362
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer

, &
Pages 290-297 | Received 09 Jul 2012, Accepted 02 Oct 2012, Published online: 30 Nov 2012

References

  • Baldwin WS, Barrett JC. Melatonin: receptor-mediated events that may affect breast and other steroid hormone-dependent cancers. Mol Carcinog 1998, 21, 149–155.
  • Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 1995, 26, 497–502.
  • Behari J, Paulraj R. Biomarkers of induced electromagnetic field and cancer. Indian J Exp Biol 2007, 45, 77–85.
  • Berg H, Günther B, Hilger I, Radeva M, Traitcheva N, Wollweber L. Bioelectromagnetic field effects on cancer cells and mice tumors. Electromagn Biol Med 2010, 29, 132–143.
  • Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 2009, 1793, 933–940.
  • Blackman CF, Benane SG, House DE. The influence of 1.2 microT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics 2001, 22, 122–128.
  • Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA, Lynch DT, Rollag MD, Zalatan F. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 2005, 65, 11174–11184.
  • Blask DE, Hill SM. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm Suppl 1986, 21, 433–449.
  • Bollig A, Xu L, Thakur A, Wu J, Kuo TH, Liao JD. Regulation of intracellular calcium release and PP1alpha in a mechanism for 4-hydroxytamoxifen-induced cytotoxicity. Mol Cell Biochem 2007, 305, 45–54.
  • Bonde JP, Hansen J, Kolstad HA, Mikkelsen S, Olsen JH, Blask DE, Härmä M, Kjuus H, de Koning HJ, Olsen J, Møller M, Schernhammer ES, Stevens RG, Akerstedt T. Work at night and breast cancer - report on evidence-based options for preventive actions. Scand J Work Environ Health 2012, 38, 380–390.
  • Brömme HJ, Mörke W, Peschke D, Ebelt H, Peschke D. Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. J Pineal Res 2000, 29, 201–208.
  • Chlebowski RT, Hendrix SL, Langer RD, Stefanick ML, Gass M, Lane D, Rodabough RJ, Gilligan MA, Cyr MG, Thomson CA, Khandekar J, Petrovitch H, McTiernan A; WHI Investigators. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA 2003, 289, 3243–3253.
  • Curtis SB, Luebeck EG, Hazelton WD, Moolgavkar SH. The role of promotion in carcinogenesis from protracted high-LET exposure. Phys Med 2001, 17 Suppl 1, 157–160.
  • Davis S, Kaune WT, Mirick DK, Chen C, Stevens RG. Residential magnetic fields, light-at-night, and nocturnal urinary 6-sulfatoxymelatonin concentration in women. Am J Epidemiol 2001, 154, 591–600.
  • Davis S, Mirick DK. Residential magnetic fields, medication use, and the risk of breast cancer. Epidemiology 2007, 18, 266–269.
  • Feychting M, Forssén U, Rutqvist LE, Ahlbom A. Magnetic fields and breast cancer in Swedish adults residing near high-voltage power lines. Epidemiology 1998, 9, 392–397.
  • Feychting M, Forssén U. Electromagnetic fields and female breast cancer. Cancer Causes Control 2006, 17, 553–558.
  • Francis H, Glaser S, Demorrow S, Gaudio E, Ueno Y, Venter J, Dostal D, Onori P, Franchitto A, Marzioni M, Vaculin S, Vaculin B, Katki K, Stutes M, Savage J, Alpini G. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol, Cell Physiol 2008, 295, C499–C513.
  • Girgert R, Hanf V, Emons G, Gründker C. Signal transduction of the melatonin receptor MT1 is disrupted in breast cancer cells by electromagnetic fields. Bioelectromagnetics 2010, 31, 237–245.
  • Girgert R, Schimming H, Körner W, Gründker C, Hanf V. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields. Biochem Biophys Res Commun 2005, 336, 1144–1149.
  • Halgamuge MN. Pineal melatonin level disruption in humans due to electromagnetic fields and icnirp limits. Radiat Prot Dosimetry 2012. [Epub ahead of print]
  • Kumar S, Kesari KK, Behari J. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo) 2011, 66, 1237–1245.
  • Gumral N, Naziroglu M, Koyu A, Ongel K, Celik O, Saygin M, Kahriman M, Caliskan S, Kayan M, Gencel O, Flores-Arce MF. Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 2009, 132, 153–163.
  • Harland JD, Liburdy RP. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 1997, 18, 555–562.
  • Heidenreich WF, Cullings HM, Funamoto S, Paretzke HG. Promoting action of radiation in the atomic bomb survivor carcinogenesis data? Radiat Res 2007, 168, 750–756.
  • Dumont M, Lanctôt V, Cadieux-Viau R, Paquet J. Melatonin production and light exposure of rotating night workers. Chronobiol Int 2012, 29, 203–210.
  • Ishido M, Nitta H, Kabuto M. Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells. Carcinogenesis 2001, 22, 1043–1048.
  • Jefcoate CR, Liehr JG, Santen RJ, Sutter TR, Yager JD, Yue W, Santner SJ, Tekmal R, Demers L, Pauley R, Naftolin F, Mor G, Berstein L. Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monographs 2000, 95–112.
  • Kim KB, Byun HO, Han NK, Ko YG, Choi HD, Kim N, Pack JK, Lee JS. Two-dimensional electrophoretic analysis of radio-frequency radiation-exposed MCF7 breast cancer cells. J Radiat Res 2010, 51, 205–213.
  • Beck-Friis J, von Rosen D, Kjellman BF, Ljunggren JG, Wetterberg L. Melatonin in relation to body measures, sex, age, season and the use of drugs in patients with major affective disorders and healthy subjects. Psychoneuroendocrinology, 1984, 9, 261–277.
  • Kovacic P, Somanathan R. Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 2008, 2, 56–69.
  • Kovacic P, Somanathan R. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 2010, 30, 214–226.
  • La Vignera S, Condorelli RA, Vicari E, D’Agata R, Calogero AE. Effects of the exposure to mobile phones on male reproduction: a review of the literature. J Androl 2012, 33, 350–356.
  • Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 2004, 112, 687–694.
  • Lai H, Singh NP. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett 2006, 231, 43–48.
  • Lemon HM, Wotiz HH, Parsons L, Mozden PJ. Reduced estriol excretion in patients with breast cancer prior to endocrine therapy. JAMA 1966, 196, 1128–1136.
  • Lemon HM. Oestriol and prevention of breast cancer. Lancet 1973, 1, 546–547.
  • Lemon HM. Pathophysiologic considerations in the treatment of menopausal patients with oestrogens; the role of oestriol in the prevention of mammary carcinoma. Acta Endocrinol Suppl (Copenh) 1980, 233, 17–27.
  • Lenoir V, de Jonage-Canonico MB, Perrin MH, Martin A, Scholler R, Kerdelhué B. Preventive and curative effect of melatonin on mammary carcinogenesis induced by dimethylbenz[a]anthracene in the female Sprague-Dawley rat. Breast Cancer Res 2005, 7, R470–R476.
  • Li CY, Thériault G, Lin RS. Residential exposure to 60-Hertz magnetic fields and adult cancers in Taiwan. Epidemiology 1997, 8, 25–30.
  • Liburdy RP, Sloma TR, Sokolic R, Yaswen P. ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic action on ER+ breast cancer cell proliferation. J Pineal Res 1993, 14, 89–97.
  • Omura Y, Losco M. Electro-magnetic fields in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc) as potential contributing factors for the induction of oncogen C-fos Ab1, oncogen C-fos Ab2, integrin alpha 5 beta 1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain. Acupunct Electrother Res 1993, 18, 33–73.
  • Mady EA. Association between estradiol, estrogen receptors, total lipids, triglycerides, and cholesterol in patients with benign and malignant breast tumors. J Steroid Biochem Mol Biol 2000, 75, 323–328.
  • Maestroni GJ, Zammaretti F, Pedrinis E. Hematopoietic effect of melatonin involvement of type 1 kappa-opioid receptor on bone marrow macrophages and interleukin-1. J Pineal Res 1999, 27, 145–153.
  • Montilla P, Túnez I, Muñoz MC, Soria JV, López A. Antioxidative effect of melatonin in rat brain oxidative stress induced by Adriamycin. Rev Esp Fisiol 1997, 53, 301–305.
  • Moretti RM, Marelli MM, Maggi R, Dondi D, Motta M, Limonta P. Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep 2000, 7, 347–351.
  • Naziroglu M, Gümral N. Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 2009, 85, 680–689.
  • Naziroglu M, Cig B, Dogan S, Uguz AC, Dilek S, Faouzi D. 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+ influx in human leukemia cancer cells. Int J Radiat Biol 2012, 88, 449–456.
  • Nisslein T, Freudenstein J. Concomitant administration of an isopropanolic extract of black cohosh and tamoxifen in the in vivo tumor model of implanted RUCA-I rat endometrial adenocarcinoma cells. Toxicol Lett 2004, 150, 271–275.
  • Ongel K, Gumral N, Ozguner MF. The potential effects of electromagnetic field: A review. Cell Membr Free Radic Res 2009, 1, 85–89.
  • Ortiz GG, Sánchez-Ruiz Y, Tan DX, Reiter RJ, Benítez-King G, Beas-Zárate C. Melatonin, vitamin E, and estrogen reduce damage induced by kainic acid in the hippocampus: potassium-stimulated GABA release. J Pineal Res 2001, 31, 62–67.
  • Pasqualini JR, Gelly C, Nguyen BL, Vella C. Importance of estrogen sulfates in breast cancer. J Steroid Biochem 1989, 34, 155–163.
  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 1994, 55, PL271–276.
  • Powis G, Phil D. Inhibitors of phosphatidylinositol signalling as antiproliferative agents. Cancer Metastasis Rev 1994, 13, 91–103.
  • Paulraj R, Behari J. Effects of low level microwave radiation on carcinogenesis in Swiss Albino mice. Mol Cell Biochem 2011, 348, 191–197.
  • Reiter RJ, Tan DX, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 2002, 123, 1007–1019.
  • Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 2001, 34, 237–256.
  • Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008, 8, 361–375.
  • Sakakura C, Miyagawa K, Fukuda K, Shimomura K, Takemura M, Takagi T, Kin S, Nakase Y, Fujiyama J, Mikoshiba K, Okazaki Y, Hayashizaki Y, Hagiwara A, Yamagishi H. [Possible involvement of inositol 1, 4, 5-trisphosphate receptor type 3 (IP3R3) in the peritoneal dissemination of gastric cancers]. Gan To Kagaku Ryoho 2003, 30, 1784–1787.
  • Wu RY, Chiang H, Shao BJ, Li NG, Fu YD. Effects of 2.45-GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice. Bioelectromagnetics 1994, 15, 531–538.
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 2003, 95, 825–828.
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 2001, 93, 1563–1568.
  • Schüz J, Grigat JP, Brinkmann K, Michaelis J. Residential magnetic fields as a risk factor for childhood acute leukaemia: results from a German population-based case-control study. Int J Cancer 2001, 91, 728–735.
  • Shah PN, Mhatre MC, Kothari LS. Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 1984, 44, 3403–3407.
  • Oberto G, Rolfo K, Yu P, Carbonatto M, Peano S, Kuster N, Ebert S, Tofani S. Carcinogenicity study of 217 Hz pulsed 900 MHz electromagnetic fields in Pim1 transgenic mice. Radiat Res 2007, 168, 316–326.
  • Shuryak I, Sachs RK, Brenner DJ. Cancer risks after radiation exposure in middle age. J Natl Cancer Inst 2010, 102, 1628–1636.
  • Soghoian D, Jayaraman V, Silane M, Berenstein A, Jayaraman T. Inositol 1,4,5-trisphosphate receptor phosphorylation in breast cancer. Tumour Biol 2005, 26, 207–212.
  • Stevens RG, Davis S. The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 1996, 104 Suppl 1, 135–140.
  • Stevens RG. Electric power use and breast cancer: a hypothesis. Am J Epidemiol 1987, 125, 556–561.
  • Szatkowski C, Parys JB, Ouadid-Ahidouch H, Matifat F. Inositol 1,4,5-trisphosphate-induced Ca2+ signalling is involved in estradiol-induced breast cancer epithelial cell growth. Mol Cancer 2010, 9, 156.
  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1993, 1, 57–60.
  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 2000, 9, 137–159.
  • Thun-Battersby S, Mevissen M, Löscher W. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Res 1999, 59, 3627–3633.
  • Troisi R, Potischman N, Johnson CN, Roberts JM, Lykins D, Harger G, Markovic N, Siiteri P, Hoover RN. Estrogen and androgen concentrations are not lower in the umbilical cord serum of pre-eclamptic pregnancies. Cancer Epidemiol Biomarkers Prev 2003, 12, 1268–1270.
  • Verkasalo PK, Pukkala E, Kaprio J, Heikkilä KV, Koskenvuo M. Magnetic fields of high voltage power lines and risk of cancer in Finnish adults: nationwide cohort study. BMJ 1996, 313, 1047–1051.
  • Vijayalaxmi, Reiter RJ, Meltz ML, Herman TS. Melatonin: possible mechanisms involved in its “radioprotective” effect. Mutat Res 1998, 404, 187–189.
  • Vucenik I, Ramakrishna G, Tantivejkul K, Anderson LM, Ramljak D. Inositol hexaphosphate (IP6) blocks proliferation of human breast cancer cells through a PKCdelta-dependent increase in p27Kip1 and decrease in retinoblastoma protein (pRb) phosphorylation. Breast Cancer Res Treat 2005, 91, 35–45.
  • Wertheimer N, Leeper E. Adult cancer related to electrical wires near the home. Int J Epidemiol 1982, 11, 345–355.
  • Wilkerson MK, Heppner TJ, Bonev AD, Nelson MT. Inositol trisphosphate receptor calcium release is required for cerebral artery smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 2006, 290, H240–H247.
  • Xu L, Kong D, Zhu L, Zhu W, Andrews DW, Kuo TH. Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell Biochem 2007, 295, 153–165.
  • Cole K, Kohn E. Calcium-mediated signal transduction: biology, biochemistry, and therapy. Cancer Metastasis Rev 1994, 13, 31–44.
  • Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ. Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 2007, 7, 519–530.
  • Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007, 87, 593–658.
  • Naziroglu M. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 2007, 32, 1990–2001.
  • Forssén UM, Rutqvist LE, Ahlbom A, Feychting M. Occupational magnetic fields and female breast cancer: a case-control study using Swedish population registers and new exposure data. Am J Epidemiol 2005, 161, 250–259.
  • Viswanathan AN, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res 2007, 67, 10618–10622.
  • Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs 2012, 21, 819–831.
  • Nazıroğlu M, Çelik Ö, Özgül C, Çiğ B, Doğan S, Bal R, Gümral N, Rodríguez AB, Pariente JA. Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav. 2012, 105, 683–692.
  • Celik O, Nazıroğlu M. Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav. 2012 Oct 3. doi:pii: S0031–9384(12)00312-5. 10.1016/j.physbeh.2012.09.013. [Epub ahead of print].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.