546
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects

&
Pages 214-226 | Received 17 Mar 2010, Accepted 21 Apr 2010, Published online: 28 May 2010

References

  • Kovacic P, Hall ME. Bioelectrochemistry, reactive oxygen species, receptors, and cell signaling: how interrelated? J Recept Signal Transduct Res 2010, 30, 1–9.
  • Schmidt HL, Günther H. Structure and electrochemistry of oxidoreductases. Philos Trans R Soc Lond, B, Biol Sci 1987, 316, 73–84.
  • Gagliardi LJ. Electrostatic considerations in nuclear envelope breakdown and reassembly. J Electrostat 2006, 64, 843–849.
  • Kovacic P. Bioelectrostatics: Review of widespread importance in biochemistry. J Electrostat 2008, 66, 124–129.
  • Kovacic P, Pozos RS, Draskovich CD. Unifying electrostatic mechanism for receptor-ligand activity. J Recept Signal Transduct Res 2007, 27, 411–431.
  • Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res C Embryo Today 2006, 78, 333–344.
  • Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 2001, 8, 773–796.
  • Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 2005, 12, 2601–2623.
  • Kovacic P, Jacintho JD. Reproductive toxins: pervasive theme of oxidative stress and electron transfer. Curr Med Chem 2001, 8, 863–892.
  • Kovacic P, Sacman A, Wu-Weis M. Nephrotoxins: widespread role of oxidative stress and electron transfer. Curr Med Chem 2002, 9, 823–847.
  • Kovacic P, Somanathan R. Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct Res 2008, 28, 323–346.
  • Kovacic P, Somanathan R. Neurotoxicity: The broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem - CNS Agents 2005, 5, 249–258.
  • Kovacic P, Somanathan R. Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspects. Med Hypotheses 2008, 70, 914–923.
  • Kovacic P, Thurn LA. Cardiovascular toxicity from the perspective of oxidative stress, electron transfer, and prevention by antioxidants. Curr Vasc Pharmacol 2005, 3, 107–117.
  • Kovacic P, Draskovich CD, Pozos RS. Unifying electrostatic mechanism for phosphates and sulfates in cell signaling. J Recept Signal Transduct Res 2007, 27, 433–443.
  • Campbell NA. Biology. Redwood City, CA: Benjamin/Cummings, 1993:99.
  • Kovacic P. Unifying electrostatic mechanism for metal cations in receptors and cell signaling. J Recept Signal Transduct Res 2008, 28, 153–161.
  • Berry M, Grivell A, Wallace P. Electrochemical aspects of metabolism. In: Srinivasan S, Chizmadzhev Y, Bockris J, Conway B, eds. Comprehensive Treatise of Electrochemistry. New York: Plenum Press, 1985:347–380.
  • Kovacic P. Electron transfer mechanism for regulatory action by nitric oxide. Bioelectrochem Bioenerg 1996, 39, 155–159.
  • Jacintho JD, Kovacic P. Neurotransmission and neurotoxicity by nitric oxide, catecholamines, and glutamate: unifying themes of reactive oxygen species and electron transfer. Curr Med Chem 2003, 10, 2693–2703.
  • Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 2004, 1662, 113–137.
  • Neumann E. Digression on chemical electromagnetic field effects in membrane signal transduction–cooperativity paradigm of the acetylcholine receptor. Bioelectrochemistry 2000, 52, 43–49.
  • Luben RA. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Phys 1991, 61, 15–28.
  • Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 2001, 83-A, 1514–1523.
  • Arnaud C. Weak forces. Chem Eng News 2007, 85, 12.
  • Ishisaka R, Kanno T, Inai Y, Nakahara H, Akiyama J, Yoshioka T, Utsumi K. Effects of a magnetic fields on the various functions of subcellular organelles and cells. Pathophysiology 2000, 7, 149–152.
  • Goodman R, Blank M. Insights into electromagnetic interaction mechanisms. J Cell Physiol 2002, 192, 16–22.
  • Bassett CAL. Beneficial effects of electromagnetic fields. J Cellular Biochem 1993, 51, 387–393.
  • Adey WR. Biological effects of electromagnetic fields. J Cell Biochem 1993, 51, 410–416.
  • Frey AH. Electromagnetic field interactions with biological systems. FASEB J 1993, 7, 272–281.
  • Lacy-Hulbert A, Metcalfe JC, Hesketh R. Biological responses to electromagnetic fields. FASEB J 1998, 12, 395–420.
  • Uzdenslry AB. A cytologist’s view of resonance mechanism for biologic effects of ELF magnetic fields. Electromag Biol Med 1999, 18, 67–78.
  • Funk RH, Monsees TK. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs 2006, 182, 59–78.
  • Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S. Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res 2007, 1169, 120–124.
  • Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health 2007, 23, 411–420.
  • Tkalec M, Malaric K, Pevalek-Kozlina B. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Total Environ 2007, 388, 78–89.
  • Yurekli AI, Ozkan M, Kalkan T, Saybasili H, Tuncel H, Atukeren P, Gumustas K, Seker S. GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med 2006, 25, 177–188.
  • Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem 2006, 282, 83–88.
  • Ozguner F, Altinbas A, Ozaydin M, Dogan A, Vural H, Kisioglu AN, Cesur G, Yildirim NG. Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health 2005, 21, 223–230.
  • Koyu A, Ozguner F, Yilmaz H, Uz E, Cesur G, Ozcelik N. The protective effect of caffeic acid phenethyl ester (CAPE) on oxidative stress in rat liver exposed to the 900 MHz electromagnetic field. Toxicol Ind Health 2009, 25, 429–434.
  • Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces sperm motility in rats. Clinics 2009, 64, in press.
  • Guler G, Turkozer Z, Tomruk A, Seyhan N. The protective effects of N-acetyl-L-cysteine and epigallocatechin-3-gallate on electric field-induced hepatic oxidative stress. Int J Radiat Biol 2008, 84, 669–680.
  • Koh EK, Ryu BK, Jeong DY, Bang IS, Nam MH, Chae KS. A 60-Hz sinusoidal magnetic field induces apoptosis of prostate cancer cells through reactive oxygen species. Int J Radiat Biol 2008, 84, 945–955.
  • Zeni O, Di Pietro R, d’Ambrosio G, Massa R, Capri M, Naarala J, Juutilainen J, Scarfì MR. Formation of reactive oxygen species in L929 cells after exposure to 900 MHz RF radiation with and without co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. Radiat Res 2007, 167, 306–311.
  • Gudkova OY, Gudkov SV, Gapeev AB, Bruskov VI, Rubanik AV, Chemeris NK. Study of the mechanisms of formation of reactive oxygen species in aqueous solutions exposed to high-peak-power pulsed electromagnetic radiation of extremely high frequencies. Biophysics 2005, 50, 679–684.
  • Lockwood DB, Wataha JC, Lewis JB, Tseng WY, Messer RL, Hsu SD. Blue light generates reactive oxygen species (ROS) differentially in tumor vs. normal epithelial cells. Dent Mater 2005, 21, 683–688.
  • Luukkonen J, Hakulinen P, Mäki-Paakkanen J, Juutilainen J, Naarala J. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat Res 2009, 662, 54–58.
  • Balci M, Devrim E, Durak I. Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Curr Eye Res 2007, 32, 21–25.
  • Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T, Pavlovic V. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res 2008, 49, 579–586.
  • Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 2005, 36, 350–355.
  • Devrim E, Ergüder IB, Kiliçoglu B, Yaykasli E, Cetin R, Durak I. Effects of electromagnetic radiation use on oxidant/antioxidant status and DNA turn-over enzyme activities in erythrocytes and heart, kidney, liver, and ovary tissues from rats: possible protective role of vitamin C. Toxicol Mech Methods 2008, 18, 679–683.
  • Jagetia GC, Reddy TK. Modulation of radiation-induced alteration in the antioxidant status of mice by naringin. Life Sci 2005, 77, 780–794.
  • Lee KS, Choi JS, Hong SY, Son TH, Yu K. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics 2008, 29, 371–379.
  • Pratt PF, Bienengraeber M, Weihrauch D, Kerstein JR, Warltier DC. Myocardial postconditioning against ischemia and reperfusion injury by near infrared electromagnetic radiation. Circulation 2008, 118, S–402.
  • De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 2009, 4, e6446.
  • Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009, 16, 89–102.
  • Zhao R, Zhang S, Xu Z, Ju L, Lu D, Yao G. Studying gene expression profile of rat neuron exposed to 1800MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology 2007, 235, 167–175.
  • El-Swefy S, Soliman H, Hussein M. Calcium channel blockade alleviates brain injury induced by long term exposure to an electromagnetic field. J Appl Biomed 2008, 6, 153–163.
  • Luben RA. Membrane signal-transduction mechanisms and biological effects of low-energy electromagnetic fields. Advances in Chemistry, American Chemical Society. 1995, 250, 437–450.
  • Patterson TE, Sakai Y, Grabiner MD, Ibiwoye M, Midura RJ, Zborowski M, Wolfman A. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics 2006, 27, 535–544.
  • Schnoke M, Midura RJ. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res 2007, 25, 933–940.
  • Marinelli F, La Sala D, Cicciotti G, Cattini L, Trimarchi C, Putti S, Zamparelli A, Giuliani L, Tomassetti G, Cinti C. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J Cell Physiol 2004, 198, 324–332.
  • Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 2003, 17, 1493–1495.
  • Hofmann F, Ohnimus H, Scheller C, Strupp W, Zimmermann U, Jassoy C. Electric field pulses can induce apoptosis. J Membr Biol 1999, 169, 103–109.
  • Clejan S, Ide C, Walker C, Wolf E, Corb M, Beckman B. Electromagnetic field induced changes in lipid second messengers. J Lipid Mediat Cell Signal 1996, 13, 301–324.
  • Pacini S, Vannelli GB, Barni T, Ruggiero M, Sardi I, Pacini P, Gulisano M. Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability. Neurosci Lett 1999, 267, 185–188.
  • Dirbirdik I, Kristupaitis D, Kurosaki T, Tuel-Ahlgren Chu, A, Pond D, Tuong D, Luben R, Uckun FM. Stimulation of Src family protein-tyrosine kinase as a proximal and mandatory step for SYK kinase-dependent phospholipase Cγ2 activation in lymphoma B cells exposed to low energy electromagnetic fields. J Biol Chem 1998, 273, 4305–4039.
  • Thumm S, Löschinger M, Glock S, Hämmerle H, Rodemann HP. Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields. Radiat Environ Biophys 1999, 38, 195–199.
  • Lindström E, Still M, Mattsson M-O Mild, KH, Luben RA. ELF magnetic fields initiate protein tyrosine phosphorylation of the T cell receptor complex. Bioelectrochemistry 2000, 53, 73–78.
  • Lindström E, Mild KH, Lundgren E. Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i- measurements. Bioelectrochem Bioenerget 1998, 46, 129–137.
  • Markov MS, Pilla AA. Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence. Bioelectrochem Bioenerget 1997, 43, 233–238.
  • Liburdy RP. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett 1992, 301, 53–59.
  • Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J 1992, 6, 3177–3185.
  • Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 2008, 227, 883–891.
  • Yost MG, Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett 1992, 296, 117–122.
  • Liburdy RP, Callahan DE, Harland J, Dunham E, Sloma TR, Yaswen P. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction. FEBS Lett 1993, 334, 301–308.
  • Lyle DB, Fuchs TA, Casamento JP, Davis CC, Swicord ML. Intracellular calcium signaling by Jurkat T-lymphocytes exposed to a 60 Hz magnetic field. Bioelectromagnetics 1997, 18, 439–445.
  • Richard D, Lange S, Viergutz T, Kriehuber R, Weiss DG, Myrtill S. Influence of 50 Hz electromagnetic fields in combination with a tumour promoting phorbol ester on protein kinase C and cell cycle in human cells. Mol Cell Biochem 2002, 232, 133–141.
  • Malagoli D, Gobba F, Ottaviani E. Effects of 50-Hz magnetic fields on the signalling pathways of fMLP-induced shape changes in invertebrate immunocytes: the activation of an alternative “stress pathway”. Biochim Biophys Acta 2003, 1620, 185–190.
  • Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res C Embryo Today 2006, 78, 333–344.
  • Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007, 405, 559–568.
  • Leszczynski D, Joenväärä S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 2002, 70, 120–129.
  • McDonald F. Electrical effects at the bone surface. Eur J Orthod 1993, 15, 175–183.
  • Aaron RK, Ciombor DM. Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem 1993, 52, 42–46.
  • Li JK-J, Lin JC-A, Liu H-C Sun, J-S, Ruaan R-C Shih, C, Chang WH-S. Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol 2006, 32, 769–775.
  • Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 2003, 21, 326–334.
  • Simkó M, Droste S, Kriehuber R, Weiss DG. Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur J Cell Biol 2001, 80, 562–566.
  • Chen G, Upham BL, Sun W, Chang CC, Rothwell EJ, Chen KM, Yamasaki H, Trosko JE. Effect of electromagnetic field exposure on chemically induced differentiation of friend erythroleukemia cells. Environ Health Perspect 2000, 108, 967–972.
  • Ladokhin AS, White SH. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 2001, 309, 543–552.
  • Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 2004, 30 37.
  • Caraglia M, Marra M, Mancinelli F, D’Ambrosio G, Massa R, Giordano A, Budillon A, Abbruzzese A, Bismuto E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol 2005, 204, 539–548.
  • Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J 2005, 19, 1686–1688.
  • Wei M, Guizzetti M, Yost M, Costa LG. Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro. Toxicol Appl Pharmacol 2000, 162, 166–176.
  • Fanelli C, Coppola S, Barone R, Colussi C, Gualandi G, Volpe P, Ghibelli L. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J 1999, 13, 95–102.
  • Robison JG, Pendleton AR, Monson KO, Murray BK, O’Neill KL. Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics 2002, 23, 106–112.
  • Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 2005, 36, 195–217.
  • Goodman R, Blank M. Magnetic field stress induces expression of hsp70. Cell Stress Chaperone 1996, 3, 79–88.
  • Gartzke J, Lange K. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol, Cell Physiol 2002, 283, C1333–C1346.
  • Maccarrone M, Bladergroen MR, Rosato N, Finazzi Agrò AF. Role of lipid peroxidation in electroporation-induced cell permeability. Biochem Biophys Res Commun 1995, 209, 417–425.
  • Krauss G. Biochemistry of Signal Transduction and Regulation. Wiley-VCH, Berlin, 2008, pp. 4, 63.
  • Maeda K, Robinson AJ, Henbest KB, Dell EJ, Timmel CR. Protein surface interactions probed by magnetic field effects on chemical reactions. J Am Chem Soc 2010, 132, 1466–1467.
  • Bókkon I, Dai J, Antal I. Picture representation during REM dreams: A redox molecular hypothesis. BioSystems 2010, 100, 79–86.
  • Richards MA, Koren SA, Persinger MA. Circumcerebral application of weak complex magnetic fields with derivatives and changes in electroencephalographic power spectra within the theta range: implications for states of consciousness. Percept Mot Skills 2002, 95, 671–686.
  • Lapitskaya N, Coleman MR, Nielsen JF, Gosseries O, de Noordhout AM. Disorders of consciousness: further pathophysiological insights using motor cortex transcranial magnetic stimulation. Prog Brain Res 2009, 177, 191–200.
  • Babiloni C, Vecchio F, Rossi S, De Capua A, Bartalini S, Ulivelli M, Rossini PM. Human ventral parietal cortex plays a functional role on visuospatial attention and primary consciousness. A repetitive transcranial magnetic stimulation study. Cereb Cortex 2007, 17, 1486–1492.
  • Soddu A, Boly M, Nir Y, Noirhomme Q, Vanhaudenhuyse A, Demertzi A, Arzi A, Ovadia S, Stanziano M, Papa M, Laureys S, Malach R. Reaching across the abyss: recent advances in functional magnetic resonance imaging and their potential relevance to disorders of consciousness. Prog Brain Res 2009, 177, 261–274.
  • Martin JB, Ahles TA, Jeffery R. The role of private body consciousness and anxiety in the report of somatic symptoms during magnetic resonance imaging. J Behav Ther Exp Psychiatry 1991, 22, 3–7.
  • Park SJ, Hur JW, Kwon KY, Rhee JJ, Lee JW, Lee HK. Time to recover consciousness in patients with diffuse axonal injury: assessment with reference to magnetic resonance grading. J Korean Neurosurg Soc 2009, 46, 205–209.
  • Lapitska N, Gosseries O, Delvaux V, Overgaard M, Nielsen F, Maertens de Noordhout A, Moonen G, Laureys S. Transcranial magnetic stimulation in disorders of consciousness. Rev Neurosci 2009, 20, 235–250.
  • Martin TE. Using functional magnetic resonance imaging to understand the mechanisms of consciousness. Aviat Space Environ Med 1998, 69, 1146–1157.
  • Carrillo-Ruiz JD, Velasco F, Jimènez F, Castro G, Velasco AL, Hernández JA, Ceballos J, Velasco M. Bilateral electrical stimulation of prelemniscal radiations in the treatment of advanced Parkinson’s disease. Neurosurgery 2008, 62, 347–57; discussion 357.
  • Jiménez F, Velasco F, Carrillo-Ruiz JD, García L, Madrigal A, Velasco AL, Márquez I. Comparative evaluation of the effects of unilateral lesion versus electrical stimulation of the globus pallidus internus in advanced Parkinson’s disease. Stereotact Funct Neurosurg 2006, 84, 64–71.
  • Rizzone M, Ferrarin M, Pedotti A, Bergamasco B, Bosticco E, Lanotte M, Perozzo P, Tavella A, Torre E, Recalcati M, Melcarne A, Lopiano L. High-frequency electrical stimulation of the subthalamic nucleus in Parkinson’s disease: kinetic and kinematic gait analysis. Neurol Sci 2002, 23 Suppl 2, S103–S104.
  • Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, van Kranen-Mastenbroek V, Weber W, Visser-Vandewalle V. Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Neurosurgery 2007, 61, 346–55; discussion 355.
  • Mannu P, Rinaldi S, Fontani V, Castagna A, Margotti ML. Radio electric treatment vs. Es-Citalopram in the treatment of panic disorders associated with major depression: an open-label, naturalistic study. Acupunct Electrother Res 2009, 34, 135–149.
  • Shealy CN. Transcutaneous electrical nerve stimulation: the treatment of choice for pain and depression. J Altern Complement Med 2003, 9, 619–623.
  • Fregni F, Liebetanz D, Monte-Silva KK, Oliveira MB, Santos AA, Nitsche MA, Pascual-Leone A, Guedes RC. Effects of transcranial direct current stimulation coupled with repetitive electrical stimulation on cortical spreading depression. Exp Neurol 2007, 204, 462–466.
  • Jin H, Kang KA. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Advances in Experimental Medicine and Biology Maguire DJ, Bruley DF, Harrison DK, Eds, Springer NY, 2008, 599, 45–52.
  • Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004, 14, 2161–2175.
  • Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nanotoday 2007, 2, 18–29.
  • Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin 2005, 10, 579–93.
  • Chang K, Chang WH, Huang S, Huang S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 2005, 23, 1308–1314.
  • Dhawan SK, Conti SF, Towers J, Abidi NA, Vogt M. The effect of pulsed electromagnetic fields on hindfoot arthrodesis: a prospective study. J Foot Ankle Surg 2004, 43, 93–96.
  • Simmons JW Jr, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop 2004, 33, 27–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.