264
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Fungal hemolysins

, &
Pages 1-16 | Received 24 Mar 2012, Accepted 24 May 2012, Published online: 09 Jul 2012

References

  • Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B. Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 2008; 65: 493–507.
  • Bhakdi S, Bayley H, Valeva A, . Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 1996; 165: 73–79.
  • Nayak AP, Green BJ, Friend S, Beezhold DH. Development of monoclonal antibodies to recombinant terrelysin and characterization of expression in Aspergillus terreus. J Med Microbiol 2012; 61: 489–499.
  • Berne S, Krizaj I, Pohleven F, . Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 2002; 1570: 153–159.
  • Sousa MV, Richardson M, Fontes W, Morhy L. Homology between the seed cytolysin enterolobin and bacterial aerolysins. J Prot Chem 1994; 13: 659–667.
  • Macek P. Polypeptide cytolytic toxins from sea anemones (Actiniaria). FEMS Microbiol Immunol 1992; 5: 121–129.
  • Anderluh G, Macek P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002; 40: 111–124.
  • Sher D, Fishman Y, Zhang M, . Hydralysins, a new category of beta-pore-forming toxins in cnidaria. J Biol Chem 2005; 280: 22847–22855.
  • Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 2007; 19: 301–308.
  • Callegan MC, Jett BD, Hancock LE, Gilmore MS. Role of hemolysin BL in the pathogenesis of extraintestinal Bacillus cereus infection assessed in an endophthalmitis model. Infect Immun 1999; 67: 3357–3366.
  • Nizet V. Streptococcal beta-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol 2002; 10: 575–580.
  • Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 2004; 68: 981–1003.
  • Hertle R. The family of Serratia type pore forming toxins. Curr Protein Pept Sci 2005; 6: 313–325.
  • Wallace AJ, Stillman TJ, Atkins A, . E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 2000; 100: 265–276.
  • Granstrom M, Julander I, Mollby R. Serological diagnosis of deep Staphylococcus aureus infections by enzyme-linked immunosorbent assay (ELISA) for staphylococcal hemolysins and teichoic acid. Scand J Infect Dis Suppl 1983; 41: 132–139.
  • Kalin M, Kanclerski K, Granstrom M, Mollby R. Diagnosis of pneumococcal pneumonia by enzyme-linked immunosorbent assay of antibodies to pneumococcal hemolysin (pneumolysin). J Clin Microbiol 1987; 25: 226–229.
  • Honda T, Yoh M, Kongmuang U, Miwatani T. Enzyme-linked immunosorbent assays for detection of thermostable direct hemolysin of Vibrio parahaemolyticus. J Clin Microbiol 1985; 22: 383–386.
  • Parker RW, Lewis DH. Sandwich enzyme-linked immunosorbent assay for Vibrio vulnificus hemolysin to detect V. vulnificus in environmental specimens. Appl Environ Microbiol 1995; 61: 476–480.
  • Kumar BK, Raghunath P, Devegowda D, . Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int J Food Microbiol 2011; 145: 244–249.
  • Ford WW. The distribution of haemolysins, agglutinins, and poisons in fungi, especially the amanitas, the entolomas, the lactarius and the inocybes. J Pharmacol Exp Ther 1911; 2: 285–318.
  • Ford WW. On the presence of hemolytic substances in edible fungi. J Infect Dis 1907; 4: 434–439.
  • Henrici AT. An endotoxin from Aspergillus fumigatus. J Immunology 1939; 36: 319–338.
  • Salvin SB. Hemolysin from the yeast-like phases of some pathogenic fungi. Proc Soc Exp Biol Med 1951; 76: 852–854.
  • Birren BW, Lander ES, Galagan JE, . Annotation of the Aspergillus terreus NIH264 genome. In: EMBL/GenBank/DDBJ databases; 2005.
  • Machida M, Asai K, Sano M, . Genome sequencing and analysis of Aspergillus oryzae. Nature 2005; 438: 1157–1161.
  • Galagan JE, Calvo SE, Cuomo C, . Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 2005; 438: 1105–1115.
  • Nierman WC, Pain A, Anderson MJ, . Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438: 1151–1156.
  • Pel HJ, de Winde JH, Archer DB, . Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 2007; 25: 221–231.
  • van den Berg MA, Albang R, Albermann K, . Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 2008; 26: 1161–1168.
  • Berne S, Lah L, Sepcic K. Aegerolysins: structure, function, and putative biological role. Protein Sci 2009; 18: 694–706.
  • Banks JA, Nishiyama T, Hasebe M, . The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 2011; 332: 960–963.
  • Zhang S, Clark KD, Strand MR. The protein P23 identifies capsule-forming plasmatocytes in the moth Pseudoplusia includens. Dev Comp Immunol 2011; 35: 501–510.
  • Wang L, Xue J, Seaborn CP, Arif BM, Cheng XW. Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. Virology 2006; 354: 167–177.
  • Mathee K, Narasimhan G, Valdes C, . Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 2008; 105: 3100–3105.
  • Barloy F, Lecadet MM, Delecluse A. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene 1998; 211: 293–299.
  • Lim J, Lee TH, Nahm BH, . Complete genome sequence of Burkholderia glumae BGR1. J Bacteriol 2009; 191: 3758–3759.
  • Eppinger M, Nur HA, Sengamalay N, . Genome sequence of Vibrio cholerae HE48. In: EMBL/GenBank/DDBJ databases; 2011.
  • Berne S, Sepcic K, Anderluh G, . Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus. Biochemistry 2005; 44: 11137–11147.
  • Nayak AP, Blachere FM, Hettick JM, . Characterization of recombinant terrelysin, a hemolysin of Aspergillus terreus. Mycopathologia 2011a; 171: 23–34.
  • Donohue M, Wei W, Wu J, . Characterization of nigerlysin, hemolysin produced by Aspergillus niger, and effect on mouse neuronal cells in vitro. Toxicology 2006; 219: 150–155.
  • Sepcic K, Berne S, Potrich C, . Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem 2003; 270: 1199–1210.
  • Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 2005; 88: 91–142.
  • Tomita T, Noguchi K, Mimuro H, . Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 2004; 279: 26975–26982.
  • Tadjibaeva G, Sabirov R, Tomita T. Flammutoxin, a cytolysin from the edible mushroom Flammulina velutipes, forms two different types of voltage-gated channels in lipid bilayer membranes. Biochim Biophys Acta 2000; 1467: 431–443.
  • Geny B, Popoff MR. Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol Cell 2006; 98: 667–678.
  • Sepcic K, Berne S, Rebolj K, . Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 2004; 575: 81–85.
  • Zitzer A, Zitzer O, Bhakdi S, Palmer M. Oligomerization of Vibrio cholerae cytolysin yields a pentameric pore and has a dual specificity for cholesterol and sphingolipids in the target membrane. J Biol Chem 1999; 274: 1375–1380.
  • Tateno H, Goldstein IJ. Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins. J Biol Chem 2003; 278: 40455–40463.
  • Mancheno JM, Tateno H, Goldstein IJ, Hermoso JA. Crystallization and preliminary crystallographic analysis of a novel haemolytic lectin from the mushroom Laetiporus sulphureus. Acta Crystallogr D Biol Crystallogr 2004; 60: 1139–1141.
  • Mancheno JM, Tateno H, Goldstein IJ, Martinez-Ripoll M, Hermoso JA. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J Biol Chem 2005; 280: 17251–17259.
  • Mancheno JM, Tateno H, Sher D, Goldstein IJ. Laetiporus sulphureus lectin and aerolysin protein family. Adv Exp Med Biol 2010; 677: 67–80.
  • Yokota K, Ichinowatari S, Ebina K, Wakabayashi N. Studies on toxin of Aspergillus fumigatus XXI. Site of binding of asp-hemolysin to erythrocytes and mechanism of inhibition of hemolysis. Jpn J Med Mycol 1985; 26: 70–73.
  • Ebina K, Ichinowatari S, Yokota K. Studies on toxin of Aspergillus fumigatus. XXII. Fashion of binding of Asp-hemolysin to human erythrocytes and Asp-hemolysin-binding proteins of erythrocyte membranes. Microbiol Immunol 1985; 29: 91–101.
  • Seitz J, Adler G, Stofft E, Faulstich H. The mechanism of cytolysis of erythrocytes by the mushroom toxin phallolysin. Morphological and biochemical evidence for sodium influx and swelling. Eur J Cell Biol 1981; 25: 46–53.
  • Knowles BH, Ellar DJ. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim Biophys Acta 1987; 924: 509–518.
  • Harris RW, Sims PJ, Tweten RK. Evidence that Clostridium perfringens theta-toxin induces colloid-osmotic lysis of erythrocytes. Infect Immun 1991; 59: 2499–2501.
  • Yamanaka H, Satoh T, Katsu T, Shinoda S. Mechanism of haemolysis by Vibrio vulnificus haemolysin. J Gen Microbiol 1987; 133: 2859–2864.
  • Clinkenbeard KD, Thiessen AE. Mechanism of action of Moraxella bovis hemolysin. Infect Immun 1991; 59: 1148–1152.
  • Tilden EB, Hatton EH, Freeman S, Williamson WM, Koenig VL. Preparation and properties of the endotoxins of Aspergillus fumigatus and Aspergillus flavus. Mycopathologia 1961; 14: 325–346.
  • Rutqvist L. Studies on Aspergillus fumigatus; toxin production by different strains and serological comparison of the strains. Acta Vet Scand 1965; 6: 224–233.
  • Sakaguchi O, Shimada H, Yokota K. Proceedings: purification and characteristics of hemolytic toxin from Aspergillus fumigatus. Jpn J Med Sci Biol 1975; 28: 328–331.
  • Yokota K, Shimada H, Kamaguchi A, Sakaguchi O. Studies on the toxin of Aspergillus fumigatus VII. Purification and some properities of hemolytic toxin (asp-hemolysin) from culture filtrates and mycelia. Microbiol Immunol 1977; 21: 11–22.
  • Ebina K, Sakagami H, Yokota K, Kondo H. Cloning and nucleotide sequence of cDNA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1994; 1219: 148–150.
  • Braaksma M, Uzunova-Martens ES, Punt PJ, Schaap PJ. An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 2010; 11: 584.
  • Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS. Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Appl Biochem Biotechnol 2011; 163: 577–591.
  • Wartenberg D, Lapp K, Jacobsen ID, . Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol 2011; 301: 602–611.
  • Li H, Zhou H, Luo Y, . Glycophosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol 2007; 64: 1014–1027.
  • Wosten HA, Moukha SM, Sietsma JH, Wessels JG. Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 1991; 137: 2017–2023.
  • Grove SN.The cytology of hyphal tip growth. In: Smith JE, Berry DR (eds).The Filamentous Fungi. London: Arnold; 1978: 28–50.
  • Chang PL, Trevithick JR. How important is secretion of exoenzymes through apical cell walls of fungi? Arch Microbiol 1974; 101: 281–293.
  • Trevithick JR, Metzenberg RL. Genetic alteration of pore size and other properties of the Neurospora cell wall. J Bacteriol 1966; 92: 1016–1020.
  • Wessels JGH. Wall growth, protein excretion and morphogenesis in fungi. New Phytol 1993; 123: 397–413.
  • Steinberg G. Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. Eukaryot Cell 2007; 6: 351–360.
  • Han MJ, Kim NJ, Lee SY, Chang HN. Extracellular proteome of Aspergillus terreus grown on different carbon sources. Curr Genet 2010; 56: 369–382.
  • Medina ML, Haynes PA, Breci L, Francisco WA. Analysis of secreted proteins from Aspergillus flavus. Proteomics 2005; 5: 3153–3161.
  • Vesper SJ, Vesper MJ. Possible role of fungal hemolysins in sick building syndrome. Adv Appl Microbiol 2004; 55: 191–213.
  • Rementeria A, Lopez-Molina N, Ludwig A, . Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22: 1–23.
  • Bullen JJ. The significance of iron in infection. Rev Infect Dis 1981; 3: 1127–1138.
  • Calera JA, Haas H. Cations (Zn, Fe). In: Latge JP, Steinbach WJ, eds Aspergillus fumigatus and Aspergillosis. Washington, DC: ASM Press; 2009: 107–129.
  • Odds FC. Candida and candidosis: a review and bibliography. Oxford, UK: Bailliere Tindall; 1998.
  • Vesper SJ, Vesper MJ. Stachylysin may be a cause of hemorrhaging in humans exposed to Stachybotrys chartarum. Infect Immun 2002; 70: 2065–2069.
  • Ebina K, Ichinowatari S, Yokota K. Studies on toxin of Aspergillus fumigatus XIX: Biochemical alterations of sera after Asp-hemolysin inoculation or Aspergillus infection in mice. Jpn J Med Mycol 1984; 25.
  • Zuzek MC, Macek P, Sepcic K, Cestnik V, Frangez R. Toxic and lethal effects of ostreolysin, a cytolytic protein from edible oyster mushroom (Pleurotus ostreatus), in rodents. Toxicon 2006; 48: 264–271.
  • Malicev E, Chowdhury HH, Macek P, Sepcic K. Effect of ostreolysin, an Asp-hemolysin isoform, on human chondrocytes and osteoblasts, and possible role of Asp-hemolysin in pathogenesis. Med Mycol 2007; 45: 123–130.
  • Rebolj K, Batista U, Sepcic K, . Ostreolysin affects rat aorta ring tension and endothelial cell viability in vitro. Toxicon 2007; 49: 1211–1213.
  • Juntes P, Rebolj K, Sepcic K, . Ostreolysin induces sustained contraction of porcine coronary arteries and endothelial dysfunction in middle- and large-sized vessels. Toxicon 2009; 54: 784–792.
  • Faulstich H, Zobeley S, Weckauf-Bloching M. Cytolytic properties of phallolysin. Hoppe Seylers Z Physiol Chem 1974; 355: 1495–1498.
  • Seeger R. Demonstration and isolation of phallolysin, a haemolytic toxin from Amanita phalloides. Naunyn Schmiedebergs Arch Pharmacol 1975a; 287: 277–287.
  • Seeger R. Some physico-chemical properties of phallolysin obtained from Amanita phalloides. Naunyn Schmiedebergs Arch Pharmacol 1975b; 288: 155–162.
  • Petzinger E, Seeger R. Scanning electron microscopic studies on the cytolytic effect of phallolysin on isolated rat hepatocytes and AS-30 D hepatoma cells. Naunyn Schmiedebergs Arch Pharmacol 1976; 295: 211–213.
  • Seeger R, Burkhardt M, Haupt M, Feulner L. The haemolytic effect of phallolysin. Naunyn Schmiedebergs Arch Pharmacol 1976; 293: 163–170.
  • Seeger R, Bunsen E. Degranulation of rat mast cells in vitro by the fungal cytolysins phallolysin, rubescenslysin and fascicularelysin. Naunyn Schmiedebergs Arch Pharmacol 1980b; 315: 163–166.
  • Seeger R, Kraus H, Wiedmann R. Presence of hemolysins in Amanita species. Arch Toxikol 1973; 30: 215–226.
  • Seeger R. Studies on rubescenslysin haemolysis. Naunyn Schmiedebergs Arch Pharmacol 1980a; 311: 95–103.
  • Seeger R, Odenthal KP, Mengs U. Toxic effects in mouse and rat of rubescenslysin from Amanita rubescens. Toxicon 1981; 19: 409–417.
  • Odenthal KP, Seeger R, Braatz R, . Damage in vitro to various organs and tissues by rubescenslysin from the edible mushroom Amanita rubescens. Toxicon 1982; 20: 765–781.
  • Lin JY, Lin YJ, Chen CC, . Cardiotoxic protein from edible mushrooms. Nature 1974; 252: 235–237.
  • Lin JY, Wu HL, Shi GY. Toxicity of the cardiotoxic protein flammutoxin, isolate from edible mushroom Flammulina velutipes. Toxicon 1975; 13: 323–331.
  • Bernheimer AW, Oppenheim JD. Some properties of flammutoxin from the edible mushroom Flammulina velutipes. Toxicon 1987; 25: 1145–1162.
  • Lin JY, Jeng TW, Chen CC, Shi GY, Tung TC. Isolation of a new cardiotoxic protein from the edible mushroom Volvariella volvacea. Nature 1973: 524–525.
  • Vidic I, Berne S, Drobne D, . Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). Mycol Res 2005; 109: 377–382.
  • Fernandez Espinar MT, Labarere J. Cloning and sequencing of the Aa-Pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita, and analysis of the predicted amino-acid sequence. Curr Genet 1997; 32: 420–424.
  • Berne S, Pohleven J, Vidic I, . Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus). Mycol Res 2007; 111: 1431–1436.
  • Lakkireddy KKR, Navarro-Gonzalez M, Velagapudi R, Kues U. Proteins expressed during hyphal aggregation for fruiting body formation in basidiomycetes. In: Savoie JMC (ed). 7th International Conference on Mushroom Biology and Mushroom Products; 2011; Arcachon, France; 2011.
  • Manns JM, Mosser DM, Buckley HR. Production of a hemolytic factor by Candida albicans. Infect Immun 1994; 62: 5154–5156.
  • Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR. Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. Infect Immun 2000; 68: 884–895.
  • Wang C, Butt TM, St. Leger RJ. Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 2005; 158: 3223–3236.
  • Bernheimer AW, Avigad LS. A cytolytic protein from the edible mushroom, Pleurotus ostreatus. Biochim Biophys Acta 1979; 585: 451–461.
  • Pires AB, Gramacho KP, Silva DC, . Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 2009; 9: 158.
  • Ngai PH, Ng TB. A hemolysin from the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 2006; 72: 1185–1191.
  • Shibata T, Kudou M, Hoshi Y, . Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edible mushroom, Pleurotus eryngii. Toxicon 2010; 56: 1436–1442.
  • Mondego JM, Carazzolle MF, Costa GG, . A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics 2008; 9: 548.
  • Roberts RG, Bischoff JF, Reymond ST. Differential gene expression in Alternaria gaisen exposed to dark and light. Mycol Progress 2012; 11: 373–382.
  • Wang M, Trigueros V, Paquereau L, Chavant L, Fournier D. Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. J Econ Entomol 2002; 95: 603–607.
  • Brillard J, Ribeiro C, Boemare N, Brehelin M, Givaudan A. Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl Environ Microbiol 2001; 67: 2515–2525.
  • Opota O, Vallet-Gely I, Vincentelli R, . Monalysin, a novel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLOS Pathog 2011; 7: e1002259.
  • Rebolj K, Ulrih NP, Macek P, Sepcic K. Steroid structural requirements for interaction of ostreolysin, a lipid-raft binding cytolysin, with lipid monolayers and bilayers. Biochim Biophys Acta 2006; 1758: 1662–1670.
  • Chowdhury HH, Rebolj K, Kreft M, . Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains. Toxicon 2008; 51: 1345–1356.
  • Buhring HJ, Vaisius AC, Faulstich H. Membrane damage of liposomes by the mushroom toxin phallolysin. Biochim Biophys Acta 1983; 733: 117–123.
  • Khowala S, Banerjee PC, Ghosh AK, Sengupta S. A hemolytic protein from cultured mycelia of mushroom, Termitomyces clypeatus. Indian J Exp Biol 1993; 31: 45–49.
  • Awad AB, Chan KC, Downie AC, Fink CS. Peanuts as a source of beta-sitosterol, a sterol with anticancer properties. Nutr Cancer 2000; 36: 238–241.
  • Endo A. The origin of statins. Atherosclerosis Supp 2004; 5: 125–130.
  • Fukuchi Y, Kudo Y, Kumagai T, Ebina K, Yokota K. Binding assay of low density lipoprotein to Asp-hemolysin from Aspergillus fumigatus. Biol Pharm Bull 1996a; 19: 1380–1381.
  • Fukuchi Y, Kumagai T, Ebina K, Yokota K. Apolipoprotein B inhibits the hemolytic activity of asp-hemolysin from Aspergillus fumigatus. Biol Pharm Bull 1996b; 19: 547–550.
  • Fukuchi Y. Interactions between Asp-hemolysin from Aspergillus fumigatus and blood plasma components. Yakugaku Zasshi 2001; 121: 423–432.
  • Kudo Y, Fukuchi Y, Kumagai T, Ebina K, Yokota K. Oxidized low-density lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 2001; 1568: 183–188.
  • Fukuchi Y, Kudo Y, Kumagai T, Ebina K, Yokota K. Oxidized low density lipoprotein inhibits the hemolytic activity of Asp-hemolysin from Aspergillus fumigatus. FEMS Microbiol Lett 1998; 167: 275–280.
  • Kudo Y, Kumagai T, Fukuchi Y, Ebina K, Yokota K. Binding of Asp-hemolysin from Aspergillus fumigatus to oxidized low density lipoprotein. Biol Pharm Bull 1999; 22: 549–550.
  • Kudo Y, Ootani T, Kumagai T, . A novel oxidized low-density lipoprotein-binding protein, Asp-hemolysin, recognizes lysophosphatidylcholine. Biol Pharm Bull 2002; 25: 787–790.
  • Kumagai T, Ogawa N, Tsutsumi H, Ebina K, Yokota K. A synthetic peptide (P-21) derived from asp-hemolysin inhibits the induction of macrophage proliferation by oxidized low-density lipoprotein. Biol Pharm Bull 2005; 28: 1381–1384.
  • Tsutsumi H, Kumagai T, Naitoo S, Ebina K, Yokota K. Synthetic peptide (P-21) derived from Asp-hemolysin inhibits the induction of apoptosis on HUVECs by lysophosphatidylcholine. Biol Pharm Bull 2006; 29: 907–910.
  • Kumagai T, Tsutsumi H, Ogawa N, . Oxidized low-density lipoprotein-binding specificity of the Asp-hemolysin-related synthetic peptides from Aspergillus fumigatus. Biol Pharm Bull 2006; 29: 2181–2186.
  • Rao J, DiGiandomenico A, Unger J, . A novel oxidized low-density lipoprotein-binding protein from Pseudomonas aeruginosa. Microbiology 2008; 154: 654–665.
  • Resnik N, Sepcic K, Plemenitas A, . Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 2011; 286: 1499–1507.
  • Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 2000; 97: 3254–3259.
  • Jin H, McCaffery JM, Grote E. Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J Cell Biol 2008; 180: 813–826.
  • Martin SW, Konopka JB. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 2004; 3: 675–684.
  • Rossard S, Roblin G, Atanassova R. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. J Exp Bot 2010; 61: 1807–1816.
  • Gregori A, Svagelj M, Pohleven J. Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol Biotechnol 2007; 45: 236–247.
  • Lv H, Kong Y, Yao Q, . Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine 2009; 16: 198–205.
  • Lutsik-Kordovsky MD, Stasyk TV, Stoika RS. Analysis of cytotoxicity of lectin and non-lectin proteins from Amanita mushrooms. Exp Oncol 2001; 23: 43–45.
  • Han CH, Zhang GQ, Wang HX, Ng TB. Schizolysin, a hemolysin from the split gill mushroom Schizophyllum commune. FEMS Microbiol Lett 2010; 309: 115–121.
  • Nevalainen KM, Te'o VS, Bergquist PL. Heterologous protein expression in filamentous fungi. Trends Biotechnol 2005; 23: 468–474.
  • Lubertozzi D, Keasling JD. Developing Aspergillus as a host for heterlogous expression. Biotechnol Adv 2009; 27: 53–75.
  • Bando H, Hisada H, Ishida H, . Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol 2011; 92: 561–569.
  • CDC. Acute pulmonary hemorrhaging/hemosiderosis among infants: Cleveland, January 1993–November 1994: Centers for Disease Control and Prevention; 1994.
  • Vesper SJ, Magnuson ML, Dearborn DG, Yike I, Haugland RA. Initial characterization of the hemolysin stachylysin from Stachybotrys chartarum. Infect Immun 2001; 69: 912–916.
  • Van Emon JM, Reed AW, Yike I, Vesper SJ. ELISA measurement of stachylysin in serum to quantify human exposures to the indoor mold Stachybotrys chartarum. J Occup Environ Med 2003; 45: 582–591.
  • Ebina K, Yokota K, Sakaguchi O. Studies on toxin of Aspergillus fumigatus XIV: relationship between Asp-hemolysin and experimental infection in mice. Jpn J Med Mycol 1982; 23: 246–252.
  • Gregory L, Rand TG, Dearborn D, Yike I, Vesper S. Immunocytochemical localization of stachylysin in Stachybotrys chartarum spores and spore-impacted mouse and rat lung tissue. Mycopathologia 2003; 156: 109–117.
  • Tilden EB, Freeman S, Lombard L. Further studies of the Aspergillus endotoxins. Mycopathol Mycol Appl 1963; 20: 253–271.
  • Bonilla-Soto O, Rose NR, Arbesman CE. Allergenic molds, antigenic and allergenic properties of Alternaria tenuis. J Allergy 1961; 32: 246–270.
  • Donohue M, Chung Y, Magnuson ML, . Hemolysin chrysolysin from Penicillium chrysogenum promotes inflammatory response. Int J Hyg Environ Health 2005; 208: 279–285.
  • Vesper SJ, Dearborn DG, Yike I, Sorenson WG, Haugland RA. Hemolysis, toxicity, and randomly amplified polymorphic DNA analysis of Stachybotrys chartarum strains. Appl Environ Microbiol 1999; 65: 3175–3181.
  • Vesper SJ, Dearborn DG, Elidemir O, Haugland RA. Quantification of siderophore and hemolysin from Stachybotrys chartarum strains, including a strain isolated from the lung of a child with pulmonary hemorrhage and hemosiderosis. Appl Environ Microbiol 2000b; 66: 2678–2681.
  • Schaufuss P, Steller U. Haemolytic activities of Trichophyton species. Med Mycol 2003; 41: 511–516.
  • Suzuki K, Une T, Yamazaki M, Takeda T. Purification and some properties of a hemolysin from the poisonous mushroom Rhodophyllus rhodopolius. Toxicon 1990; 28: 1019–1028.
  • Tomita T, Ishikawa D, Noguchi T, Katayama E, Hashimoto Y. Assembly of flammutoxin, a cytolytic protein from the edible mushroom Flammulina velutipes, into a pore-forming ring-shaped oligomer on the target cell. Biochem J 1998; 333: 129–137.
  • Fujiwara A, Landau JW, Newcomer VD. Hemolytic activity of Rhizopus nigricans and Rhizopus arrhizus. Mycopathol Mycol Appl 1970a; 40: 131–138.
  • Nayak AP, Green BJ, Janotka E, . Monoclonal antibodies to hyphal exoantigens derived from the opportunistic pathogen, Aspergillus terreus. Clin Vaccine Immunol 2011c; 18: 1568–1576.
  • Kumagai T, Kudo Y, Fukuchi Y, Ebina K, Yokota K. Expression of a synthetic gene encoding the Asp-hemolysin from Aspergillus fumigatus in Escherichia coli. Biol Pharm Bull 2002; 25: 115–117.
  • Ebina K, Yokota K, Sakaguchi O. Studies on toxin of Aspergillus fumigatus XVI. Biological properties of Asp-hemolysin as a parasite factor. Jpn J Med Mycol 1983; 24: 245–252.
  • Juarez-Perez V, Delecluse A. The Cry toxins and the putative hemolysins of Clostridium bifermentans ser. malaysia are not involved in mosquitocidal activity. J Invertebr Pathol 2001; 78: 57–58.
  • Tomita T, Mizumachi Y, Chong K, . Protein sequence analysis, cloning, and expression of flammutoxin, a pore-forming cytolysin from Flammulina velutipes. Maturation of dimeric precursor to monomeric active form by carboxyl-terminal truncation. J Biol Chem 2004; 279: 54161–54172.
  • Sakurai N, Kaneko J, Kamio Y, Tomita T. Cloning, expression, and pore-forming properties of mature and precursor forms of pleurotolysin, a sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus. Biochim Biophys Acta 2004; 1679: 65–73.
  • Robertson KP, Smith CJ, Gough AM, Rocha ER. Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB. Infect Immun 2006; 74: 2304–2316.
  • Sugawara-Tomita N, Tomita T, Kamio Y. Stochastic assembly of two-component staphylococcal γ-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 2002; 184: 4747–4756.
  • Sharon H, Hagag S, Osherov N. Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun 2009; 77: 4051–4060.
  • Botic T, Kuncic MK, Sepcic K, Knez Z, Gunde-Cimerman N. Salt induces biosynthesis of hemolytically active compunds in the xerotolerant food-borne fungus Wallemia sebi. FEMS Microbiol Lett 2012; 326: 40–46.
  • Fujiwara A, Landau JW, Newcomer VD. Preliminary characterization of the hemolysin of Rhizopus nigricans. Mycopathol Mycol Appl 1970b; 40: 139–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.