310
Views
68
CrossRef citations to date
0
Altmetric
Research Article

Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MSE data collection technique

, , , &
Pages 721-729 | Received 27 Jun 2012, Accepted 22 Aug 2012, Published online: 01 Oct 2012

References

  • Antunes LC, Andersen SK, Menendez A, Arena ET, Han J, Ferreira RB, Borchers CH, Finlay BB. (2011). Metabolomics reveals phospholipids as important nutrient sources during Salmonella growth in bile in vitro and in vivo. J Bacteriol 193:4719–4725.
  • Aura AM, Mattila I, Seppänen-Laakso T, Miettinen J, Oksman-Caldentey KM, Orešič M. (2008). Microbial metabolism of catechin stereoisomers by human faecal microbiota: Comparison of targeted analysis and a non-targeted metabolomics method. Phytochem Lett 1:18–22.
  • Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA. (2007). MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun Mass Spectrom 21:1485–1496.
  • Benton HP, Want E, Keun HC, Amberg A, Plumb RS, Goldfain-Blanc F, Walther B, Reily MD, Lindon JC, Holmes E, Nicholson JK, Ebbels TM. (2012). Intra- and interlaboratory reproducibility of ultra performance liquid chromatography-time-of-flight mass spectrometry for urinary metabolic profiling. Anal Chem 84:2424–2432.
  • Bertram HC, Eggers N, Eller N. (2009). Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification. Anal Chem 81:9188–9193.
  • Bezabeh T, Somorjai RL, Smith IC. (2009). MR metabolomics of fecal extracts: Applications in the study of bowel diseases. Magn Reson Chem 47 Suppl 1:S54–S61.
  • Chen M, Su M, Zhao L, Jiang J, Liu P, Cheng J, Lai Y, Liu Y, Jia W. (2006). Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res 5:995–1002.
  • Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. (2003). Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 41:1–12.
  • Fukiya S, Arata M, Kawashima H, Yoshida D, Kaneko M, Minamida K, Watanabe J, Ogura Y, Uchida K, Itoh K, Wada M, Ito S, Yokota A. (2009). Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces. FEMS Microbiol Lett 293:263–270.
  • Griffin JL, Bollard ME. (2004). Metabonomics: Its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab 5:389–398.
  • Hamilton JP, Xie G, Raufman JP, Hogan S, Griffin TL, Packard CA, Chatfield DA, Hagey LR, Steinbach JH, Hofmann AF. (2007). Human cecal bile acids: Concentration and spectrum. Am J Physiol Gastrointest Liver Physiol 293:G256–G263.
  • Hofmann AF. (1977). The enterohepatic circulation of bile acids in man. Clin Gastroenterol 6:3–24.
  • Huang Q, Yin P, Wang J, Chen J, Kong H, Lu X, Xu G. (2011). Method for liver tissue metabolic profiling study and its application in type 2 diabetic rats based on ultra performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879:961–967.
  • Inagaki S, Noda T, Min JZ, Toyo’oka T. (2007). Metabolic profiling of rat hair and screening biomarkers using ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. J Chromatogr A 1176:94–99.
  • Javitt NB. (1994). Bile acid synthesis from cholesterol: Regulatory and auxiliary pathways. FASEB J 8:1308–1311.
  • Jia LW, Chen J, Yin PY, Lu X, Xu GW. (2008). Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metabolomics 4:183–189.
  • Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T. (2010a). Metabolomic analysis of uremic toxins by liquid chromatography/electrospray ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:1662–1668.
  • Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T. (2010b). Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:2997–3002.
  • Lameire N, Jager K, Van Biesen W, de Bacquer D, Vanholder R. (2005). Chronic kidney disease: A European perspective. Kidney Int Suppl 99:S30–S38.
  • Lao YM, Jiang JG, Yan L. (2009). Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine. Br J Pharmacol 157:1128–1141.
  • Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, Nahas ME, Jaber BL, Jadoul M, Levin A, Powe NR, Rossert J, Wheeler DC, Lameire N, Eknoyan G. (2007). Chronic kidney disease as a global public health problem: Approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int 72:247–259.
  • Lindon JC, Holmes E, Nicholson JK. (2006). Metabonomics techniques and applications to pharmaceutical research & development. Pharm Res 23:1075–1088.
  • Lindon JC, Holmes E, Nicholson JK. (2007). Metabonomics in pharmaceutical R&D. FEBS J 274:1140–1151.
  • Lorenzo-Zúñiga V, Bartolí R, Planas R, Hofmann AF, Viñado B, Hagey LR, Hernández JM, Mañé J, Alvarez MA, Ausina V, Gassull MA. (2003). Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37:551–557.
  • Matoba N, Une M, Hoshita T. (1986). Identification of unconjugated bile acids in human bile. J Lipid Res 27:1154–1162.
  • Mori K, Nakao K. (2007). Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 71:967–970.
  • Nangaku M. (2004). Mechanisms of tubulointerstitial injury in the kidney: Final common pathways to end-stage renal failure. Intern Med 43:9–17.
  • Nicholson JK, Lindon JC, Holmes E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189.
  • Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK. (2006). UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20:1989–1994.
  • Raedsch R, Stiehl A, Gundert-Remy U, Walker S, Sieg A, Czygan P, Kommerell B. (1983). Hepatic secretion of bilirubin and biliary lipids in patients with alcoholic cirrhosis of the liver. Digestion 26:80–88.
  • Rainville PD, Stumpf CL, Shockcor JP, Plumb RS, Nicholson JK. (2007). Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: A new tool for lipidomics. J Proteome Res 6:552–558.
  • Rhee EP, Souza A, Farrell L, Pollak MR, Lewis GD, Steele DJ, Thadhani R, Clish CB, Greka A, Gerszten RE. (2010). Metabolite profiling identifies markers of uremia. J Am Soc Nephrol 21:1041–1051.
  • Robertson DG, Reily MD, Baker JD. (2007). Metabonomics in pharmaceutical discovery and development. J Proteome Res 6:526–539.
  • Spagou K, Wilson ID, Masson P, Theodoridis G, Raikos N, Coen M, Holmes E, Lindon JC, Plumb RS, Nicholson JK, Want EJ. (2011). HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal Chem 83:382–390.
  • Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6:78–95.
  • Vlahcevic ZR, Pandak WM, Stravitz RT. (1999). Regulation of bile acid biosynthesis. Gastroenterol Clin North Am 28:1–25, v.
  • Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5:1005–1018.
  • Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC. (2008). Mass spectrometry for the identification of the discriminating signals from metabolomics: Current status and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 871:143–163.
  • Wilson ID, Nicholson JK, Castro-Perez J, Granger JH, Johnson KA, Smith BW, Plumb RS. (2005). High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4:591–598.
  • Wolf G. (2006). Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 70:1914–1919.
  • Wrona M, Mauriala T, Bateman KP, Mortishire-Smith RJ, O’Connor D. (2005). ‘All-in-one’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun Mass Spectrom 19:2597–2602.
  • Yang J, Zhao X, Liu X, Wang C, Gao P, Wang J, Li L, Gu J, Yang S, Xu G. (2006). High performance liquid chromatography-mass spectrometry for metabonomics: Potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteome Res 5:554–561.
  • Yin P, Zhao X, Li Q, Wang J, Li J, Xu G. (2006). Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Proteome Res 5:2135–2143.
  • Yokozawa T, Oura H, Nakagawa H, Fukuda H. (1981a). Metabolic effects of dietary adenine in rats. Nippon Nogeik Kaishi 55:811–816.
  • Yokozawa T, Oura H, Nakagawa H, Takemoto K. (1981b). Takemoto. Influence of dietary purine on the level of uric acid in the serum and urine. Nippon Eiyo Shok Gakk 34:35–41.
  • Yokozawa T, Oura H, Okada T. (1982). Metabolic effects of dietary purine in rats. J Nutr Sci Vitaminol 28:519–526.
  • Yokozawa T, Oura H, Zheng PD, Fukase M, Koizumi F, Kanaoka M. (1983). Metabolic effects of dietary purine and pyrimidine base in rats. Agric Boil Chem 47:1297–1304.
  • Yokozawa T, Zheng PD, Oura H, Koizumi F. (1986). Animal model of adenine-induced chronic renal failure in rats. Nephron 44:230–234.
  • Yu HT. (2003). Progression of chronic renal failure. Arch Intern Med 163:1417–1429.
  • Zhao YY, Cheng XL, Cui JH, Yan XR, Wei F, Bai X, Lin RC. (2012a). Effect of ergosta-4,6,8(14),22-tetraen-3-one (ergone) on adenine-induced chronic renal failure rat: A serum metabonomic study based on ultra performance liquid chromatography/high-sensitivity mass spectrometry coupled with MassLynx i-FIT algorithm. Clin Chim Acta 413:1438–1445.
  • Zhao YY, Cheng XL, Wei F, Xiao XY, Sun WJ, Zhang Y, Lin RC. (2012b). Serum metabonomics study of adenine-induced chronic renal failure in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomarkers 17:48–55.
  • Zhao YY, Liu J, Cheng XL, Bai X, Lin RC. (2012c). Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta 413:642–649.
  • Zhao YY, Shen X, Cheng XL, Wei F, Bai X, Lin RC. (2012d). Urinary metabonomics study on the protective effects of ergosta-4,6,8(14),22-tetraen-3-one on chronic renal failure in rats using UPLC Q-TOF/MS and a novel MSE data collection technique. Process Biochem. DOI:10.1016/j.procbio.2012.07.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.