787
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Spirobisnaphthalenes effectively inhibit carbonic anhydrase

, , &
Pages 503-507 | Received 30 Mar 2015, Accepted 17 Apr 2015, Published online: 28 May 2015

References

  • Schlingmann G, West RR, Milne L, et al. Diepoxins, novel fungal metabolites with antibiotic activity. Tetrahedron Lett 1993;34:7225–8
  • Krohn K, Michel A, Flörke U, et al. Palmarumycins CP1–CP4 from Coniothyrium palmarum: isolation, structure elucidation, and biological activity. Liebigs Ann Chem 1994;11:1093–7
  • Krohn K, Michel A, Flörke U, et al. Palmarumycins C1–C16 from Coniothyrium sp.: isolation, structure elucidation, and biological activity. Liebigs Ann Chem 1994;11:1099–108
  • Jiao P, Swenson DC, Gloer JB, et al. Bioactive spirodioxynaphthalenes from the freshwater aquatic fungus Decaisnella thyridioides. J Nat Prod 2006;69:1667–71
  • Lazo JS, Tamura AZ, Vogt A, et al. Antimitotic actions of a novel analog of the fungal metabolite palmarumycin CP1. J Pharmacol Exp Ther 2001;296:364–71
  • Martinnez-Luis S, Della-Togna G, Coley PD, et al. Antileishmanial constituents of the Panamanian endophytic fungus Edenia sp. J Nat Prod 2008;71:2011–14
  • Chu M, Truumees I, Patel MG, et al. Sch 50673 and Sch 50676, two novel antitumor fungal metabolites. Antibiotics 1995;48:329–31
  • Chu M, Patel MG, Pai MG, et al. Sch 53823 and sch 53825, novel fungal metabolites with phospholipase D inhibitory activity. Bioorg Med Chem Lett 1996;6:579–84
  • Chu M, Truumers I, Patel GM, et al. 2 New phospholipase-d inhibitors, sch-49211 and sch-49212, produced by the fungus Nattrassia-mangiferae. Bioorg Med Chem Lett 1994;4:1539–42
  • Pai JK, Frank EA, Blood C, Chu M. Novel ketoepoxides block phospholipase D activation and tumor cell invasion. Anticancer Drug Des 1994;9:363–72
  • Sakemi S, Inagaki T, Kaneda K, et al. CJ-12,371 and CJ-12,372, two novel DNAgyrase inhibitors. Fermentation, isolation, structural elucidation and biological activities. J Antibiot 1995;27:134–42
  • Wipf P, Hopkins TD, Jung JJ, et al. New inhibitors of the thioredoxin–thioredoxin reductase system based on a naphthoquinone spiroketal natural product lead. Bioorg Med Chem Lett 2001;11:2637–41
  • Wipf P, Lynch SM, Birmingham A, et al. Natural product based inhibitors of the thioredoxin–thioredoxin reductase system. Org Biomol Chem 2004;2:1651–8
  • Powis G, Wipf P, Lynch SM, et al. Molecular pharmacology and antitumor activity of palmarumycin based inhibitors of thioredoxin reductase. Mol Cancer Ther 2006;5:630–6
  • Xiong Z, Corey EJ. Simple total synthesis of the pentacyclic Cs-symmetric structure attributed to the squalenoid glabrescol and three Cs-symmetric diastereomers compel structural revision. J Am Chem Soc 2000;122:4831–2
  • Prajoubklang A, Sirithunyalug B, Charoenchai P, et al. Bioactive deoxypreussomerins and dimeric naphthoquinones from Diospyros ehretioides fruits: deoxypreussomerins may not be plant metabolites but may be from fungal epiphytes or endophytes. Chem Biodivers 2005;2:1358–67
  • Chu M, Truumees I, Patel MG, et al. Structure of Sch 49209: a novel antitumor agent from the fungus Nattrassia mangiferae. J Org Chem 1994;59:1222–3
  • Singh SB, Zink DL, Liesch JM, et al. Preussomerins and deoxypreussomerins: novel inhibitors of ras farnesyl-protein transferase. J Org Chem 1994;59:6296–302
  • Thiergardt R, Hug P, Rihs G, Peter HH. Cladospirone bisepoxide: definite structure assignment including absolute configuration and selective chemical transformations. Tetrahedron 1995;51:733–42
  • Petersen F, Moerker T, Vanzanella FPHH. Production of cladosporine bisepoxide, a new fungal metabolite. J Antibiot 1994;47:1098–103
  • Bode HB, Walker M, Zeeck A. Cladospirones B to I from Sphaeropsidales sp. F-24′707 by variation of culture conditions. Eur J Org Chem 2000;18:3185–93
  • Krohn K, Beckmann K, Flörke U, et al. Biologically active metabolites from fungi, 9 new palmarumycins CP4a and CP5 from Coniothyrium palmarum: structure elucidation, crystal structure analysis and determination of the absolute configuration by CD calculations. Tetrahedron 1997;53:3101–10
  • Ishizaki M, Ozaki K, Kanematsu A, et al. Synthetic approaches toward spiro[2,3-dihydro-4H-l-benzopyran-4,1′-cyclohexan]-2-oDnerivatives via radical reactions: total synthesis of (f)-lycoramine. J Org Chem 1993;58:3877–85
  • Dai J, Krohn K, Elsässer B, et al. Metabolic products of the endophytic fungus Microsphaeropsis sp. from Larix decidua. Eur J Org Chem 2007;29:4845–54
  • Bode HB, Zeeck A. Sphaerolone and dihydrosphaerolone, two bisnaphthyl-pigments from the fungus Sphaeropsidales sp. F-24'707. Phythochemistry 2000;54:597–601
  • Ravindranath N, Reddy MR, Mahender G, et al. Deoxypreussomerins from Jatropha curcas: are they also plant metabolites? Phytochemistry 2004;65:2387–90
  • Krohn K. Natural products derived from naphthalenoid precursors by oxidative dimerization. In: Herz W, Falk H, Kirby GW, et al., eds. Progress in the chemistry of organic natural products. Vol. 85. Wien (NY): Springer; 2003:1–49
  • Akbaba Y, Bastem E, Topal F, et al. Synthesis and carbonic anhydrase inhibitory effects of novel sulfamides derived from 1-aminoindanes and anilines. Arch Pharm 2014;347:950–7
  • Göksu S, Naderi A, Akbaba Y, et al. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg Chem 2014;56:75–82
  • Hisar O, Beydemir Ş, Gülçin İ, et al. Effect of low molecular weight plasma inhibitors of rainbow trout (Oncorhyncytes mykiss) on human erythrocytes carbonic anhydrase-II isozyme activity in vitro and rat erythrocytes in vivo. J Enzyme Inhib Med Chem 2005;20:35–9
  • Yıldırım A, Atmaca U, Keskin A, et al. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorg Med Chem 2015;23:2598--605
  • Boztaş M, Çetinkaya Y, Topal M, et al. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxy-bromophenol derivatives incorporating cyclopropane moieties. J Med Chem 2015;58:640–50
  • Şentürk M, Gülçin İ, Daştan A, et al. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11
  • Arabaci B, Gülçin İ, Alwasel S. Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes. Molecules 2014;19:10103–14
  • Supuran CT. Carbonic anhydrases – an overview. Curr Pharm Des 2008;14:603–14
  • Innocenti A, Öztürk Sarıkaya SB, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 2010;18:2159–64
  • Şentürk M, Gülçin İ, Beydemir Ş, et al. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 2011;77:494–9
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81
  • Supuran CT, Scozzafava A, Conway J. Carbonic anhydrase: its inhibitors and activators. Boca Raton (FL): CRC Press; 2004
  • Öztürk Sarıkaya SB, Topal F, Şentürk M, et al. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 2011;21:4259–62
  • Güney M, Coşkun A, Topal F, et al. Oxidation of cyanobenzocycloheptatrienes: synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorg Med Chem 2014;22:3537–43
  • Innocenti A, Gülçin İ, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenol natural products effectively inhibit mammalian isoforms I–XV. Bioorg Med Chem Lett 2010;20:5050–3
  • Topal M, Gülçin İ. Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor. Turk J Chem 2014;38:894–902
  • Göçer H, Akıncıoğlu A, Göksu S, et al. Carbonic anhydrase and acetylcholine esterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem 2015;30:316–320
  • Nar M, Çetinkaya Y, Gülçin İ, Menzek A. (3,4-Dihydroxyphenyl) (2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors. J Enzyme Inhib Med Chem 2013;28:402–6
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin Ther Patents 2004;14:667–702
  • Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 2004;19:199–229
  • Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev 2003;23:146–89
  • Gülçin İ, Beydemir S. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev Med Chem 2013;13:408–30
  • Alterio V, Fiore DA, D’Ambrosio K, et al. Multiple binding modes of ınhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? J Am Chem Soc 2012;112:4421–68
  • Aslan A, Altun S, Ahmed I, et al. Synthesis of biologically active nonnatural palmarumycin derivatives. Eur J Org Chem 2011;6:1176–88
  • Gülçin İ, Beydemir Ş, Büyükokuroğlu ME. In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biol Pharm Bull 2004;27:613–16
  • Aras Hisar S, Hisar O, Beydemir S, et al. Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Acta Vet Hung 2004;52:413–22
  • Beydemir S, Gülcin I. Effect of melatonin on carbonic anhydrase from human erythrocyte in vitro and from rat erythrocyte in vivo. J Enzyme Inhib Med Chem 2004;19:193–7
  • Hisar O, Beydemir Ş, Gülçin İ, et al. The effect of melatonin hormone on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Turk J Vet Anim Sci 2005;29:841–5
  • Çoban TA, Beydemir S, Gülçin I, Ekinci D. Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biol Pharm Bull 2007;30:2257–61
  • Çoban TA, Beydemir S, Gülçin I, Ekinci D. The inhibitory effect of ethanol on carbonic anhydrase isoenzymes: in vivo and in vitro studies. J Enzyme Inhib Med Chem 2008;23:266–70
  • Gülçin İ, Beydemir Ş, Çoban TA, Ekinci D. The inhibitory effect of dantrolene sodium and propofol on 6-phosphogluconate dehydrogenase from rat erythrocyte. Fresen Environ Bull 2008;17:1283–7
  • Öztürk Sarikaya SB, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors: inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Des 2010;75:515–20
  • Şentürk M, Gülçin İ, Daştan A, et al. Carbonic anhydrase inhibitors: inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 1976;72:248–51
  • Coban TA, Beydemir S, Gülçin İ, et al. Sildenafil is a strong activator of mammalian carbonic anhydrase isoforms I–XIV. Bioorg Med Chem 2009;17:5791–5
  • Çetinkaya Y, Göçer H, Gülçin İ, Menzek A. Synthesis and carbonic anhydrase isoenzymes inhibitory effects of brominated diphenylmethanone and its derivatives. Arch Pharm 2014;347:354–9
  • Gülçin İ, Küfrevioğlu Öİ, Oktay M. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibition effects of some chemicals on the enzyme activity. J Enzyme Inhib Med Chem 2005;20:297–302
  • Laemmli DK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:6805
  • Köksal E, Gülçin İ. Purification and characterization of peroxidase from cauliflower (Brassica oleracea L.) buds. Protein Peptide Lett 2008;15:320–6
  • Şentürk M, Gülçin İ, Çiftci M, Küfrevioğlu Öİ. Dantrolene inhibits human erythrocyte glutathione reductase. Biol Pharm Bull 2008;31:2036–9
  • Şişecioğlu M, Çankaya M, Gülçin İ, Özdemir H. The inhibitory effect of propofol on lactoperoxidase. Protein Peptide Lett 2009;16:46–9
  • Şişecioğlu M, Çankaya M, Gülçin İ, Özdemir H. Interactions of melatonin and serotonin with lactoperoxidase enzyme. J Enzyme Inhib Med Chem 2010;25:779–83
  • Taslimi P, Gulcin İ, Ozgeris B, et al. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives. J Enzyme Inhib Med Chem 2015. doi:10.3109/14756366.2015.1014476
  • Göçer H, Gülçin İ. Caffeic acid phenethyl ester (CAPE): a potent carbonic anhydrase isoenzymes inhibitor. Int J Acad Res 2013;5:150–5
  • Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. J Biol Chem 1967;242:4221–9
  • Çetinkaya Y, Göçer H, Göksu S, Gülçin İ. Synthesis and carbonic anhydrase isoenzymes inhibitory effects of novel benzylamine derivatives. J Enzyme Inhib Med Chem 2014;29:168–74
  • Akıncıoğlu A, Akbaba Y, Göçer H, et al. Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorg Med Chem 2013;21:1379–85
  • Akbaba Y, Akıncıoğlu A, Göçer H, et al. Carbonic anhydrase inhibitory properties of novel sulfonamide derivatives of aminoindanes and aminotetralins. J Enzyme Inhib Med Chem 2014;29:35–42
  • Akıncıoğlu A, Topal M, Gülçin İ, Göksu S. Novel sulfamides and sulfonamides incorporating tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch Pharm 2014;347:68–76
  • Gocer H, Topal F, Topal M, et al. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II from human red blood cell inhibition profiles of taxifolin. J Enzyme Inhib Med Chem 2015. doi.org/10.3109/14756366.2015.1036051
  • Scozzafava A, Kalın P, Supuran CT, et al. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015. doi:10.3109/14756366.2014.999236
  • Aksu K, Nar M, Tanç M, et al. The synthesis of sulfamide analogues of dopamine related compounds and their carbonic anhydrase inhibitory properties. Bioorg Med Chem 2013;21:2925–31
  • Krohn, K, Wang S, Ahmed I, et al. Flexible route to palmarumycin CP1 and CP2 and CJ-12.371 methyl ether. Eur J Org Chem 2010;23:4476–81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.