1,133
Views
23
CrossRef citations to date
0
Altmetric
Research Article

5-Nitroisatin-derived thiosemicarbazones: potential antileishmanial agents

, , &
Pages 628-632 | Received 17 May 2013, Accepted 16 Aug 2013, Published online: 03 Oct 2013

References

  • Tropical disease research. Progress 1999–2000. Geneva: World Health Organisation; 2001 . Available from: http://www.who.int/tdr/publications/documents/progress-99-00.pdf [last accessed 12 Sep 2013]
  • Olliaro PL, Bryceson ADM. Practical progress and new drugs for changing patterns of leishmaniasis. Parasitol Today 1993;9:323–8
  • Rath S, Trivelin LA, Imbrunito TR, et al. Antimoniais empregados no tratamento da leishmaniose: Estado da arte. Quim Nova 2003;26:550–5
  • McGregor A. WHO warns of epidemic leishmania. The Lancet 1998;351:575
  • Soto J, Arana BA, Toledo J, et al. Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis 2004;38:1266–72
  • Prasad R, Kumar R, Jaiswal BP, et al. Miltefosine: an oral drug for visceral leishmaniasis. Indian J Pediatr 2004;71:143–4
  • Sangraula H, Sharma KK, Rijal S, et al. Orally effective drugs for Kala-azar (visceral leishmaniasis): focus on miltefosine and sitamaquine. J Assoc Physicians India 2003;51:686–90
  • Dodd RH, Ouannès C, Robert-Gèro M, et al. Hybrid molecules: growth inhibition of Leishmania donovani promastigotes by thiosemicarbazones of 3-carboxy-β-carbolines. J Med Chem 1989;32:1272–6
  • Bharti N, Husain K, Garza MTG, et al. Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives. Bioorg Med Chem Lett 2002;12:3475–8
  • Du X, Guo C, Hansell E, et al. Synthesis and structure-activity relationship study of potent trypanocidal thiosemicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem 2002;45:2695–707
  • Beraldo H, Gambino D. The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini-Rev Med Chem 2004;4:31–9 and references therein
  • Aguirre G, Boiani L, Cerecetto H, et al. In vitro activity and mechanism of action against the protozoan parasite Trypanosoma cruzi of 5-nitrofuryl containing thiosemicarbazones. Bioorg Med Chem 2004;12:4885–93
  • Greenbaum DC, Mackey Z, Hansell E, et al. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei and Trypanosoma cruzi. J Med Chem 2004;47:3212–19
  • Husain K, Bhat AR, Azam A. New Pd(II) complexes of the synthesized 1-N-substituted thiosemicarbazones of 3-indole carboxaldehyde: characterization and antiamoebic assessment against E. histolytica. Eur J Med Chem 2008;43:2016–28
  • Kandemirli F, Saracoglu M, Cavusoglu I, et al. Structure-activity relationship study by ETM method on potent trypanocidal thiosemicarbazone inhibitors of the trypanosomal cysteine protease cruzain. Phil Nat 2009;1:179–93
  • Sharma K, Sing R, Fahmi N, et al. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines. Spectrochim Acta A 2010;75:422–7
  • Glinma B, Kpoviessi SDS, Fatondji RH, et al. Synthesis, characterization and anti-trypanosomal activity of R-(-)carvone and arylketones-thiosemicarbazones and toxicity against Artemia salina Leach. J App Pharm Sci 2011;8:65–70
  • Sakirigui A, Kpoviessi SDS, Gbaguidi F, et al. Selective trypanocide activity of some substituted thiosemicarbazones of citral from benin Cymbopogon citratus essential oil and their toxicity against Artemia salina Leach. IJRRAS 2012;12:454–62
  • Demoro B, Sarniguet C, Sanchez-Delgado R, et al. New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Trans 2012;41:1534–43
  • Navarro M, Gabbiani C, Messori L, et al. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov Today 2010;15:1070–8
  • Fatondji HR, Kpoviessi S, Gbaguidi F, et al. Structure-activity relationship study of thiosemicarbazones on an African trypanosome: Trypanosoma brucei brucei. Med Chem Res 2013;22:2151–62
  • da Silva JFM, Garden SJ, Pinto AC. The chemistry of isatins: a review from 1975 to 1999. J Braz Chem Soc 2001;12:273–324 and references therein
  • Pandeya SN, Smitha S, Jyoti M, et al. Biological activities of isatin and its derivatives. Acta Pharm 2005;55:27–46 and references therein
  • Vine KL, Matesic L, Locke JM, et al. Cytotoxic and anticancer activities of isatin and its derivatives: a comprehensive review from 2000–2008. Anti-Cancer Agents Med Chem 2009;9:397–414 and references therein
  • Aboul-Fadl T, Bin-Jubair FAS. Anti-tubercular activity of isatin derivatives. Int J Res Pharm Sci 2010;1:113–26 and references therein
  • Chiyanzu I, Hansell E, Gut J, et al. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg Med Chem Lett 2003;13:3527–30
  • Chiyanzu I, Clarkson C, Smith PJ, et al. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg Med Chem 2005;13:3249–61
  • Bal TR, Anand B, Yogeeswari P, et al. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg Med Chem Lett 2005;15:4451–5
  • Chibale K. Economic drug discovery and rational medicinal chemistry for tropical diseases. Pure Appl Chem 2005;77:1957–64
  • Pirrung MC, Pansare SV, Sarma KD, et al. Combinatorial optimization of isatin-β-thiosemicarbazones as anti-poxvirus agents. J Med Chem 2005;48:3045–50
  • Terzioglu N, Karali N, Gursoy A, et al. Synthesis and primary antiviral activity evaluation of 3-hydrazono-5-nitro-2-indolinone derivatives. Arkivoc 2006(i):109–18
  • Quenelle DC, Keith KA, Kern ER. In vitro and in vivo evaluation of isatin-β-thiosemicarbazone and marboran against vaccinia and cowpox virus infections. Antivir Res 2006;71:24–30
  • Hall MD, Salam NK, Hellawell JL, et al. Synthesis, activity, and pharmacophore development for isatin-β-thiosemicarbazones with selective activity toward multidrug-resistant cells. J Med Chem 2009;52:3191–204
  • Ermut G, Karali N, Cetin I, et al. Synthesis and chemotherapeutic activities of 5-chloro-1H-indole-2,3-dione 3-thiosemicarbazones. Marmara Pharm J 2013;17:147–54
  • Pervez H, Manzoor N, Yaqub M, et al. Synthesis and urease inhibitory properties of some new N4-substituted 5-nitroisatin-3-thiosemicarbazones. Lett Drug Des Discov 2010;7:102–8
  • Pervez H, Manzoor N, Yaqub M, et al. Synthesis and biological evaluation of some N4-substituted 5-nitroisatin-3-thiosemicarbazones. Med Chem Res 2012;21:2251–62
  • Atta-ur-Rahman, Choudhary MI, Thomsen WJ. Bioassay techniques for drug development. The Netherlands: Harwood Academic Publishers; 2001:60–4
  • Finch RA, Liu M-C, Grill SP, et al. Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone): a potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem Pharmacol 2000;59:983–91
  • Li J, Zheng LM, King I, et al. Syntheses and antitumor activities of potent inhibitors of ribonucleotide reductase: 3-amino-4-methylpyridine-2-carboxaldehyde-thiosemicarbazone (3-AMP), 3-amino-pyridine-2-carboxaldehyde-thiosemicarbazone (3-AP) and its water-soluble prodrugs. Curr Med Chem 2001;8:121–33
  • Danuta SK, Patricia Q, Richardson DR. Thiosemicarbazones: the new wave in cancer treatment. Future Med Chem 2009;1:1143–51 and references therein
  • Lebrun E, Tu YX, van Rapenbusch R, et al. Inhibition of bovine dihydrofolate reductase and enhancement of methotrexate sensitivity by N4-(2-acetoxyethoxymethyl)-2-acetylpyridine thiosemicarbazone. Biochim Biophys Acta 1990;1034:81–5
  • Choi I-H, Kim C. Flexible docking of an acetoxyethoxymethyl derivative of thiosemicarbazone into three different species of dihydrofolate reductase. Arch Pharm Res 2002;25:807–16
  • Britta EA, Silva APB, Ueda-Nakamura T, et al. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis. PLoS One 2012;7:e41440 . doi:10.1371/journal.pone.0041440
  • Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radical Bio Med 1999;26:463–71 and references therein
  • Das R, Roy A, Dutta N, Majumder HK. Reactive organic species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis 2008;13:867–82
  • Roy A, Ganguly A, BoseDasgupta S, et al. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3′-diindolylmethane through inhibition of FOF1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 2008;74:1292–307
  • Pelizzaro-Rocha KJ, Veiga-Santos P, Lazarin-Bidoia D, et al. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi. Microbes Infect 2011;13:1018–24
  • Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, et al. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 2011;6:e14666 . doi:10.1371/journal.pone.0014666

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.