995
Views
13
CrossRef citations to date
0
Altmetric
Review Article

Agents described in the Molecular Imaging and Contrast Agent Database for imaging carbonic anhydrase IX expression

&
Pages 753-763 | Received 23 Aug 2013, Accepted 20 Sep 2013, Published online: 10 Feb 2014

References

  • Molecular Imaging and Contrast Agent Database (MICAD). About MICAD. Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004--2013. Available from: http://micad.nih.gov
  • Chopra A, Shan L, Eckelman W, et al. Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress. Mol Imaging Biol 2012;14:4–13
  • MICAD. MICAD Overview Powerpoint Presentation 2004–2013
  • Michalski M, Chen X. Molecular imaging in cancer treatment. Eur J Nucl Med Mol Imaging 2012;38:358–77
  • Leung K. 124I-Chimeric monoclonal antibody G250. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004--2013. [last updated: 20 May 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK43528/
  • Divgi C, Pandit-Taskar N, Jungbluth A, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 2007;8:304–10
  • Lawrentschuk N, Lee F, Jones G, et al. Investigation of hypoxia and carbonic anhydrase IX expression in a renal cell carcinoma xenograft model with oxygen tension measurements and 124I-cG250 PET/CT. Urol Oncol 2011;29:411–20
  • Li J, Shi L, Wang C, et al. Preliminary biological evaluation of 125I-labeled anti-carbonic anhydrase IX monoclonal antibody in the mice bearing HT-29 tumours. Nucl Med Commun 2011;32:1190–3
  • Shan L. 125I-Labeled mouse anti-human carbonic anhydrase IX monoclonal antibody Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004--2013. [last updated 30 May 2012]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK97273/
  • Brouwers A, Verel I, Van Eerd J, et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother Radiopharm 2004;19:155–63
  • Leung K. 89Zr-N-succinyldesferal-chimeric monoclonal antibody cG250 Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004--2013. [last updated 27 May 2010; cited March 2013]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK43525/
  • Carlin S, Khan N, Ku T, et al. Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One 2010;5:e10857, 1--9
  • Chopra A. [111In]-Labeled chimeric monoclonal antibody cG250 directed against carbonic anhydrase IX Molecular Imaging and Contrast Agent Databasr (MICAD). Bethesda (MD): National Centre for Biotechnology Information, NLM, NIH; 2004--2013. [last updated 2 September 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK45632/
  • Chopra A. [111In]-Labeled monovalent Fab fragment of chimeric monoclonal antibody cG250 directed against carbonic anhydrase IX Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004--2013. [last updated 2 September 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK45632/
  • Chopra A. [111In]-Labeled divalent Fab fragment of chimeric monoclonal antibody cG250 directed against carbonic anhydrase IX Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004--2013. [last updated 2 September 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK45634/
  • Hoeben B, Kaanders J, Franssen G, et al. PET of hypoxia with 89Zr-labeled cG250-F(ab′)2 in head and neck tumors. J Nucl Med 2010;51:1076–83
  • Chopra A. 89Zr-Labeled N-suc-desferrioxamine-conjugated anti-carbonic anhydrase IX chimeric monoclonal antibody cG250-F(ab′)2 fragments Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004–2013. [last updated 14 October 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK47332/
  • Ahlskog J, Schliemann C, Marlind J, et al. Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Brit J Cancer 2009;101:645–57
  • Leung K. 177Lu-Benzyl-diethylenetriamine pentaacetic acid-anti-carbonic anhydrase IX small immunoprotein A3 Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004–2013. [last updated 12 January 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK23180/
  • Akurathi V, Dubois L, Lieuwes N, et al. Synthesis and biological evaluation of a 99mTc-labelled sulfonamide conjugate for in vivo visualization of carbonic anhydrase IX expression in tumor hypoxia. Nucl Med Biol 2010;37:557–64
  • Chopra A. [99mTc](CO)3N-(pyridin-2-yl-methyl)-N[2-(4-sulfamoylphenyl)-ethyl]aminoethyl acetate Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004–2013. [last updated 28 October 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK47642/
  • Gallagher F, Kettunen M, Day S, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nat Lett 2008;453:940–4
  • Shan L. Hyperpolarized 13C-labeled bicarbonate (H13) for in vivo pH measurement with 13C magnetic resonance spectroscopy Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information, NLM, NIH; 2004–2013. [last updated 12 April 2010]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK32324/
  • Neri D, Supuran C. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77
  • Innocenti A, Pastoreková S, Pastorek J, et al. The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as anintrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett 2009;19:5825–8
  • De Simone G, Supuran C. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta 2010;1804:404–9
  • Chiche J, Ilc K, Laferriere J, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 2009;69:358–68
  • McDonald P, Winum J, Supuran C, Dedhat S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 2012;3:84–97
  • Apte S, Chin F, Graves E. Molecular imaging of hypoxia: strategies for probe design and application. Curr Org Synth 2011;8:593–603
  • Dubois L, Lieuwes N, Maresca A, et al. Imaging of CA IX with fluorescent labelled sulphonamides distinguishes hypoxic and (re)-oxygenated cells in a xenograft tumour model. Radiother Oncol 2009;92:423–8
  • Bao B, Groves K, Zhang J, et al. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia. PLoS One 2012;7:e50860, 1–12
  • Mees G, Dierckx R, Vangestel C, Van de Wiele C. Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 2009;36:1674–86
  • Gray L, Conger A, Ebert M, et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor of radiotherapy. Brit J Radiol 1953;26:638–48
  • Read J. Mode of action of x-ray doses given with different oxygen concentrations. Br J Radiol 1952;25:336–38
  • Varai M, Calkins-Adams D, Rinker L, et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 1998;71:270–7
  • Boenisch T. Chapter 1: Antibodies. In: Kumar GL, Rudbeck L, eds. Immunohistochemical staining methods. 5th ed. Dako Education Gude [Internet]. Carpinteria (CA): Dako North America; 2009:1--9. Available from: http://www.dako.com/08002_ihc_staining_methods_5ed.pdf [last accessed 25 Oct 2013]
  • Oosterwijk-Wakka J, Boerman O, Mulders P, Oosterwijk E. Monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma: biological and clinical studies. In: Bukowski RM, Figlin RA, Motzer RJ, eds. Renal cell carcinoma: molecular targets and clinical applications, 2nd ed. New York: Humana Press; 2009:231--47
  • Pastorek J, Pastoreková S, Callebut I, et al. Cloning and characterization of MN, a human, tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 1994;9:2788–888
  • Brouwers A, Mulders P, Oosterwijk E, et al. Pharmacokinetics and tumour targeting of 131I-labeled F(ab′)2 fragments of the chimeric monoclonal antibody G250: preclincial and clinical pilot studies. Cancer Biother Radiopharm 2004;19:466–77
  • Adams G, Weiner L. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005;23:1147–57
  • Dennis M, Jin H, Dugger D, et al. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 2007;67:254–61
  • Emir E, Bander N, Finstad C, et al. Predicting response to radioimmunotherapy from the tumor microenvironment of colorectal carcinomas. Cancer Res 2007;67:11896–905
  • Sonzogni A. NuDat 2.6 database [Internet]. New York: National Nuclear Data Center, Brookhavan National Laboratory; 2013. Available from: http://www.nndc.bnl.gov/nudat2/ [last accessed 17 Aug 2013]
  • Stillebroer AB, Oosterwijk E, Oyen WJG, et al. Radiolabeled antibodies in renal cell carcinoma. Cancer Imaging 2007;7:179--88
  • Brouwers A, Buijs W, Oosterwijk E, et al. Targeting of metastatic renal cell carcinoma with the chimeric monoclonal antibody G250 labeled with 131I or 111In. Clin Cancer Res 2003;9:3953–60
  • Mather S, Ward B. High efficiency iodination of monoclonal antibodies for radiotherapy. J Nucl Med 1987;28:1034–6
  • Bailey G. The iodogen method for radiolabeling proteins. The protein protocols handbook. 1st ed. 1996:673–4
  • Salacinski P, McLean C, Sykes J, et al. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3a,6a-diphenyl glycoluril (iodogen). Anal Biochem 1981;117:136–46
  • Brouwers A, van Eerd J, Frielink C, et al. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y,177Lu, or 186Re. J Nucl Med 2004;45:327–37
  • Yuanfang L, Chuanchu W. Radiolabeling of monoclonal antibodies with metal chelates. Pure Appl Chem 1991;63:427–63
  • Roselli M, Schlom J, Gansow O, et al. Comparative biodistributions of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med 1989;30:672–82
  • Riccabona G. I125 in the clinical evaluation of thyroid disease. N Engl J Med 1965;273:126–30
  • Stein R, Govindan S, Hayes M, et al. Advantage of a residualizing iodine radiolabel in the therapy of a colon cancer xenograft targeted with an anticarcinoembryonic antigen monoclonal antibody. Clin Cancer Res 2005;11:2727–34
  • Verel I, Visser G, Boellaard R, et al. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antobodies. J Nucl Med 2003;44:1271–81
  • Smith-Jones P, Vallabahajosula S, Goldsmith S, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res 2000;60:5237–43
  • Troost E, Bussink J, Kaanders J, et al. Comparison of different methods of CAIX quantification in relation to hypoxia in three human head and neck tumor lines. Radiother Oncol 2005;76:194–9
  • Brechbiel M, Gansow O, Atcher R, et al. Synthesis of 1-(p-isothiocyanatobenzyl) dericvatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg Chem 1986;25:2772–81
  • Dilworth JR, Parrot SJ. The biomedical chemistry of technetium and rhenium. Chem Soc Rev 1998;27:43–55
  • Nave C. Technetium-99m. Georgia, USA: Georgia State University. [cited 20 August 2013]. Available from: http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/technetium.html
  • Gillies RJ, Liu Z, Bhujwalla Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol. 1994;267:195–203
  • Schmidt M, Wittrup K. A modeling analysis of the effects of molecular size and binding affinity on tumour targeting. Mol Cancer Ther 2009;8:2861–71
  • Rudnick S, Adams G. Affinity and avidity in antibody based tumor targeting. Cancer Biother Radiopharm 2009;24:155–61
  • Ayriss J, Kuan C, Boulton S, et al. Molecular targets for antibody-mediated immunitherapy of malignant glioma. In: Van Meir EG, ed. CNS cancer: models, markers, prognostic factors, targets and therapeutic approaches. Chap. 36. New York: Humana Press; 2009:865--98
  • Occhino M, Raffaghello L, Burrone O, et al. Generation and characterization of dimeric small immunoproteins specific for neuroblastoma associated antigen GD2. Int J Mol Med 2004;14:383–8
  • Supuran C. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Rev Drug Disc 2008;7:168–81
  • Poulsen S. Carbonic anhydrases inhibition as a cancer therapy: a review of patent literature, 2007–2009. Expert Opin Ther Patants 2010;20:795–806
  • Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008;29:193–207
  • Torgian D, Zaidi H, Kwee T, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013;267:26–44
  • Pan J, Lau J, Mesak F, et al. Synthesis and evaluation of 18F-labeled carbonic anhydrase IX inhibitors for imaging with positron emission tomography. J Enzyme Inhib Med Chem 2013. [Epub ahead of print]. doi: 10.3109/14756366.2013.773994
  • Stillebroer AB, Franssen GM, Mulders PFA, et al. ImmunoPET imaging of renal cell carcinoma with 124I- and 89Zr-labeled anti-CAIX monoclonal antibody cG250 in mice. Cancer Biother Radiopharm 2013;28:510–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.