Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 10, 2003 - Issue 2
97
Views
20
CrossRef citations to date
0
Altmetric
Original Article

A model for amyloid fibril formation in immunoglobulin light chains based on comparison of amyloidogenic and benign proteins and specific antibody binding

, , , , , , & show all
Pages 97-109 | Received 07 Oct 2002, Accepted 24 Apr 2003, Published online: 06 Jul 2009

References

  • Cohen A S, Jones L A. Amyloidosis. Curr Opin Rheumatol 1991; 3: 125–138
  • Sipe J D. Amyloidosis. Crit Rev Clin Lab Sci 1994; 31: 325–54
  • Buxbaum J N, Chuba J V, Hellman G C, Solomon A, Gallo G R. Monoclonal immunoglobulin deposition disease: light chain and light and heavy chain deposition diseases and their relation to light chain amyloidosis. Clinical features, immunopathology, and molecular analysis. Ann Intern Med 1990; 112: 455–64
  • Stevens F J, Solomon A, Schiffer M. Bence Jones proteins: a powerful tool for the fundamental study of protein chemistry and pathophysiology. Biochemistry 1991; 30: 6803–5
  • Davis D P, Gallo G, Vogen S M, Dul J L, Sciarretta K L, Kumar A, Raffen R, Stevens F J, Argon Y. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. J Mol Biol 2001; 313: 1021–1034
  • Bellotti V, Merlini G. Current concepts on the pathogenesis of systemic amyloidosis. Nephrol Dial Transplant 1996; 11(Suppl 9)53–62
  • Hurle M R, Helms L R, Li L, Chan W, Wetzel R. A role for destabilizing amino acid replacements in light‐chain amyloidosis. Proc Natl Acad Sci USA 1994; 91: 5446–50
  • Stevens F J, Myatt E A, Chang C H, Westholm F A, Eulitz M, Weiss D T, Murphy C, Solomon A, Schiffer M. A molecular model for self‐assembly of amyloid fibrils: immunoglobulin light chains. Biochemistry 1995; 34: 10697–702
  • Kim Y, Wall J S, Meyer J, Murphy C, Randolph T W, Manning M C, Solomon A, Carpenter J F. Thermodynamic modulation of light chain amyloid fibril formation. J Biol Chem 2000; 275: 1570–1574
  • Merlini G, Bellotti V, Andreola A, Palladini G, Obici L, Casarini S, Perfetti V. Protein aggregation. Clin Chem Lab Med 2001; 39: 1065–1075
  • Pras M, Schubert M, Zucker‐Franklin D, Rimon A, Franklin E C. The characterization of soluble amyloid prepared in water. J Clin Invest 1968; 47: 924–33
  • Solomon A. Light chains of human immunoglobulins. Methods Enzymol 1985; 116: 101–21
  • Raffen R, Dieckman L J, Szpunar M, Wunschl C, Pokkuluri P R, Dave P, Wilkins S P, Cai X, Schiffer M, Stevens F J. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Protein Sci 1999; 8: 509–517
  • Huang D B, Chang C H, Ainsworth C, Johnson G, Solomon A, Stevens F J, Schiffer M. Variable domain structure of kappalV human light chain Len: high homology to the murine light chain McPC603. Mol. Immunol 1997; 34: 1291–1301
  • Khurana R, Gillespie J R, Talapatra A, Minert L J, Ionescu‐Zanetti C, Millett I, Fink A L. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 2001; 40: 3525–3535
  • Souillac P O, Uversky V N, Millett I S, Khurana R, Doniach S, Fink A L. Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation: Evidence for an off‐pathway oligomer at acidic pH. J. Biol Chem 2002; 277: 12657–12665
  • Souillac P O, Uversky V N, Millett I S, Khurana R, Doniach S, Fink A L. Effect of association state and con‐formational stability on the kinetics of immunoglobulin light chain amyloid fibril formation at physiological pH. J Biol Chem 2002; 277: 12657–12665
  • Stevens P W, Raffen R, Hanson D K, Deng Y L, Berrios‐Hammond M, Westholm F A, Murphy C, Eulitz M, Wetzel R, Solomon A, Schiffer M, Stevens F J. Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of light‐chain amyloid proteins. Protein Sci 1995; 4: 421–432
  • Khurana R, Hate A T, Nath U, Udgaonkar J B. pH dependence of the stability of barstar to chemical and thermal denaturation. Protein Sci 1995; 4: 1133–1144
  • Oberg K A, Fink A L. Methods for Collecting and Analyzing Attenuated Total Reflectance FTIR Spectra of Proteins in Solution. Techniques in Protein Chemistry, W Crabb. Academic Press, Inc. 1995; 475–484
  • Oberg K A, Fink A L. A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal Biochem 1998; 256: 92–106
  • Seshadri S, Khurana R, Fink A L. FTIR Analysis of Protein Deposits. Methods in Enzymology 1999; 309: 559–576
  • Naiki H, Higuchi K, Hosokawa M, Takeda T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 1989; 177: 244–249
  • Levine H. Thioflavine‐T Interaction with Synthetic Alzheimers Disease β‐Amyloid Peptides ‐ Detection of Amyloid Aggregation in Solution. Protein Science 1993; 2: 404–410
  • Abe M, Goto T, Wolfenbarger D, Weiss D T, Solomon A. Novel immunization protocol and ELISA screening methods used to obtain and characterize monoclonal antibodies specific for human light chain variable‐region subgroups. Hybridoma 1993; 12: 475–483
  • Fink A L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct 1995; 24: 495–522
  • Semisotnov G V, Rodionova N A, Razgulyaev O I, Uversky V N, Gripas' A F, Gilmanshin R I. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 1991; 31: 119–28
  • Goto Y, Fink A L. Conformational states of beta‐lactamase: molten‐globule states at acidic and alkaline pH with high salt. Biochemistry 1989; 28: 945–52
  • Zaremba S M, Gregoret L M. Context‐dependence of amino acid residue pairing in antiparallel beta‐sheets. J Mol Biol 1999; 291: 463–479
  • Fink A L, Calciano L J, Goto Y, Kurotsu T, Palleros D R. Classification of acid denaturation of proteins ‐ intermediates and unfolded states. Biochemistry 1994; 33: 12504–12511
  • Ionescu‐Zanetti C, Khurana R, Gillespie J R, Petrick J S, Trabachino L C, Minert L J, Carter S A, Fink A L. Monitoring the assembly of Ig light‐chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci USA 1999; 96: 13175–13179
  • Hmcic R, Wall J, Wolfenbarger D A, Murphy C L, Schell M, Weiss D T, Solomon A. Antibody‐mediated resolution of light chain‐associated amyloid deposits. Am J Pathol 2000; 157: 1239–1246
  • Gillespie J R, Shortle D. Characterization of Long‐Range Structure in the Denatured State of Staphylococcal Nuclease 1. Paramagnetic Relaxation Enhancement by Nitroxide Spin Labels. J Mol Biol 1997; 268: 158–169
  • Wang and Shortle. Residual helical and turn structure in the denatured state of staphylococcal nuclease: analysis of peptide fragments. Folding & Design 1997; 2: 93–100
  • Yao J, Chung J, Eliezer D, Wright P E, Dyson H J. NMR structural and dynamic characterization of the acid‐unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry 2001; 40: 3561–3571
  • Eliezer D, Chung J, Dyson H J, Wright P E. Native and non‐native secondary structure and dynamics in the pH 4 intermediate of apomyoglobin. Biochemistry 2000; 39: 2894–2901
  • Liu Y, Gotte G, Libonati M, Eisenberg D. A domain‐swapped RNase A dimer with implications for amyloid formation. Nat Struct Biol 2001; 8: 211–214
  • Liu Y, Hart P J, Schlunegger M P, Eisenberg D. The crystal structure of a 3D domain‐swapped dimer of RNase A at a 2.1‐A resolution. Proc Natl Acad Sci USA 1998; 95: 3437–3442
  • Davis P D, Raffen R, Dul L J, Vogen M S, Williamson K E, Stevens J F, Argon Y. Inhibition of amyloid fiber assembly by both BiP and its target peptide. Immunity 2000; 13: 433–442
  • Huang D B, Chang C H, Ainsworth C, Johnson G, Solomon A, Stevens F J, Schiffer M. Variable domain structure of kappaIV human light chain Len: high. Mol Immunol 1997; 34: 1291–301

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.