642
Views
17
CrossRef citations to date
0
Altmetric
Research Article

In vitro and in vivo studies of lipid-based nanocarriers for oral N3-o-toluyl-fluorouracil delivery

, , , &
Pages 352-363 | Received 12 Dec 2009, Accepted 09 Mar 2010, Published online: 13 Apr 2010

References

  • Alonso, M.J. (2004). Nanomedicines for overcoming biological barriers. Biomed Pharmacother. 58:168–72.
  • Alonso, M.J., Sánchez, A. (2004). Biodegradable nanoparticles as new transmucosal drug carriers. Chapter 20, pp 283–295. In: Sönke Svenson, ed. Carrier-based drug delivery. ACS Symposium Series. Washington, DC. Dendritic Nanotechnologies, Inc.
  • Bai, F., Liu, C.X., Dai, L.P., Liu, L., Zhang, N. (2009). Preparation and pharmacokinetics in mice of N3-O-toluyl-flulorouracil solid lipid nanoparticles. Chin J New Drugs Clin Remedies. 28:185–90.
  • Beck, R.C., Pohlmann, A.R., Hoffmeister, C., Gallas, M.R., Collnot, E., Schaefer, U.F., Guterres, S.S., Lehr, C.M. (2007). Dexamethasone-loaded nanoparticle-coated microparticles: correlation between in vitro drug release and drug transport across Caco-2 cell monolayers. Eur J Pharm Biopharm. 67:18–30.
  • Dahan, A., Amidon, G.L. (2009). Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 6:19–28.
  • de Salamanca, A.E., Diebold, Y., Calonge, M., Garcia-Vazquez, C., Callejo, S., Vila, A., Alonso, M.J. (2006). Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 47:1416–25.
  • Degim, Z., Unal, N., Essiz, D., Abbasoglu, U. (2005). Caco-2 cell culture as a model for famotidine absorption. Drug Deliv. 12:27–33.
  • Desai, M.P., Labhasetwar, V., Walter, E., Levy, R.J., Amidon, G.L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 4:1568–73.
  • El-Shabouri, M.H. (2002). Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm. 249:101–8.
  • Florence, A.T. (1997). The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 14:259–66.
  • Gabor, F., Bogner, E., Weissenboeck, A., Wirth, M. (2004). The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev. 56:459–80.
  • Garcia-Fuentes, M., Prego, C., Torres, D., Alonso, M.J. (2005). A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly (ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 25:133–43.
  • Hamman, J.H., Demana, P.H., Olivier, E.I. (2007). Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights. 2:71–81.
  • Hamman, J.H., Enslin, G.M., Kotze, A.F. (2005). Oral delivery of peptide drugs. BioDrugs. 19:165–77.
  • Hunter, J., Hirst, B.H. (1997). Intestinal secretions of drugs: the role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv Drug Deliv Rev. 25:129–57.
  • Khoo, S.M., Shackleford, D.M., Porter, C.J.H., Edwards, G.A., Charman, W.N. (2003). Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res. 20:1460–5.
  • Kim, J.S., Mitchell, S., Kijek, P., Tsume, Y., Hilfinger, J., Amidon, G.L. (2006). The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I bio-waiver requests. Mol Pharm. 3:686–94.
  • Korjamo, T., Heikkinen, A.T., Waltari, P., Monkkonen, J. (2008). The asymmetry of the unstirred water layer in permeability experiments. Pharm Res. 25:1714–22.
  • Lennernäs, H. (1998). Human intestinal permeability. J Pharm Sci. 87:403–10.
  • Li, H.L., Zhao, X.B., Ma, Y.K., Zhai, G.X., Li, L.B., Lou, H.X. (2009). Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Contr Rel. 133:238–44.
  • Lindmark, T., Kimura, Y., Artursson, P. (1998). Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther. 284:362–9.
  • Liu, D.H., Liu, C.X., Zou, W.W., Zhang, N. (2010). Enhanced gastrointestinal absorption of N3-O-Toluyl-Fluorouracil by Cationic solid lipid nanoparticles. J Nanopart Res. 12:975–84.
  • Liu, J., Xu, W.F., Zhou, Y., Yuan, Y.X., Qu, X.J. (2006). Effect of growth inhibition on tumour cells induced by N3-O-toluyl-fluorouracil. Chin Pharm J. 37:252–5.
  • Luo, Y., Chen, D., Ren, L., Zhao, X., Qin, J. (2006). Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Contr Rel. 114:53–9.
  • Masaoka, Y., Tanaka, Y., Kataoke, M., Sakuma, S., Yamashita, S. (2006). Site of absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 29:240–50.
  • Morishita, M., Peppas, N.A. (2006). Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 11:905–10.
  • Muller, R.H., Runge, S., Ravelli, V., Mehnert, W., Thunemann, A.F., Souto, E.B. (2006). Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm. 317:82–9.
  • Nassar, T., Rom, A., Nyska, A., Benita, S. (2008). A novel nanocapsule delivery system to overcome intestinal degradation and drug transport limited absorption of P-glycoprotein substrate drugs. Pharm Res. 25:2019–29.
  • Norris, D.A., Puri, N., Sinko, P.J. (1998). The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev. 34:135–54.
  • Peira, E., Carlotti, M.E., Trotta, C., Cavall, R., Trotta, M. (2008). Positively charged microemulsions for topical application. Int J Pharm. 346:119–23.
  • Ponchel, G., Montisci, M.J., Dembri, A., Durrer, C., Duchene, D. (1997). Mucoadhesion of colloidal particulate systems in the gastrointestinal tract. Eur J Pharm Biopharm. 44:25–31.
  • Porter, C.J.H., Charman, W.N. (2001). Lipid-based formulations for oral administration: opportunities for bioavailability enhancement and lipoprotein targeting of lipophilic drugs. J Recept Signal Transduct Res. 21:215–57.
  • Prego, C., Torres, D., Fernandez-Megia, E., Novoa-Carballal, R., Quinoa, E., Alonso, M.J. (2006). Chitosan-PEG nanocapsules as new carriers for oral peptide delivery-Effect of chitosan pegylation degree. J Contr Rel. 111:299–308.
  • Pukanud, P., Peungvicha, P., Sarisuta, N. (2009). Development of mannosylated liposomes for bioadhesive oral drug delivery via M cells of Peyer’s patches. Drug Deliv. 16:289–94.
  • Song, N.N., Li, Q.S., Liu, C.X. (2006). Intestinal permeability of metformin using single-pass intestinal perfusion in rats. World J Gastroenterol. 12:4064–70.
  • Stewart, B.H., Chan, O.H., Lu, R.H., Reyner, E.L., Schmid, H.L., Hamilton, H.W., Steinbaugh, B.A., Taylor, M.D. (1995). Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm Res. 12:693–9.
  • Sun, W.T., Huang, G.H., Ye, J.S., Zhang, N. (2006). Determination of encapsulation efficiencies of liposomes and nanoliposomes by protamine aggregation method. Chin Pharm J. 41:1716–20.
  • Sun, W.T., Zhang, N., Li, A.G., Zou, W.W., Xu, W.F. (2008). Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int J Pharm. 353:243–50.
  • Sutton, S.C., Rinaldi, M.T., Vukovinsky, K.E. (2001). Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. AAPS Pharm Sci. 3:E25.
  • Szakács, T., Veres, Z., Vereczkey, L. (2001). In vitro–in vivo correlation of the pharmacokinetics of vinpocetine. Pol J Pharmacol. 53:623–8.
  • Ungell, A.B. (2004). Caco-2 replace or refine? Drug Discov Today Technol. 1:423–30.
  • Yee, S. (1997). In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm Res. 14:763–6.
  • Yoo, H.S., Park, T.G. (2004). Biodegradable nanoparticles containing protein-fatty acid complexes for oral delivery of salmon calcitonin. J Pharm Sci. 93:488–95.
  • Yuan, H., Chen, J., Du, Y.Z., Hu, F.Q., Zeng, S., Zhao, H.L. (2007). Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf B Biointerfaces. 58:157–64.
  • Zakeri-Milani, P., Valizadeh, H., Tajerzadeh, H., Azarmi, Y., Islambolchilar, Z., Barzegar, S., Barzegar-Jalali, M. (2007). Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci. 10:368–79.
  • Zou, W.W., Sun, W.T., Zhang, N., Xu, W.F. (2008). Enhanced oral bioavailability and absorption mechanism study of N3-O-toluyl-fluorouracil-loaded liposomes. J Biomed Nanotechnol. 4: 90–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.