495
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Exploring QSAR for CYP11B2 binding affinity and CYP11B2/CYP11B1 selectivity of diverse functional compounds using GFA and G/PLS techniques

&
Pages 354-369 | Received 31 Mar 2009, Accepted 01 Jun 2009, Published online: 24 Dec 2009

References

  • Benjamin B, Karsten D, Rita B. Conferring aldosterone synthesis to human CYP11B1 by replacing key amino acid residues with CYP11B2-specific ones. Eur J Biochem 1998;252:458–66.
  • Kawamoto T, Mitsuuchi Y, Toda K, Yokoyama Y, Miyakara K, Miura S, et al. Role of steroid 11beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci USA 1992;89:1458–62.
  • Takeda Y. Vascular synthesis of aldosterone: role in hypertension. Mol Cell Endocrinol 2004;217:75–9.
  • Davies E, MacKenzie SM. Extra-adrenal production of corticosteroids. Clin Exp Pharmacol Physiol 2003;30:437–45.
  • Brilla CG. Renin-angiotensin-aldosterone system and myocardial fibrosis. Cardiol Vasc Res 2000;47:1–3.
  • Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol 2000;32:865–79.
  • Hlubocká Z, Jáchymová M, Heller S, Umnerová V, Danzig VV, Lánská V, et al. Association of the -344T/C aldosterone synthase gene variant with essential hypertension. Physiol Res 2008 Dec 17. [Epub ahead of print]
  • Chua SC, Szabo P, Vitek A, Grzeschik KH, John M, White PC. Cloning of cDNA encoding steroid 11 beta-hydroxylase (P450c11). Proc Natl Acad Sci USA 1987;84:7193–7.
  • Wagner MJ, Ge Y, Siciliano M, Wells DE. A hybrid phatase using a novel monoclonal antibody and peptide elution, cell mapping panel for regional localization of probes to human chromosome 8. Genomics 1991;10:114–25.
  • Mornet E, Dupont J, Vitek A, White PC. Characterizing two genes encoding human steroid 11beta-hydroxylase (P-450(11) beta). J Biol Chem 1989;264:20961–7.
  • Kawamoto T, Mitsuuchi Y, Toda K, Miyahara K, Yokoyama Y, Nakao K, et al. Cloning of cDNA and genomic DNA for human cyto-chrome P-45011beta. FEBS Lett 1990;269:345–9.
  • Mulatero P, Schiavone D, Fallo F, Rabbia F, Veglio F. CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension 2000;35:694–8.
  • Zhu H, Sagnella GA, Dong Y, Miller MA, Onipinla A, Makandu ND, et al. Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites. J Hypertens 2003;21:87–95.
  • White PC, Slutsker L. Haplotype analysis of CYP11B2. Endocr Res 1995;21:437–42.
  • Zucker IH. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension 2006;48:1005–11.
  • Yu Y, Wei SG, Zhang ZH, Gomez-Sanchez E, Weiss RM, Felder RB. Does aldosterone upregulate the brain renin-angiotensin system in rats with heart failure? Hypertension 2008;51:727–33.
  • Lindley TE, Doobay MF, Sharma RV, Davisson RL. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res 2004;94:402–9.
  • Huang BS, Ahmad M, Tan J, Leenen FHH. Sympathetic hyperactivity and cardiac dysfunction post-MI: different impact of specific CNS versus general AT1 receptor blockade. J Mol Cell Cardiol 2007;43:479–86.
  • Lal A, Veinot JP, Leenen FHH. Critical role of CNS effects of aldosterone in cardiac remodeling post-myocardial infarction in rats. Cardiovasc Res 2004;64:437–76.
  • Huang BS, Leenen FHH. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI. Am J Physiol 2005;288:H2491–7.
  • Huang SB, White AR, Ahmad M, Tan J, Jeng YA, Leenen HHF. Central infusion of aldosterone synthase inhibitor attenuates left ventricular dysfunction and remodeling in rats after myocardial infarction. Cardiovasc Res 2009;81:574–81.
  • MacFadyen RJ, Lee AF, Morton JJ, Pringle SD, Struthers AD. How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart 1999;82:57–61.
  • Cicoira M, Zanolla L, Rossi A, Golia G, Franceschini L, Cabrini G, et al. Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype. J Am Coll Cardiol 2001;37:1808–12.
  • Schjoedt KJ, Andersen S, Rossing P, Tarnow L, Parving HH. Aldosterone escape during blockade of the renin–angiotensin–aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 2004;47:1936–9.
  • Naruse M, Tanabe A, Sato A, Takagi S, Tsuchiya K, Imaki T, et al. Aldosterone breakthrough during angiotensin II receptor antagonist therapy in strokeprone spontaneously hypertensive rats. Hypertension 2002;40:28–33.
  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–17.
  • Mantero F, Lucarelli G. Aldosterone antagonists in hypertension and heart failure. Ann Endocrinol (Paris) 2000;61:52–60.
  • Soberman JE, Weber KT. Spironolactone in congestive heart failure. Curr Hypertens Rep 2000;2:451–6.
  • Delyani JA. Mineralocorticoid receptor antagonists: the evolution of utility and pharmacology. Kidney Int 2000;57:1408–11.
  • Rousseau MF, Gurne O, Duprez D, Van Mieghem W, Robert A, Ahn S, et al. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. J Am Coll Cardiol 2002;40:1596–601.
  • Chai W, Garrelds IM, de Vries R, Batenburg WW, van Kats JP, Danser AH. Nongenomic effects of aldosterone in the human heart: interaction with angiotensin II. Hypertension 2005;46:701–6.
  • Fujita M, Minamino T, Asanuma H, Sanada S, Hirata A, Wakeno M, et al. Aldosterone nongenomically worsens ischemia via protein kinase C-dependent pathways in hypoperfused canine hearts. Hypertension 2005; 46:113–17.
  • Varo N, Etayo JC, Zalba G, Beaumont J, Iraburu MJ, Montiel C, et al. Losartan inhibits the post-transcriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats. J Hypertens 1999;17:107–14.
  • Thai HM, Van HT, Gaballa MA, Goldman S, Raya TE. Effects of AT1 receptor blockade after a myocardial infarct on myocardial fibrosis, stiffness and contractility. Am J Physiol 1999;276:H873–80.
  • Pilon C, Mulatero P, Barzon L, Veglio F, Garonne C, Boscaro M, et al. Mutations in CYP11B1 gene converting 11beta-hydroxylase into an aldosterone-producing enzyme are not present in aldosterone-producing adenomas. J Clin Endocrinol Metab 1999;84:4228–31.
  • Ulmschneider S, Müller-Vieira U, Mitrenga M, Hartmann RW, Oberwinkler-Marchais S, Klein CD, et al. Synthesis and evaluation of imidazolylmethylenetetrahydronaphthalenes and imidazolylmethyleneindanes: potent inhibitors of aldosterone synthase. J Med Chem 2005;48:1796–805.
  • Ulmschneider S, Müller-Vieira U, Klein CD, Antes I, Lengauer T, Hartmann RW. Synthesis and evaluation of (pyridylmethylene-)tetrahydronaphthalenes/-indanes and structurally modified derivatives: potent and selective inhibitors of aldosterone synthase. J Med Chem 2005;48:1563–75.
  • Heim R, Lucas S, Grombein MC, Ries C, Schewe EK, Negri M, et al. Overcoming undesirable CYP1A2 inhibition of pyridylnaphthalene-type aldosterone synthase inhibitors: influence of heteroaryl derivatization on potency and selectivity. J Med Chem 2008;51:5064–74.
  • Lucas S, Heim R, Negri M, Antes I, Ries C, Schewe EK, et al. Novel aldosterone synthase inhibitors with extended carbocyclic skeleton by a combined ligand-based and structure-based drug design approach. J Med Chem 2008;51:6138–49.
  • Voets M, Antes I, Scherer C, Müller-Vieira U, Biemel K, Barassin C, et al. Heteroaryl-substituted naphthalenes and structurally modified derivatives: selective inhibitors of CYP11B2 for the treatment of congestive heart failure and myocardial fibrosis. J Med Chem 2005;48:6632–42.
  • Voets M, Antes I, Scherer C, Müller-Vieira U, Biemel K, Marchais-Oberwinkler S, et al. Synthesis and evaluation of heteroaryl-substituted dihydronaphthalenes and indenes: potent and selective inhibitors of aldosterone synthase (CYP11B2) for the treatment of congestive heart failure and myocardial fibrosis. J Med Chem 2006;49:2222–31.
  • Lucas S, Heim R, Ries C, Schewe EK, Birk B, Hartmann WR. In vivo active aldosterone synthase inhibitors with improved selectivity: lead optimization providing a series of pyridine substituted 3,4-dihydro-1H-quinolin-2-one derivatives. J Med Chem 2008;51:8077–87.
  • Pinto-Bazurco Mendieta MA, Negri M, Jagusch C, Müller-Vieira U, Lauterbach T, Hartmann WR. Synthesis, biological evaluation, and molecular modeling of abiraterone analogues: novel CYP17 inhibitors for the treatment of prostate cancer. J Med Chem 2008; 1:5009–18.
  • Cerius2 version 4.8. San Diego, CA: Accelrys, Inc. (available at: http://www.accelrys.com/cerius2 ).
  • Leonard JT, Roy K. On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 2006;25:235–51.
  • Hopfinger AJ, Tokarsi JS. Three-dimensional quantitative structure-activity relationship analysis. In: Charifson PS, ed. Practical Applications of Computer-Aided Drug Design. New York: Marcel Dekker, 1997:105–64.
  • Fan Y, Shi LM, Kohn KW, Pommier Y, Weinstein JN. Quantitative structure-antitumor activity relationships of camptothecinanalogues: cluster analysis and genetic algorithm-based studies. J Med Chem 2001;44:3254–63.
  • Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationship and quantitative structure-property relationship. J Chem Inf Comput Sci 1994;34:854–66.
  • Dunn WJ III, Rogers D. Genetic partial least squares in QSAR. In: Devillers J, ed. Genetic Algorithms in Molecular Modeling. London: Academic Press, 1996:109–30.
  • Hasegawa K, Miyashita Y, Funatsu K. GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists. J Chem Inf Comput Sci 1997;37:306–10.
  • Snedecor GW, Cochran WG. Statistical Methods. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd., 1967.
  • Wold S, Eriksson L. Statistical validation of QSAR results. Validation tools. In: van de Waterbeemd H, ed. Chemometric Methods in Molecular Design. Weinheim: VCH, 1995:312–17.
  • Debnath AK. Quantitative structure-activity relationship (QSAR): A versatile tool in drug design. In: Ghose AK, Viswanadhan VN, eds. Combinatorial Library Design and Evaluation. New York: Marcel Dekker, 2001:73–129.
  • Roy K. On some aspects of validation of predictive QSAR models. Expert Opin Drug Discov 2007;2:1567–77.
  • Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 2008;27:302–13.
  • Roy K, Roy PP. Comparative QSAR studies of CYP1A2 inhibitor flavonoids using 2D and 3D descriptors. Chem Biol Drug Des 2008;72:370–82.
  • Roy PP, Leonard JT, Roy K. Exploring the impact of the size of training sets for the development of predictive QSAR models. Chemom Intell Lab Syst 2008;90:31–42.
  • Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 2003;111:1361–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.