772
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Unusual activity pattern of leucine aminopeptidase inhibitors based on phosphorus containing derivatives of methionine and norleucine

, , , , &
Pages 155-161 | Received 05 Nov 2009, Accepted 25 Feb 2010, Published online: 28 Jun 2010

References

  • Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases: diversity in structure and function. Biol Chem 2006;387:1535–1544.
  • Sträter N, Lipscomb WN. Leucyl aminopeptidase (animal). In: Barrett AJ, Rawlings ND, Woessner JF eds. Handbook of Proteolytic Enzymes. London: Elsevier, 2004:896–901.
  • Colloms SD. Leucyl aminopeptidase PepA. In: Barrett AJ, Rawlings ND, Woessner JF eds. Handbook of Proteolytic Enzymes. London: Elsevier, 2004:905–908.
  • Walling LL. Leucyl aminopeptidase (plant). In: Barrett AJ, Rawlings ND, Woessner JF eds. Handbook of Proteolytic Enzymes. London: Elsevier, 2004:901–904.
  • Taylor A. Aminopeptidases: towards a mechanism of action. Trends Biochem Sci 1993;18:167–171.
  • Taylor A. Aminopeptidases: structure and function. FASEB J 1993;7:290–298.
  • Lowther WT, Matthews BW. Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 2002;102:4581–4607.
  • Jösch C, Klotz L-O, Sies H. Identification of cytosolic leucyl aminopeptidase (EC 3.4.11.1) as the major cysteinylglycine-hydrolysing activity in rat liver. Biol Chem 2003;384:213–218.
  • Cappiello M, Lazzarotti A, Buono F, Scaloni A, D′Ambrosio C, Amodeo P, Méndez BL, Pelosi P, Del Corso A, Mura U. New role for leucyl aminopeptidase in glutathione turnover. Biochem J 2004;378:35–44.
  • Cappiello M, Alterio V, Amodeo P, Del Corso A, Scaloni A, Pedone C, Moschini R, De Donatis GM, De Simone G, Mura U. Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase. Biochemistry 2006;45:3226–3234.
  • York IA, Goldberg AL, Mo XY, Rock KL. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 1999;172:49–66.
  • Towne CF, York IA, Neijssen J, Karow ML, Murphy AJ, Valenzuela DM, Yancopoulos GD, Neefjes JJ, Rock KL. Leucine aminopeptidase is not essential for trimming peptides in the cytosol or generating epitopes for MHC class I antigen presentation. J Immun 2005;175:6605–6614.
  • Pulido-Cejudo G, Conway B, Proulx P, Brown R, Izaguirre CA. Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection. Antiviral Res 1997;36:167–177.
  • Beninga J, Rock KL, Goldberg AL. Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 1998;273:18734–18742.
  • Taylor A, Daims M, Lee J, Surgenor T. Identification and quantification of leucine aminopeptidase in aged normal and cataractous human lenses and ability of bovine lens lap to cleave bovine crystallins. Curr Eye Res 1982;2:47–56.
  • Umezawa H. Screening of small molecular microbial products modulating immune responses and bestatin. Recent Results Cancer Res 1980;75:115–125.
  • Burley SK, David PR, Taylor A, Lipscomb WN. Molecular structure of leucine aminopeptidase at 2.7-A resolution. Proc Natl Acad Sci USA 1990;87:6878–6882.
  • Burley SK, David PR, Sweet RM, Taylor A, Lipscomb WN. Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. J Mol Biol 1992;224:113–140.
  • Kim H, Burley SK, Lipscomb WN. Re-refinement of the X-ray crystal structure of bovine lens leucine aminopeptidase complexed with bestatin. J Mol Biol 1993;230:722–724.
  • Kim H. Lipscomb WN. X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: formulation of a catalytic mechanism featuring a gem-diolate transition state. Biochemistry 1993:32:8465–8478.
  • Kim H. Lipscomb WN. Structure and mechanism of bovine lens leucine aminopeptidase. Adv Enzymol Relat Areas Mol Biol 1994;68:153–213.
  • Sträter N, Lipscomb WN. Transition state analogue L-leucine phosphonic acid bound to bovine lens leucine aminopeptidase: X-ray structure at 1.65-Å resolution in a new crystal form. Biochemistry 1995;34:9200–9210.
  • Sträter N, Lipscomb WN. Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analog, by X-ray crystallography. Biochemistry 1995;34:14792–14800.
  • Sträter N, Sun L, Kantrowitz ER, Lipscomb WN. A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Proc Natl Acad Sci USA 1999;96:11151–11155.
  • Schürer G, Horn AHC, Gedeck P, Clark T. The reaction mechanism of bovine lens leucine aminopeptidase. J Phys Chem B 2002;106:8815–8830.
  • Erhardt S, Jaime E, Weston J. A water sluice is generated in the active site of bovine lens leucine aminopeptidase. J Am Chem Soc 2005;127:3654–3655.
  • Jaime E, Kluge S, Weston J. On the origin of the broad-band selectivity of bovine lens leucine aminopeptidase. ARKIVOC 2007:77–95.
  • Grembecka J, Kafarski P. Leucine aminopeptidase as a target for inhibitor design. Mini Rev Med Chem 2001;1:133–144.
  • Giannousis PP, Bartlett PA. Phosphorus amino acid analogues as inhibitors of leucine aminopeptidase. J Med Chem 1987;30:1603–1609.
  • Lejczak B, Kafarski P, Zygmunt J. Inhibition of aminopeptidases by aminophosphonates. Biochemistry 1989;28:3549–3555.
  • Lejczak B, Popiel de Choszczak M, Kafarski P. Inhibition of aminopeptidases by phosphonic acid analogues of aspartic and glutamic acids. J Enzyme Inhib Med Chem 1993;7:97–103.
  • Drąg M, Grembecka J, Pawełczak M, Kafarski P. α-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucine and neutral aminopeptidases. Eur J Med Chem 2005;40:764–771.
  • Grembecka J, Mucha A, Cierpicki T, Kafarski P. Structure-based design and synthesis of dipeptide analogues as new inhibitors of leucine aminopeptidase. J Med Chem 2003;46:2641–2655.
  • Vassiliou S, Xeilari M, Yiotakis A, Grembecka J, Pawełczak M, Kafarski P, Mucha A. A synthetic method for diversification of the P1′ substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S1′ binding pockets of leucine aminopeptidases. Bioorg Med Chem 2007;15:3187–3200.
  • Mucha A, Lämmerhofer M, Lindner W, Pawełczak M, Kafarski P. Individual stereoisomers of phosphinic dipeptide inhibitor of leucine aminopeptidase. Bioorg Med Chem Lett 2008;18:1550–1554.
  • Smith AL, Polglase J. The specificity of leucine aminopeptidase II. Optical and side chain specificity. J Biol Chem 1949;180:1209–1223.
  • Smith AL, Spackman DH. Leucine aminopeptidase V. Activation, specificity, and mechanism of action. J Biol Chem 1955;212:271–299.
  • Picha J, Budesinsky M, Hanclova I, Sanda M, Fiedler P, Vanek V, Jiracek J. Efficient synthesis of phosphonodepsipeptides derived from norleucine. Tetrahedron 2009;65:6090–6103.
  • Stec W, Kudzin ZH. Phosphohomocysteine derivatives. Synthesis 1980:1032–1034.
  • Picha J, Budesinsky M, Sanda M, Jiracek J. Synthesis of norleucine-derived phosphonopeptides. Tetrahedron Lett 2008;49:4366–4368.
  • Liboska R, Picha J, Hanclova I, Budesinsky M, Sanda M, Jiracek J. Synthesis of methionine- and norleucine-derived phosphinopeptides. Tetrahedron Lett 2008;49:5629–5631.
  • Baylis EK, Campbell CD, Dingwall JG.1-Aminoalkylphosphonous acids. Part 1. Isosteres of the protein amino acids. J Chem Soc Perkin Trans 1 1984:2845–2853.
  • Dingwall JG, Baylis EK, Campbell CD. α-Amino-phosphonous acids for inhibiting bacteria and yeast. US Patent 4147780 1979.
  • Van Wart HE, Lin SH. Metal binding stoichiometry and mechanism of metal ion modulation of the activity of porcine kidney leucine aminopeptidase. Biochemistry 1981;20:5682–5689.
  • Ledeme N, Hennon G, Vincent-Fiquet O, Plaquet R. Purification and enzymatic properties of an L-leucine aminopeptidase from swine liver. Biochim Biophys Acta 1981;660:262–270.
  • Kawata S, Imamura T, Ninomiya K, Makisumi S. Purification and characterization of an aminopeptidase from porcine liver. J Biochem 1982;92:1093–1101.
  • Spackman DH, Smith EL, Brown DM. Leucine aminopeptidase IV. Isolation and properties of the enzyme from swine kidney. J Biol Chem 1955;212:255–269.
  • Lin B-X Du, X-L, Zhou L-G Hara, K, Su W-J Cao, M-J. Purification and characterization of a leucine aminopeptidase from the skeletal muscle of common carp (Cyprinus carpio). Food Chemistry 2008:108;140–147.
  • Grembecka J, Sokalski WA, Kafarski P. Computer-aided design and activity prediction of leucine aminopeptidase inhibitors. J Comput Aided Mol Des 2000;14:531–544.
  • Grembecka J, Sokalski WA, Kafarski P. Quantum chemical analysis of the interactions of transition state analogs with leucine aminopeptidase. Int J Quant Chem 2001;84:302–310.
  • Mucha A, Kunert A, Grembecka J, Pawełczak M, Kafarski P. A phosphonamidate containing aromatic N-terminal amino group as inhibitor of leucine aminopeptidase – design, synthesis and stability. Eur J Med Chem 2006;41:768–772.
  • Drag M, Bogyo M, Ellman JA, Salvesen GS. Aminopeptidase fingerprints. An integrated approach for identification of good substrates and optimal inhibitors. J. Biol. Chem. 2010;285:3310–3318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.