalk R, Curfs D, Bartsch H, Van Schooten FJ, Nair J. Benzo[a]pyrene enhances lipid peroxidation induced DNA damage in aorta of apolipoprotein E knockout mice. Free Radic Res 2003;37:1299–1305.
  • Hansen ES. Shared risk-factors for cancer and atherosclerosis - a review of the epidemiologic evidence. Mutat Res 1990; 239:163–179.
  • Curfs DMJ, Knaapen AM, Pachen D, Gijbels MJJ, Lutgens E, Smook MLF, et al. Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. Faseb Journal 2005;19: 1290–1292.
  • Balbo S, Turesky RJ, Villalta PW. DNA Adductomics. Chem Res Toxicol 2014;27:356–366.
  • Randerath K, Reddy MV, Gupta RC. 32P-labeling test for DNA damage. P Natl Acad Sci USA 1981;78:6126–6129.
  • Randerath K, Randerath E. P-32 postlabeling methods for dna adduct detection-overview and critical-evaluation. Drug Metab Rev 1994;26:67–85.
  • Bartsch H, Nair J. Ultrasensitive and specific detection methods for exocylic DNA adducts: Markers for lipid peroxidation and oxidative stress. Toxicology 2000;153:105–114.
  • Nath RG, Chung FL. Detection of exocyclic 1,N-2-propanodeoxyguanosine adducts as common dna lesions in rodents and humans. Proc Natl Acad Sci USA 1994;91:7491–7495.
  • Maccubbin AE, Lee L, Struck RF, Gurtoo HL. P-32 postlabeling of acrolein-deoxyguanosine adducts in dna after nuclease-P1 digestion. Chem-Biol Interact 1992;84:21–35.
  • Emami A, Dyba M, Cheema AK, Pan J, Nath RG, Chung F-L. Detection of the acrolein-derived cyclic DNA adduct by a quantitative P-32-postlabeling/solid-phase extraction/HPLC method: Blocking its artifact formation with glutathione. Anal Biochem 2008;374:163–172.
  • Fedtke N, Boucheron JA, Walker VE, Swenberg JA. Vinyl chloride-induced DNA adducts. II: Formation and persistence of 7-(2′-oxoethyl)guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis 1990;11:1287–1292.
  • Chen HJC, Zhang L, Cox J, Cunningham JA, Chung FL. DNA adducts of 2,3-epoxy-4-hydroxynonanal: Detection of 7-(1′,2′-dihydroxyheptyl)-3 H-imidazo 2,1-i purine and 1,N-6-ethenoadenine by gas chromatography negative ion chemical ionization mass spectrometry. Chem Res Toxicol 1998;11:1474–1480.
  • Ham AJ, Ranasinghe A, Morinello EJ, Nakamura J, Upton PB, Johnson F, Swenberg JA. Immunoaffinity/gas chromatography/high-resolution mass spectrometry method for the detection of N-2,3-ethenoguanine. Chem Res Toxicol 1999;12:1240–1246.
  • Morinello EJ, Ham AJ, Ranasinghe A, Sangaiah R, Swenberg JA. Simultaneous quantitation of N-2,3-ethenoguanine and 1,N-2-ethenoguanine with an immunoaffinity/gas chromatography/high-resolution mass spectrometry assay. Chem Res Toxicol 2001;14:327–334.
  • Singh R, Farmer PB. Liquid chromatography-electrospray ionization-mass spectrometry: the future of DNA adduct detection. Carcinogenesis 2006;27:178–196.
  • Roberts DW, Churchwell MI, Beland FA, Fang JL, Doerge DR. Quantitative analysis of etheno-2′-deoxycytidine DNA adducts using on-line immunoaffinity chromatography coupled with LC/ES-MS/MS detection. Anal Chem 2001;73:303–309.
  • Chen HJ, Chiang LC, Tseng MC, Zhang LL, Ni JS, Chung FL. Detection and quantification of 1,N-6-ethenoadenine in human placental DNA by mass spectrometry. Chem Res Toxicol 1999;12:1119–1126.
  • Douki T, Odin F, Caillat S, Favier A, Cadet J. Predominance of the 1,N-2-propano 2′-deoxyguanosine adduct among 4-hydroxy-2-nonenal-induced DNA lesions. Free Radic Biol Med 2004;37:62–70.
  • Chen HJC, Lin WP. Simultaneous Quantification of 1,N-2-Propano-2′-deoxyguanosine Adducts Derived from Acrolein and Crotonaldehyde in Human Placenta and Leukocytes by Isotope Dilution Nanoflow LC Nanospray Ionization Tandem Mass Spectrometry. Anal Chem 2009;81: 9812–9818.
  • Chen HJ, Lin GJ, Lin WP. Simultaneous Quantification of Three Lipid Peroxidation-Derived Etheno Adducts in Human DNA by Stable Isotope Dilution Nanoflow Liquid Chromatography Nanospray Ionization Tandem Mass Spectrometry. Anal Chem 2010;82:4486–4493.
  • Chen HJC, Lin WP. Quantitative Analysis of Multiple Exocyclic DNA Adducts in Human Salivary DNA by Stable Isotope Dilution Nanoflow Liquid Chromatography-Nanospray Ionization Tandem Mass Spectrometry. Anal Chem 2011;83:8543–8551.
  • Kanaly RA, Hanaoka T, Sugimura H, Toda H, Matsui S, Matsuda T. Development of the adductome approach to detect DNA damage in humans. Antioxid Redox Sign 2006;8:993–1001.
  • Kanaly RA, Matsui A, Hanaoka T, Matsuda T. Application of the adductome approach to assess intertissue DNA damage variations in human lung and esophagus. Mutat Res-Fund Mol M 2007;625:83–93.
  • Wolf SM, Vouros P. Application of capillary liquid-chromatography coupled with tandem mass-spectrometric methods to the rapid screening of adducts formed by the reaction of N-acetoxy-N-acetyl-2-aminofluorene with calf thymus dna. Chem Res Toxicol 1994;7:82–88.
  • Balbo S, Hecht SS, Upadhyaya P, Villalta PW. Application of a High-Resolution Mass-Spectrometry-Based DNA Adductomics Approach for Identification of DNA Adducts in Complex Mixtures. Anal Chem 2014;86:1744–1752.
  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277:44784–44790.
  • Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 1977;78:67–82.
  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010;45:466–472.
  • Roede JR, Jones DP. Reactive Species and Mitochondrial Dysfunction: Mechanistic Significance of 4-Hydroxynonenal. Environ Mol Mutagen 2010;51:380–390.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol-London 2003;552:335–344.
  • Anderson S, Bankier AT, Barrell BG, Debruijn MHL, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457–465.
  • Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. CSH Perspect Biol 2013;5:a012641.
  • Colbeau A, Nachbaur J, Vignais PM. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochimica Et Biophysica Acta 1971;249:462–492.
  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 2005;1:223–232.
  • Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 2014;179:64–69.
  • Yin H, Zhu M. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res 2012;46:959–974.
  • Schlame M, Ren MD, Xu Y, Greenberg ML, Haller I. Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 2005;138:38–49.
  • Liu W, Porter NA, Schneider C, Brash AR, Yin H. Formation of 4-hydroxynonenal from cardiolipin oxidation: Intramolecular peroxyl radical addition and decomposition. Free Radic Biol Med 2011;50:166–178.
  • Zhong H, Lu J, Xia L, Zhu M, Yin H. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis. Redox Biology 2014;2:878–883.
  • Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol 2015;4:193–199.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. J Environ Sci Heal C 2009;27:120–139.
  • Yamamoto H, Hirose K, Hayasaki Y, Masuda M, Kazusaka A, Fujita S. Mechanism of enhanced lipid peroxidation in the liver of Long-Evans cinnamon (LEC) rats. Arch Toxicol 1999;73:457–464.
  • Nair J, Strand S, Frank N, Knauft J, Wesch H, Galle PR, Bartsch H. Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis 2005; 26:1307–1315.
  • Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, et al. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res 2012;46:367–381.
  • Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res 2012;46:382–419.
  • Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab 2014;20: 967–977.
  • Akatsuka S, Toyokuni S. Genome-wide assessment of oxidatively generated DNA damage. Free Radic Res 2012; 46:523–530.
  • Malik Q, Herbert KE. Oxidative and non-oxidative DNA damage and cardiovascular disease. Free Radic Res 2012; 46:554–564.
  • Santos RX, Correia SC, Zhu X, Lee H-G, Petersen RB, Nunomura A, et al. Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Radic Res 2012;46: 565–576.
  • Tyurina YY, Poloyac SM, Tyurin VA, Kapralov AA, Jiang J, Anthonymuthu TS, et al. A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem 2014;6:542–552.
  • Yin H, Vergeade A, Shi Q, Zackert WE, Gruenberg KC, Bokiej M, et al. Acetaminophen inhibits cytochrome c redox cycling induced lipid peroxidation. Biochem Biophys Res Commun 2012;423:224–228.
  • Winter CK, Segall HJ, Haddon WF. Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal invitro. Cancer Res 1986;46:5682–5686.
  • Galliani G, Pantarotto C. The reaction of guanosine and 2′-deoxyguanosine with acrolein. Tetrahedron Lett 1983; 24:4491–4492.
  • Nath RG, Ocando JE, Chung FL. Detection of 1,N-2-propanodeoxyguanosine adducts as potential endogenous DNA lesions in rodent and human tissues. Cancer Res 1996;56: 452–456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.