327
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy

, , , , , , , , , , & show all
Pages 675-685 | Received 08 Jun 2010, Accepted 14 Dec 2010, Published online: 13 Jan 2011

References

  • Wechsler L, Steindler D, Borlongan C, Chopp M, Savitz S, Deans R, . Stem cell therapies as an emerging paradigm in stroke (STEPS). Stroke. 2009;40:510–5.
  • Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S, . Stem cell therapy in stroke. Cell Mol Life Sci. 2009;66:757–72.
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, . Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.
  • Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, . Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73:778–86.
  • Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, . Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9.
  • Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, . Intracarotid transplantation of bone marrow stromal cells increases axon–myelin remodeling after stroke. Neuroscience. 2006;137:393–9.
  • Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke. 2002;33:1362–8.
  • Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2001;1:92–100.
  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, . Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11:96–104.
  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz, AJ, . Multi-lineage cells from human adipose tissue: implication for cell-based therapies. Tissue Eng. 2001;7:211–28.
  • Gimble JM, Katz AJ, Bunnel BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.
  • Safford KM, Safford SD, Gimble JM, Shetty AK, Rice HE. Characterization of neural/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol. 2004;187: 319–28.
  • Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, . Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109:656–63.
  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, . Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.
  • Ogawa R, Mizuno H, Watanabe A, Migita M, Shimada T, Hyakusoku H. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun. 2004;313:871–7.
  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, . Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.
  • Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun. 2007;333:116–21.
  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, . Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA. 1997;94:2007–12.
  • Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S, . Fasudil, a rho kinase (rock) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res. 2007;1154: 215–24.
  • Zuk PA, Zhu M, Ashjian P, De Ugarte, DA, Huang JI, Mizuno H, . Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.
  • Krampera M, Franchini M, Pizzolo G, Aprili G. Mesenchymal stem cells: from biology to clinical use. Blood Transfus. 2007;5:120–9.
  • Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5:485–9.
  • Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, . Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132–41.
  • Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.
  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, . Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.
  • Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121:368–74.
  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24: 1294–301.
  • Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129:163–73.
  • de Girolamo L, Lopa S, Arrigoni E, Sartori MF, Baruffaldi Preis FW, Brini AT. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy. 2009;11:793–803.
  • Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, . IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells. 2009;27:478–88.
  • Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, . VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111: 1843–51.
  • Maina F, Klein R. Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci. 1999;2:213–7.
  • Hayashi S, Morishita R, Nakamura S, Yamamoto K, Moriguchi A, Nagano T, . Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: downregulation of HGF in response to hypoxia in vascular cells. Circulation. 1999;100:II301–8.
  • Yoshimura S, Morishita R, Hayashi K, Kokuzawa J, Aoki M, Matsumoto K, . Gene transfer of hepatocyte growth factor to subarachnoid space in cerebral hypoperfusion model. Hypertension. 2002;39:1028–34.
  • Kaya D, Gursoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T. VEGF protects brain against focal ischemia without increasing blood–brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab. 2005;25:1111–8.
  • Lichtenwalner RJ, Parent JM. Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab. 2006;26: 1–20.
  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, . VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest. 2000; 106:829–38.
  • Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis. Nat Med. 2000;6:1102–3.
  • Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, . Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells. 2007;25:3234–43.
  • Kim JM, Lee ST, Chu K, Jung KH, Song EC, Kim SJ, . Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 2007;1183:43–50.
  • Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, . Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.
  • Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183:355–66.
  • Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90:284–8.
  • Kubis N, Tomita Y, Tran-Dinh A, Planat-Benard V, Andre M, Karaszewski B, . Vascular fate of adipose tissue-derived adult stromal cells in the ischemic murine brain: a combined imaging–histological study. Neuroimage. 2007;34:1–11.
  • Guo S, Lo EH. Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke. 2009;40:S4–7.
  • Louissaint A Jr, Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron. 2002;34:945–60.
  • Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature. 2005;436:193–200.
  • Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, . Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28:764–71.
  • Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.
  • Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, . Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 2007;67:10889–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.