1,067
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives

, , &
Pages 470-480 | Received 11 Feb 2015, Accepted 06 Mar 2015, Published online: 06 May 2015

References

  • Sall C, Yapi A-D, Desbois N, et al. Design, synthesis, and biological activities of conformationally restricted analogs of primaquine with a 1,10-phenanthroline framework. Bioorg Med Chem Lett 2008;18:4666–9
  • Nielsen MC, Larsen AF, Abdikadir FH, Ulven T. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands. Eur J Med Chem 2014;72:119–26
  • Wesselinova D, Neykov M, Kaloyanov N, et al. Antitumour activity of novel 1,10-phenanthroline and 5-amino-1,10-phenanthroline derivatives. Eur J Med Chem 2009;44:2720–3
  • Accorsi G, Listorti A, Yoosaf K, Armaroli N. 1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. Chem Soc Rev 2009;38:1690–700
  • Kurth DG, Fromm KM, Lehn JM. Hydrogen-bonding and metal-ion-mediated self-assembly of a nanoporous crystal lattice. Eur J Inorg Chem 2001;6:1523–6
  • Beauchamp DA, Loeb SJ. Hydrogen-bonded networks through second-sphere coordination. Chemistry 2002;8:5084–8
  • Stępień BT, Krygowski TM, Cyrański MK, et al. How far is the π-electron delocalization of the phenanthrene moiety modified in the aza-analogues and their N-oxides? ARKIVOC 2004;3:185–201
  • Pavlopoulos TG. Search for vibronic spin-orbit interactions in the triplet-manifold of phenanthrene N-heterocyclic analogues. J Photochem Photobiol A Chem 2002;149:45–54
  • Bencini A, Lippolis V. 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coord Chem Rev 2010;254:2096–180
  • Castedo L, Tojo G. Phenanthrene alkaloids. In: Brossi A, ed. The alkaloids. San Diego: Academic Press Inc; 1990:99–139
  • Serbetci T, Genes C, Depauw S, et al. Synthesis and biological evaluation of dialkylaminoalkylamino benzo[c][1,7] and [1,8]phenanthrolines as antiproliferative agents. Eur J Med Chem 2010;45:2547–58
  • Le TN, Gang SG, Cho W-J. A facile synthesis of benzo [c] phenanthridine alkaloids: oxynitidine and oxysanguinarine using lithiated toluamide–benzonitrile cycloaddition. Tetrahedron Lett 2004;45:2763–6
  • Wang X-S, Yin M-Y, Wang S-L, et al. An efficient method for the synthesis of 4-arylfuro[2,3-a][4,7]phenanthroline derivatives catalyzed by iodine. J Heterocyclic Chem 2012;49:585–8
  • Prado S, Michel S, Tillequin F, et al. Synthesis and cytotoxic activity of benzo[c][1,7] and [1,8]phenanthrolines analogues of nitidine and fagaronine. Bioorg Med Chem 2004;12:3943–53
  • Kozlov NG, Tereshko AB, Gusak KN. Condensation of quinolin-5-amine with aromatic aldehydes and cyclohexane-1,3-dione. Russ J Org Chem 2007;43:1371–8
  • Ishikawa T. Benzo[c]phenanthridine bases and their antituberculosis activity. Med Res Rev 2001;21:61–72
  • Fleury F, Sukhanova A, Ianoul A, et al. Molecular determinants of site-specific inhibition of human DNA topoisomerase I by fagaronine and ethoxidine. J Biol Chem 2000;275:3501–9
  • Chang Y-C, Hsieh P-W, Chang F-R, et al. Two new protopines argemexicaines A and B and the anti-HIV alkaloid 6-acetonyldihydrochelerythrine from formosan Argemone mexicana. Planta Med 2003;69:148–52
  • Nakanishi T, Masuda A, Suwa M, et al. Synthesis of derivatives of NK109, 7-OH benzo[c]phenanthridine alkaloid, and evaluation of their cytotoxicities and reduction-resistant properties. Bioorg Med Chem 2000;10:2321–3
  • Husseini R, Stretton RJ. Studies on the antibacterial activity of phanquone: effect on metabolic activities of Escherichia coli and Staphylococcus aureus. Microbios 1981;30:7–18
  • Kradolfer F, Neipp L. Experimental studies on amebicidal, antibacterial, and antiparasitic phenanthroline compounds. Antibiot Chemother 1985;8:297–308
  • Carta A, Loriga M, Paglietti G, et al. Design, synthesis, and preliminary in vitro and in silico antiviral activity of [4,7]phenantrolines and 1-oxo-1,4-dihydro-[4,7]phenantrolines against single-stranded positive-sense RNA genome viruses. Bioorg Med Chem 2007;15:1914–27
  • Majumdar KJ, Ponra S, Ghosh T, et al. Synthesis of novel pyrano[3,2-f]quinoline, phenanthroline derivatives and studies of their interactions with proteins: an application in mammalian cell imaging. Eur J Med Chem 2014;71:306–15
  • Strekowski L, Hojjat M, Wolinska E, et al. New triple-helix DNA stabilizing agents. Bioorg Med Chem Lett 2005;15:1097–100
  • Danac R, Managalagiu II. Antimycobacterial activity of nitrogen heterocycles derivatives: bipyridine derivatives. Part III. Eur J Med Chem 2014;74:664–70
  • Danac R, Daniloaia T, Antoci V, Mangalagiu II. Design, synthesis and antimycobacterial activity of some new azaheterocycles: phenanthroline with p-halogeno-benzoyl skeleton. Part V. Lett Drug Des Discov 2015;12:14–19
  • Mantu D, Antoci V, Mangalagiu II. Design, synthesis and antimycobacterial activity of some new pyridazine derivatives: bis-pyridazine. Part IV. Infect Dis-Drug Targets 2013;13:344–51
  • Mantu D, Luca C, Moldoveanu C, et al. Synthesis and antituberculosis activity of some new pyridazine derivatives. Part II. Eur J Med Chem 2010;45:5164–8
  • Luca MC, Tura V, Mangalagiu II. Considerations concerning design and mechanism of action of a new class of anticancer dual DNA intercalators. Med Hyp 2010;75:627–9
  • Antoci V, Mantu D, Cozma DG, et al. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3. Med Hyp 2010;82:11–15
  • Balan AM, Miron A, Tuchilus C, et al. Synthesis and in vitro analysis of novel dihydroxyacetophenone derivatives with antimicrobial and antitumor activities. Med Chem 2014;10:476–83
  • Zbancioc AM, Zbancioc Gh, Tanase C, et al. Design, synthesis and in vitro anticancer activity of a new class of bifunctional DNA intercalators. Lett Drug Des Discov 2010;7:644–9
  • CrysAlis RED, Oxford Diffraction Ltd.,Version 1.171.36.32, 2003
  • Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 2009;42:339–41
  • Sheldrick GM. A short history of SHELX. Acta Cryst 2008;A64:112−22
  • Ollinger J, Bailey MA, Moraski GC, et al. A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis. PLoS One 2013;8:e60531
  • Zelmer A, Carroll P, Andreu N, et al. A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother 2012;67:1948–60
  • Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol 2000;88:784–90
  • Al Matarneh CM, Ciobanu C-I, Mangalagiu II, Danac R. Design, synthesis and antimycobacterial activity of some new azaheterocycles: 4,7-phenanthroline with p-halogeno-benzoyl skeleton. Part VI. submitted
  • Rescifina A, Zagni C, Varrica MG, et al. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem 2014;74:95–115
  • Mantu D, Maftei D, Iurea D, et al. Synthesis, structure, and in vitro anticancer activity of new polycyclic 1,2-diazines. Med Chem Res 2014;23:2909–15
  • Cappoen D, Jacobs J, Van TN, et al. Straightforward palladium-mediated synthesis and biological evaluation of benzo[j]phenanthridine-7,12-diones as anti-tuberculosis agents. Eur J Med Chem 2012;48:57–68
  • Nagesh HN, Suresh N, Naidu KM, et al. Synthesis and evaluation of anti-tubercular activity of 6-(4-substitutedpiperazin-1-yl) phenanthridine analogues. Eur J Med Chem 2014;74:333–9
  • Douros J, Suffness M. New natural products under development at the National Cancer Institute. Recent Results Cancer Res 1981;76:153–75
  • Kragh Larsen A, Grondard L, Couprie J, et al. The antileukemic alkaloid fagaronine is an inhibitor of DNA topoisomerases I and II. Biochem Pharmacol 1993;46:1403–12
  • Wang L-K, Johnson RK, Hecht SM. Inhibition of topoisomerase I function by nitidine and fagaronine. Chem Res Toxicol 1993;6:813–18
  • Holden JA, Wall ME, Wani MC, Manikumar G. Human DNA topoisomerase I: quantitative analysis of the effects of camptothecin analogs and the benzophenanthridine alkaloids nitidine and 6-ethoxydihydronitidine on DNA topoisomerase I-induced DNA strand breakage. Arch Biochem Biophys 1999;370:66–76
  • Bevan CD, Lloyd RS. A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal Chem 2000;72:1781–7
  • Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, et al. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized Far-Red reporters. PLoS One 2010;5:e9823
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev 2006;6:813–23
  • Monks A, Scudiero D, Skehan P, et al. Feasibility of a high-flux anticancer drug screen utilizing a diverse panel of human tumour cell lines in culture. J Natl Cancer Inst 1991;83:757–66
  • Boyd RM, Paull KD, Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res 1995;34:91–109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.